
 McBasic 3.3 reference manual

 1

McBasic 3.3
programming language

reference manual
for SKS Control

ACN MPU3 based
motion control systems

Programming tools

Application program

McBasic

McDos

SKS Control Oy,

Martinkyläntie 50 01720 VANTAA
tel +358-20 76461 fax +358-207646740, email: control@sks.fi

30.3.2017, Ari Lindvall

 McBasic 3.3 reference manual

 2

Table of contents:

1. GENERAL 8

1.1 MCBASIC COMMANDS .. 10

1.2 MCBASIC FUNCTIONS ... 14

2. GETTING STARTED 18

2.1 MCBASIC VERSIONS ... 18

2.2 STARTING THE SYSTEM ... 18

2.3 WRITING PROGRAMS .. 19

2.4 COMMAND AND VARIABLE NAMES ... 19

2.5 VARIABLE TYPES ... 20

2.6 LABELS .. 21

2.7 PROCEDURES .. 22

3. CONTROL 23

3.1 ED .. 23

3.2 HELP .. 23

3.3 DOS .. 24

3.4 SYSTEM ... 24

3.5 NEW ... 25

3.6 RUN .. 25

3.7 END .. 25

3.8 STOP .. 26

3.9 BREAK ... 26

3.10 NOBREAK .. 27

3.11 CONT ... 27

3.12 TRACE ... 27

3.13 DELETE ... 28

3.14 FREE .. 28

3.15 SOURCECRC .. 29

3.16 PROGRAMCRC ... 29

4. STRUCTURE 30

4.1 : .. 30

4.2 GOTO ... 30

4.3 GOSUB .. 31

4.4 RETURN .. 31

4.5 ON GOTO .. 32

4.6 ON GOSUB .. 32

4.7 IF THEN [ELSEIF] [ELSE] [ENDIF] .. 33

4.8 FOR NEXT ... 35

4.9 DO... UNTIL.... LOOP .. 36

4.10 TASK .. 37

4.11 TASKMAX .. 37

4.12 PRIOR .. 38

5. MATHEMATICS 40

5.1 ARITHMETICAL OPERATIONS .. 40

5.2 LOGICAL OPERATIONS ... 40

5.3 BINARY OPERATIONS ... 41

5.4 NUMBER INPUT FORMATS ... 41

 McBasic 3.3 reference manual

 3

5.5 MATHEMATICAL FUNCTIONS ... 41

5.5.1 ON ... 41

5.5.2 OFF ... 42

5.5.3 ABS ... 42

5.5.4 SGN .. 42

5.5.5 INT .. 43

5.5.6 MIN ... 43

5.5.7 MAX .. 43

5.5.8 RND .. 44

5.5.9 EXP ... 44

5.5.10 LOG .. 44

5.5.11 LOG2 .. 45

5.5.12 SQR .. 45

5.5.13 PI ... 45

5.5.14 SIN .. 46

5.5.15 COS .. 46

5.5.16 TAN ... 46

5.5.17 ATAN .. 47

5.5.18 ANGLE .. 47

6. STRINGS 48

6.1 EXEC .. 48

6.2 ASC .. 49

6.3 LEN .. 49

6.4 VAL ... 50

6.5 CHR$.. 50

6.6 STR$.. 51

6.7 BIN$... 51

6.8 DEC$.. 52

6.9 HEX$.. 52

6.10 LEFT$... 52

6.11 RIGHT$.. 53

6.12 MID$... 53

6.13 REV$.. 53

6.14 INSTR ... 54

6.15 STRING .. 54

6.16 UCASE$... 54

6.17 ADDR$... 55

6.18 MC$.. 55

6.19 WIN$.. 56

6.20 CRC16$.. 56

7. VARIABLES AND ARRAYS 57

7.1 DIM ... 59

7.2 REAL .. 60

7.3 FLOAT .. 61

7.4 BIT .. 61

7.5 BYTE .. 62

7.6 WORD .. 62

7.7 SHORT INTEGER .. 63

7.8 INTEGER ... 63

7.9 LONG INTEGER .. 64

 McBasic 3.3 reference manual

 4

7.10 ADDR ... 64

7.11 LOCAL .. 65

7.12 [LET] ... 65

8. FILES AND COMMUNICATIONS 66

8.1 DEVICE NUMBERS ... 66

8.2 PROGRAM FILES .. 66

8.2.1 STARTING MCBASIC .. 67

8.2.2 USING WAKEUP.EX .. 67

8.2.3 SAVE .. 68

8.2.4 LOAD .. 68

8.2.5 APPEND ... 68

8.3 DATA INPUT AND OUTPUT ... 69

8.3.1 INPUT ... 69

8.3.2 PRINT ... 70

8.3.3 LIST .. 71

8.3.4 DIGITS .. 71

8.3.5 BYTE(#nn) .. 72

8.3.6 WORD(#nn) .. 73

8.3.7 LONG(#nn) ... 74

8.3.8 FLOAT(#nn) .. 74

8.3.9 REAL(#nn) .. 75

8.3.10 IEEE .. 76

8.3.11 BLOCK$.. 77

8.3.12 DATE$.. 78

8.3.13 DATE .. 78

8.3.14 LINK .. 79

8.4 CURSOR CONTROL FUNCTIONS ... 79

8.4.1 TAB ... 79

8.4.2 LINE .. 80

8.4.3 CURS$(column,row) ... 80

8.4.4 ANSICURS$(column,row) .. 81

8.5 SERIAL COMMUNICATIONS .. 81

8.5.1 OPEN .. 82

8.5.2 ACN serial ports .. 83

8.5.3 CLOSE .. 83

8.5.4 SIZE .. 84

8.5.5 STATUS .. 85

8.6 MEMORY DEVICES AND FILE OPERATIONS .. 86

8.6.1 OPEN .. 86

8.6.2 CLOSE .. 87

8.6.3 PTR ... 87

8.6.4 SIZE .. 88

8.6.5 DIR$.. 89

8.6.6 DATE$.. 90

8.7 NETWORK ... 91

8.7.1 OPEN .. 92

8.7.2 CLOSE .. 93

8.7.3 STATUS .. 93

8.7.4 SIZE .. 95

9. FIELDBUSES 96

 McBasic 3.3 reference manual

 5

9.1 MODBUS .. 96

9.1.1 MBOPEN() .. 97

9.1.2 MBCLOSE .. 97

9.1.3 MBDATA()... 98

9.1.4 MBREG() .. 102

9.2 ETHERCAT .. 103

9.2.1 ETHERCAT... 103

9.2.2 ECMOD$... 105

9.2.3 ECPAR .. 105

9.2.4 ECAX .. 107

9.2.5 ECCO .. 107

9.2.6 ECSERNUM ... 108

9.3 FIELDBUS SLAVE OPTION .. 109

9.3.1 ANYBUS ... 109

9.3.2 ABCONF$... 109

10. TIMING AND REAL TIME CLOCK 113

10.1 REAL TIME CLOCK ... 113

10.2 TIME MEASUMENTS .. 114

10.2.1 TIMER ... 114

10.2.2 CLOCK .. 115

10.2.3 DELAY .. 115

11. OTHER COMMANDS 116

11.1 DATA LINES .. 116

11.1.1 DATA .. 116

11.1.2 READ .. 116

11.1.3 RESTORE... 117

11.1.4 DATAPTR@ ... 117

11.2 USER DEFINED FUNCTIONS .. 117

11.2.1 DEF ... 118

11.2.2 FNname .. 118

11.3 COMMENTS .. 119

11.3.1 REM .. 119

11.3.2 ' ... 119

12. MOTION CONTROL 120

12.1 ENCODER OPERATION ... 121

12.1.1 RES ... 121

12.1.2 ENCSIZE .. 122

12.1.3 OFFSET .. 123

12.1.4 ENCERR ... 125

12.2 POSITION CONTROL SETTINGS .. 125

12.2.1 DRIVETYPE.. 125

12.2.2 LIMITTYPE ... 127

12.2.3 PIDFREQ .. 128

12.2.4 RAMPTIME ... 128

12.2.5 BRAKETIME ... 129

12.2.6 GAIN ... 129

12.2.7 INTG ... 130

12.2.8 DERV .. 131

12.2.9 SCOMP ... 132

 McBasic 3.3 reference manual

 6

12.2.10 ACOMP ... 133

12.2.11 DCOMP ... 134

12.2.12 JCOMP ... 135

12.2.13 FILTERSIZE.. 136

12.2.14 SPEED .. 139

12.2.15 ACCEL .. 140

12.2.16 OVERRIDE ... 141

12.2.17 OVERRIDERATE ... 141

12.2.18 MAXERR... 142

12.3 POSITION CONTROL FUNCTIONS ... 142

12.3.1 POS .. 142

12.3.2 FPOS .. 143

12.3.3 RPOS .. 144

12.3.4 FSPEED .. 144

12.3.5 RSPEED ... 145

12.3.6 POSERR ... 145

12.4 HOME ... 145

12.5 STOPMOVE ... 147

12.6 MOVEREADY .. 148

12.6.1 TRIPGROUP... 148

12.7 TRANSLATIONS .. 149

12.7.1 MOVE ... 149

12.7.2 MOVER ... 150

12.7.3 CIRCLEMOVER ... 150

12.7.4 MOVC AND MOVCR .. 151

12.7.5 CIRCLEMOVCR ... 152

12.7.6 MOVEBUFFER ... 153

12.8 CREEP ... 154

12.9 FOLLOW [AT]... 156

12.10 FOLLOWRATIO ... 157

12.11 PWR ... 157

12.12 OPWR .. 158

12.13 FAST POSITION CAPTURE .. 159

12.13.1 CAPTTYPE ... 159

12.13.2 CAPTPOS ... 160

12.14 PROFILE CONTROLLED MOTION ... 160

12.14.1 PROFSIZE .. 160

12.14.2 PROF .. 161

12.14.3 MOVEPROF ... 162

12.15 POSITION CONTROL LOG ... 163

12.15.1 LOGSIZE .. 163

12.15.2 LOG .. 163

12.15.3 LOGDATA ... 164

13. I/O CONNECTIONS 166

13.1 McWay I/O configuration .. 166

13.1.1 WAYMOD$... 167

13.1.2 WAYERR .. 168

13.1.3 WAYSLAVE .. 168

13.1.4 MOTION CONTROL I/O LOGICAL ADDRESSES ... 170

13.1.5 I/O LOGICAL ADDRESSES ... 170

13.2 DIGITAL I/O .. 171

 McBasic 3.3 reference manual

 7

13.2.1 INP .. 171

13.2.2 OUT .. 171

13.3 ANALOG I/O... 172

13.3.1 INPA .. 172

13.3.2 OUTA .. 173

13.4 STATUSOUTS ... 173

14. ERRORS 175

14.1 ERROR .. 176

14.2 ON ERROR .. 176

14.3 RESUME .. 177

14.4 ERR .. 177

14.5 ERL .. 177

14.6 ERL$.. 178

14.7 ERR$.. 178

14.8 ERR@ .. 178

14.9 ONERR@ ... 179

 McBasic 3.3 reference manual

 8

1. GENERAL

This manual describes the use of McBasic programming language version 3.3 supplied with SKS
Control ACN motion control systems with MPU3 motion controller unit.

Since the programming environment is used under the McDos operating system we recommend
also studying the McDos 2.2 operating system documentation.

In the beginning of this manual there is a short summary of McBasic commands and functions in
alphabetic order, after which the startup and programming procedures are described.

Chapter CONTROL describes the commands used in the command mode of the programming
environment. The next chapters explain the syntax and operation of program commands and
functions for different areas of programming. Examples are provided to clarify operation and use.

In connection with each command and function there is a table describing the meaning of different
syntax elements.

Command Description of operation.

Syntax The exact form in which the command is written.

elements Description of the parameters and different forms of syntax.

Function Description of operation.

Syntax The exact form in which the function is written.

Type The type of value returned by the function.

elements Description of the arguments and different forms of syntax.

Value Description of values the function can return.

The following notation conventions have been used in this manual.

- Examples have been indented and a monospace font is used in them.

StartOfProgram

 ' example

- The syntax elements in the commands and functions, that must be replaced with their
respective values, are written in italics.

GOTO address SIN(expression) MOVEaxes(expression)

- The following notations are used when describing optional parts of syntax

 McBasic 3.3 reference manual

 9

[] brackets, the syntax element is optional
... ellipsis, the syntax element can be repeated
{ | } braces, vertical line (or), alternative syntax elements

MOVEaxis[axis[...[axis]]] (expr1[,expr2[,...[,exprN]]])

or shorter

MOVEaxes...(expr..)

TRACE{ON|OFF|n}

In the examples the parts the user enters are written in normal text

PRINT "Text"

Text

The controller output is written in bold text.

This programming manual has been inspected to be as accurate as possible when describing the
details of the McBasic programming language. As McBasic is continuously developed to meet new
demands of machine control, some functions may be added or changed in later versions of the
language. However, most new developments are designed to be compatible with older McBasic
programs to enable simple updating of equipment and software.

Because of the large number of commands and functions in the McBasic language it is probable,
that the careful reader finds some parts in this programming manual, where the operation is not
explained as accurately as possible.

The author is grateful for all notes and suggestions regarding this manual and will try to use them to
enhance the usefulness of this manual in future editions.

Vantaa 2016

SKS Control Oy

Ari Lindvall

 McBasic 3.3 reference manual

 10

1.1 MCBASIC COMMANDS

name description details in chapter

' text comment COMMENTS
command : command command delimiter STRUCTURE
var = expr set variable value VARIABLES AND ARRAYS
label [var,...,var] define jump or subroutine start address STRUCTURE
ABCONF$(a)=expr set Anybus module configuration FIELDBUSES
ACCELaxes..=expr set acceleration MOTION CONTROL
ACCEL(axnr,..,axnr)=expr set acceleration MOTION CONTROL
ACOMPaxes..=expr set acceleration feedforward MOTION CONTROL
ACOMP(axnr,..,axnr)=expr set acceleration feedforward MOTION CONTROL

ADDR var,....,var declare address variables VARIABLES AND TABLES
APPEND filename append to program FILES
BIT arrayname(dim,..,dim), .. declare bit array VARIABLES AND TABLES
BLOCK$(expr)=string write block STRINGS
BREAK addr insert breakpoint in program CONTROL
BYTE(#devicenr)=expr write byte FILES
BYTE arrayname(dim,..,dim), .. declare byte array VARIABLES AND TABLES
CAPTTYPEaxes..=expr set position capture mode MOTION CONTROL
CAPTTYPE(axnr,...,axnr)=expr set position capture mode MOTION CONTROL
CIRCLEMOVCR(expr,expr:expr,…) circular motion MOTION CONTROL
CIRCLEMOVER(expr,expr:expr,…) circular motion MOTION CONTROL
CLOSE #devicenr close file FILES
CONT continue program after stop CONTROL
CREEPaxes..(expr..) motion at constant speed MOTION CONTROL
CREEP(axnr :expr,..,axnr:expr) motion at constant speed MOTION CONTROL
DATA data,...,data data for READ command OTHER COMMANDS
DATE$(#devicenr)=datestring set date FILES,CLOCK
DCOMPaxes..=expr set deceleration feedforward MOTION CONTROL
DCOMP(axnr,..,axnr)=expr set deceleration feedforward MOTION CONTROL
DECELaxes..=expr set deceleration MOTION CONTROL
DECEL(axnr,..,axnr)=expr set deceleration MOTION CONTROL
DEF FNfnname.... define user function OTHER COMMANDS
DELAY expr delay TIMING
DELETE addr,addr remove program lines CONTROL
DERVaxes..=expr set position control derivation MOTION CONTROL
DERV(axnr,..,axnr)=expr set position control derivation MOTION CONTROL
DIGITS=expr set number of decimal places FILES
DIM variablename(dim,..,dim), .. declare variables or arrays VARIABLES AND TABLES
DO..UNTIL..LOOP repeat loop STRUCTURE
DOS exit to operating system CONTROL
DRIVETYPEaxes..=type configure servo connections MOTION CONTROL
DRIVETYPE(axnr,..,axnr)=expr configure servo connections MOTION CONTROL
ECAX(ax,aout,inp,ena,nrun,prun)= set EtherCat axis I/O configuration FIELDBUSES
ECCO(node,index,subindex,bytes)= write Ethercat CoE register FIELDBUSES
ECMOD$(n,m)= set EtherCat fieldbus configuration FIELDBUSES
ECPAR(n,par)= set EtherCat node parameters FIELDBUSES
ECSERNUM(node)= set EtherCat node s/n specification FIELDBUSES

 McBasic 3.3 reference manual

 11

ED address edit program CONTROL
ELSE ... alternate program part STRUCTURE
ELSEIF ... alternate conditional program part STRUCTURE
ENCSIZEaxes..=width set encoder range MOTION CONTROL
ENCSIZE(axnr,...,axnr)=width set encoder range MOTION CONTROL
END end program or task CONTROL
ENDIF end of IF structure STRUCTURE
ERROR errornr cause error ERRORS
ETHERCAT(port,function) control Ethercat master FIELDBUSES
EXEC(string) execute command STRINGS
FILTERSIZEaxes..=expr set position reference filter MOTION CONTROL
FILTERSIZE(axnr,...,axnr)=expr set position reference filter MOTION CONTROL
FLOAT(#devicenr)=.. write 4 byte floating point (real) number FILES
FLOAT variablename(dim,..,dim), .. declare 4 byte fp variables (arrays) VARIABLES AND TABLES
FOLLOWaxis1axis2(n1[,n2]) follow another axis position MOTION CONTROL
FOLLOW(axnr1,axnr2,n1[,n2]) follow another axis position MOTION CONTROL
FOR..TO..STEP repeat loop STRUCTURE
GAINaxes..=expr set position control gain MOTION CONTROL
GAIN(axnr,..,axnr)=expr set position control gain MOTION CONTROL
GOSUB [(expr,..,expr)] address call subroutine STRUCTURE
GOTO address jump to program line STRUCTURE
HELP [#devicenr] display command list CONTROL
HOMEaxes.. find axes home position MOTION CONTROL
HOME(axnr,...,axnr) find axes home position MOTION CONTROL
IEEE32(#devicenr)=expression write 4 byte IEEE unix format fp number FILES AND COMMUNICATIONS
IEEE32I(#devicenr)=expression write 4 byte IEEE pc format fp number FILES AND COMMUNICATIONS
IEEE64(#devicenr)=expression write 8 byte IEEE unix format fp number FILES AND COMMUNICATIONS
IEEE64I(#devicenr)=expression write 8 byte IEEE pc format fp number FILES AND COMMUNICATIONS
IF..THEN..ELSE.. conditional commands STRUCTURE
INPUT [#devicenr,].. read value for variable FILES AND COMMUNICATIONS
INTEGER variablename(dim,..,dim), .. declare 16bit integer variables or arrays VARIABLES AND TABLES
INTGaxes..=expr set position control integration MOTION CONTROL
INTG(axnr,..,axnr)=expr set position control integration MOTION CONTROL
JCOMPaxes..=expr set jerk compensation MOTION CONTROL
JCOMP(axnr,..,axnr)=expr set jerk compensation MOTION CONTROL
[LET]variable=expression set value for variable OTHER COMMANDS
LIMITTYPEaxes..=type configure axes limit switches MOTION CONTROL
LIMITTYPE(axnr,..,axnr)=type configure axes limit switches MOTION CONTROL
LINE[(#n)]=expression set output line length FILES AND COMMUNICATIONS
LINK #dev1,dev2,dev3 link output to two other devices FILES AND COMMUNICATIONS
LIST [#n,]lnumber.. |label.. list program FILES AND COMMUNICATIONS
LOAD string load program FILES AND COMMUNICATIONS
LOCAL variable, ... declare variables local VARIABLES AND TABLES
LOGaxes..=n control motion control log operation MOTION CONTROL
LOG(axnr,...,axnr)=n control motion control log operation MOTION CONTROL
LOGDATAaxes=expr set analog input to attach to axis log MOTION CONTROL
LOGDATA(axnr,..,axnr)=expr set analog input to attach to axis log MOTION CONTROL
LOGSIZEaxes=expr set size of log array MOTION CONTROL
LOGSIZE(axnr,..,axnr)=expr set size of log array MOTION CONTROL
LONG INTEGER var(dim,..,dim), .. declare long integer variables or arrays VARIABLES AND TABLES
LONG var(dim,..,dim), .. declare long integer variables or arrays VARIABLES AND TABLES
LONG(#devicenr)=expression write long integer FILES

 McBasic 3.3 reference manual

 12

LOOP see DO .. UNTIL .. LOOP STRUCTURE
MAXERRaxes..=expr set position error limit MOTION CONTROL
MAXERR(axnr,...,axnr)=expr set position error limit MOTION CONTROL
MBCLOSE [(expr)] close ModBus channel[s] FILES AND COMMUNICATIONS
MBDATA(expr,expr)=expr write ModBus registers FILES AND COMMUNICATIONS
MBREG(expr,expr)=expr write ModBus server settings FILES AND COMMUNICATIONS
MOVCaxes..(expr..) continuous absolute motion MOTION CONTROL
MOVC(axnr:expr,..,axnr:expr) continuous absolute motion MOTION CONTROL
MOVCRaxes..(expr..) continuous relative motion MOTION CONTROL
MOVCR(axnr:expr,..,axnr:expr) continuous relative motion MOTION CONTROL
MOVEaxes..(expr..) absolute motion MOTION CONTROL
MOVE(axnr:expr,..,axnr:expr) absolute motion MOTION CONTROL
MOVERaxes..(expr..) relative motion MOTION CONTROL
MOVER(axnr:expr,..,axnr:expr) relative motion MOTION CONTROL
MOVEPROFaxes..(axis) activate profile controlled motion MOTION CONTROL
MOVEPROF(axnr:axnr,.,axnr:axnr) activate profile controlled motion MOTION CONTROL
NEW clear program memory CONTROL
NEXT variable end of repeat loop STRUCTURE
NOBREAK address remove breakpoint CONTROL
NOBREAKS remove all breakpoints CONTROL
OFFSETaxes=expression set offset value or move current position MOTION CONTROL
OFFSET(axnr,...,axnr)=expression set offset value or move current position MOTION CONTROL
ON var GOSUB addr,..,addr select subroutine STRUCTURE
ON var GOTO addr,..,addr select jump address STRUCTURE
ON ERROR addr set error trap ERRORS
OPEN #devicenr,string open file or port FILES AND COMMUNICATIONS
OPWRaxes..=expression set servo axes reference output MOTION CONTROL
OPWR(axnr,..,axnr)=expression set servo axes reference output MOTION CONTROL
OUT(outputnr)={0|1} set binary output INPUT/OUTPUT
OUTA(outputnr)=expression set analog output ANALOG I/O
OVERRIDEaxes= expression set axes speed/accel scale MOTION CONTROL
OVERRIDE(axnr,..,axnr)= expression set axes speed/accel scale MOTION CONTROL
OVERRIDERATEaxes= expression set axes override change rate MOTION CONTROL
OVERRIDERATE(axnr,..,axnr)= expr set axes override change rate MOTION CONTROL
PIDFREQ=expression set position and i/o loop repeat rate MOTION CONTROL
POSaxes=expression set current axes position MOTION CONTROL
POS(axnr,..,axnr)=expression set current axes position MOTION CONTROL
PRINT [#devicename,]... data output FILES AND COMMUNICATIONS
PRIOR=n set task priority STRUCTURE
PROFaxes..(index)=expr write to profile table MOTION CONTROL
PROF(axnr,index)=expr write to profile table MOTION CONTROL
PROFSIZEaxes=expr set profile table size for axes MOTION CONTROL
PROFSIZE(axnr,..,axnr)=expr set profile table size for axes MOTION CONTROL
PTR(#devicenr)=expression set file pointer FILES AND COMMUNICATIONS
PWRaxes..=expression set servo axes reference limit MOTION CONTROL
PWR(axnr,..,axnr)=expression set servo axes reference limit MOTION CONTROL
READ var,..,var read data from DATA lines OTHER COMMANDS
REAL variablename(dim,..,dim), .. declare real variables or arrays VARIABLES AND TABLES
REAL(#devicenr)=expression write IEEE 64 bit real number FILES AND COMMUNICATIONS
REALMC(#devicenr)=expression write 64 bit real number in legacy format FILES AND COMMUNICATIONS
REALMC32(#devicenr)=expression write 32 bit real number in legacy format FILES AND COMMUNICATIONS
REM comment comment COMMENTS

 McBasic 3.3 reference manual

 13

REN lnum, lnum, addr, addr renumber program lines CONTROL
RESaxes..=expression set axes position counter resolution MOTION CONTROL
RES(axnr,..,axnr)=expression set axes position counter resolution MOTION CONTROL
RESTORE address set data pointer for READ OTHER COMMANDS (DATA)
RESUME return from error trap routine ERRORS
RESUME NEXT return from error trap routine ERRORS
RETURN return from subroutine STRUCTURE
RUN start program execution CONTROL
SAVE filename save program FILES AND COMMUNICATIONS
SCOMPaxes..=expression set axes speed compensation MOTION CONTROL
SCOMP(axnr,..,axnr)=expression set axes speed compensation MOTION CONTROL
SHORT INTEGER varname(dim,...), . declare 8bit integer variables or arrays VARIABLES AND TABLES
SIZE(#devicenr)=size set file size FILES
SPEEDaxes..=expression set axes speed MOTION CONTROL
SPEED(axnr,..,axnr)=expression set axes speed MOTION CONTROL
STATUSOUTS(run,noerr,timeout) configure status outputs I/O CONNECTIONS
STOP stop program execution CONTROL
STOPMOVEaxes.. stop motion MOTION CONTROL
STOPMOVE(axnr,..,axnr) stop motion MOTION CONTROL
STRING[(length)] varname$(dim, ..).. declare string variables STRINGS
SYMBOLS display symbols in use CONTROL
SYSTEM exit to McDos CONTROL
SYSTEM(string) execute McDos command CONTROL
TASK address create task STRUCTURE
TASKMAX=n set max. task number STRUCTURE
TIMER[(n)]=.. set timer TIMING
TRACE {ON|OFF|tasknr} trace program execution CONTROL
TRIPGROUPaxes.. =expression set group of axes for simultaneous trip MOTION CONTROL
TRIPGROUP(axis,..) =expression set group of axes for simultaneous trip MOTION CONTROL
UNTIL condition exit condition, see DO .. UNTIL .. LOOP STRUCTURE
WAYMOD$(n,m)= set McWay i/o configuration I/O CONFIGURATION
WAYSLAVE=loopnr start McWay slave operation I/O CONFIGURATION
WORD(#devicenr)=.. write word FILES AND COMMUNICATIONS
WORD varname(dim,...), ... declare 16bit word variables or arrays VARIABLES AND TABLES

 McBasic 3.3 reference manual

 14

1.2 MCBASIC FUNCTIONS

name description details in chapter

ABS(expression) absolute value MATHEMATICS
ABCONF$(a) read Anybus module configuration FIELDBUSES
ACCELaxis read axis acceleration MOTION CONTROL
ACCEL(axnr) read axis acceleration MOTION CONTROL
ACOMPaxis read acceleration feedforward MOTION CONTROL
ACOMP(axnr) read acceleration feedforward MOTION CONTROL
ADDR$(address) convert address to string STRINGS
AND boolean or binary AND function MATHEMATICS
ANGLE(expression,expression) calculate vector direction angle MATHEMATICS
ASC(string) ASCII character to number STRINGS
ATAN(expression) arcus tangent MATHEMATICS
BIN$(expression) expression to binary string STRINGS
BLOCK$(#expr,expr) Read block STRINGS
BYTE(#devicenr) read byte FILES AND COMMUNICATIONS
CAPTPOSaxis read captured position MOTION CONTROL
CAPTPOS(axnr) read captured position MOTION CONTROL
CAPTTYPEaxis read position capture status MOTION CONTROL
CAPTTYPE(axnr) read position capture status MOTION CONTROL
CLOCK system timer TIMING
CHR$(expression) number to ASCII character STRINGS
COS(expression) cosine MATHEMATICS
CURS$(xcoord,ykoord) set cursor position FILES AND COMMUNICATIONS
CRC16$(string) CRC16 checksum of a string STRINGS
DATAPTR@ read data pointer OTHER COMMANDS
DATE$(#devicenr) read date FILES AND COMMUNICATIONS
DATE$(expression) convert number to long date string FILES AND COMMUNICATIONS
DATE(datestring) convert date to number FILES AND COMMUNICATIONS
DEC$(expression) expression to decimal string STRINGS
DECELaxis read axis deceleration MOTION CONTROL
DECEL(axnr) read axis deceleration MOTION CONTROL
DERVaxis read position control derivation MOTION CONTROL
DERV(axnr) read position control derivation MOTION CONTROL
DIGITS read DIGITS setting FILES AND COMMUNICATIONS
DIR$(#devicenr,entry) read directory item FILES AND COMMUNICATIONS
DRIVETYPEaxis read axis type MOTION CONTROL
DRIVETYPE(axnr) read axis type MOTION CONTROL
ECCO(node,index,subindex) read EtherCat CoE register FIELDBUSES
ECPAR(n,m) read EtherCat node parameter FIELDBUSES
ECSERNUM(node) read EtherCat node s/n specification FIELDBUSES
ENCERRaxis read encoder error counter MOTION CONTROL
ENCERR(axnr) read encoder error counter MOTION CONTROL
ENCSIZEaxis read encoder type MOTION CONTROL
ENCSIZE(axnr) read encoder type MOTION CONTROL
ERL read error line number ERRORS
ERL$ read error line ERRORS
ERR read error number ERRORS

 McBasic 3.3 reference manual

 15

ERR@ read error line address ERRORS
ERR$(errornumber) error message ERRORS
EXP(expression) power of e MATHEMATICS
FILTERSIZEaxis read axis position reference filter setting MOTION CONTROL
FILTERSIZE(axnr) read axis position reference filter setting MOTION CONTROL
FLOAT(#devicenr) read real number FILES AND COMMUNICATIONS
FNname(argument,..) user defined numerical function OTHER COMMANDS
FNname$(argument,..) user defined string function OTHER COMMANDS
FPOSaxis read position set value after filter MOTION CONTROL
FPOS(axnr) read position set value after filter MOTION CONTROL
FREE(n) user memory status CONTROL
FSPEEDaxis read position set value speed after filter MOTION CONTROL
FSPEED(axnr) read position set value speed after filter MOTION CONTROL
GAINaxis read position control gain MOTION CONTROL
GAIN(axnr) read position control gain MOTION CONTROL
HEX$(expression) expression to hexadecimal string STRINGS
IEEE32(#devicenr) read 4 byte IEEE unix format fp number FILES AND COMMUNICATIONS
IEEE32I(#devicenr) read 4 byte IEEE pc format fp number FILES AND COMMUNICATIONS
IEEE64(#devicenr) read 8 byte IEEE unix format fp number FILES AND COMMUNICATIONS
IEEE64I(#devicenr) read 8 byte IEEE pc format fp number FILES AND COMMUNICATIONS
INP(input) read binary input INPUT/OUTPUT
INPA(input) read analog input ANALOG I/O
INSTR(expr,string,substring) locate substring STRINGS
INT(expression) integer part of number MATHEMATICS
INTGaxis read position control integration MOTION CONTROL
INTG(axnr) read position control integration MOTION CONTROL
LEFT$(string,expression) part of string (from end) STRINGS
LEN(string) length of string STRINGS
LIMITTYPEaxes read axis limit switch configuration MOTION CONTROL
LIMITTYPE(axnr) read axis limit switch configuration MOTION CONTROL
LOG(expression) natural logarithm MATHEMATICS
LOG2(expression) 2 base logarithm MATHEMATICS
LOGDATAaxis(sample,data) read position control log data MOTION CONTROL
LOGDATA(axnr,sample,data) read position control log data MOTION CONTROL
LOGSIZEaxis read log array size MOTION CONTROL
LOGSIZE(axnr) read log array size MOTION CONTROL
LONG(#devicenr) read long integer FILES AND COMMUNICATIONS
MAX(expr1,expr2) greater of two numbers MATHEMATICS
MAXERRaxis read current position error limit MOTION CONTROL
MAXERR(axnr) read current position error limit MOTION CONTROL
MBDATA(expr,expr) read ModBus registers FIELDBUSES
MBOPEN(string,expr,expr) open ModBus server and read id FIELDBUSES
MBREG(expr,expr) read ModBus server status FIELDBUSES
MC$(string) string convert STRINGS
MID$(string,expr1,expr2) part of string STRINGS
MIN(expr1,expr2) smaller of two numbers MATHEMATICS
MOVEBUFFERaxes.. read motion buffer memory status MOTION CONTROL
MOVEBUFFER(axnr,..,axnr) read motion buffer memory status MOTION CONTROL
MOVEREADYaxes.. read axis status MOTION CONTROL
MOVEREADY(axnr,..,axnr) read axis status MOTION CONTROL
NOT expression logical negation MATHEMATICS
OFF constant 0 MATHEMATICS

 McBasic 3.3 reference manual

 16

OFFSETaxis read axis offset value MOTION CONTROL
OFFSET(axnr) read axis offset value MOTION CONTROL
ON constant 1 MATHEMATICS
ONERR@ read current error trap address ERRORS
OPWRaxis read axis reference output MOTION CONTROL
OPWR(axnr) read axis reference output MOTION CONTROL
OR boolean or binary OR function MATHEMATICS
OUT(output) read binary output status INPUT/OUTPUT
OUTA(output) read analog output status ANALOG I/O
OVERRIDEaxis read axes speed/accel scale MOTION CONTROL
OVERRIDE(axnr) read axes speed/accel scale MOTION CONTROL
OVERRIDERATEaxis read axes override change rate MOTION CONTROL
OVERRIDERATE(axnr) read axes override change rate MOTION CONTROL
PIDFREQ read position loop repeat rate MOTION CONTROL
PI constant pi (3.1415926..) MATHEMATICS
POSaxis read axis position MOTION CONTROL
POS(axnr) read axis position MOTION CONTROL
POSERRaxis read axis position error MOTION CONTROL
POSERR(axnr) read axis position error MOTION CONTROL
PRIOR read current task priority STRUCTURE
PROFaxis(sample,data) read from profile table MOTION CONTROL
PROF(axnr,sample,data) read from profile table MOTION CONTROL
PROFSIZEaxis read axis profile table size MOTION CONTROL
PROFSIZE(axnr) read axis profile table size MOTION CONTROL
PROGRAMCRC calculate program CRC16 CONTROL
PTR(#devicenr) read file data pointer FILES AND COMMUNICATIONS
PWRaxis read position control output limit MOTION CONTROL
PWR(axnr) read position control output limit MOTION CONTROL
REAL(#devicenr) read IEEE 64 bit (real) number FILES AND COMMUNICATIONS
REALMC(#devicenr) read 64 bit real number in legacy format FILES AND COMMUNICATIONS
REALMC32(#devicenr) read 32 bit real number in legacy format FILES AND COMMUNICATIONS
RESaxis read axis resolution MOTION CONTROL
RES(axnr) read axis resolution MOTION CONTROL
REV$(string) string in reverse order STRINGS
RIGHT$(string,expression) part of string (from beginning) STRINGS
RND(expression) random number MATHEMATICS
RPOSaxis read position set value before filter MOTION CONTROL
RPOS(axnr) read position set value before filter MOTION CONTROL
RSPEEDaxis read position set value speed before filter MOTION CONTROL
RSPEED(axnr) read position set value speed before filter MOTION CONTROL
SCOMPaxis read axis speed compensation MOTION CONTROL
SCOMP(axnr) read axis speed compensation MOTION CONTROL
SGN(expression) sign of number MATHEMATICS
SIN(expression) sine MATHEMATICS
SIZE(#devicenumber) read file size or output buffer free space FILES AND COMMUNICATIONS
SOURCECRC calculate program source CRC16 CONTROL
SPEEDaxis read axis set speed MOTION CONTROL
SPEED(axnr) read axis set speed MOTION CONTROL
SQR(expression) square root MATHEMATICS
STATUS(#devicenr,type) read device status FILES AND COMMUNICATIONS
STR$(expression) number to string STRINGS
TAB(expression) set cursor on line FILES AND COMMUNICATIONS

 McBasic 3.3 reference manual

 17

TAN(expression) tangent MATHEMATICS
TASK current task number STRUCTURE
TASKMAX maximum task number STRUCTURE
TIMER[(n)] read timer value TIMING
TRIPGROUPaxes.. read axes trip group number MOTION CONTROL
TRIPGROUP(axis,..) read axes trip group number MOTION CONTROL
UCASE$(string) convert string to uppercase STRINGS
VAL(string) string to number STRINGS
WAYERR(waynr) read McWay error counter I/O CONFIGURATION
WAYMOD$(waynr,modnr) read McWay configuration I/O CONFIGURATION
WAYSLAVE read McWay slave channel number I/O CONFIGURATION
WIN$(string) string convert STRINGS
WORD(#devicenr) read word FILES AND COMMUNICATIONS
XOR boolean or binary XOR function MATHEMATICS

 McBasic 3.3 reference manual

 18

2. GETTING STARTED

McBasic is a control system oriented programming environment with efficient commands and
functions for utilising the hardware and connections of SKS Control ACN motion and machine
control systems.

The commands and functions for standard data processing, calculations and output are essentially
compatible with many popular Basic language interpreters and compilers.

2.1 MCBASIC VERSIONS

Since McBasic is a control system oriented environment, different ACN control system models are
equipped with specific versions of the system software.

Some properties of the environment, such as axis number and names and available i/o, are
dependent of the software and hardware configurations used.

The manufacturer installs the correct McBasic software for your ACN control system at factory. The
McBasic programming environment and runtime come as an McDOS executable command file, such
as BAS32.C4 and is saved on the D8: internal flash memory. It can also be saved and run from
other memory devices if desired.

Current versions of McBasic for MPU3 include:

BASIC.C4 McBasic without i/o and motion control functionality for system utility
BAS32.C4 32 logical axes version (standard version)
BAS100.C4 100 logical axes version

2.2 STARTING THE SYSTEM

At power up, the ACN control system starts the McDOS operating system as described in the
McDOS user's manual. After this McDOS seeks for the WAKEUP.EX batch file from D1: ... D8: root
directories and, if found, executes the commands in the file. This way the startup procedure can be
defined to suit the application.

Manually, the McBasic environment is started from the McDOS operating system by typing the name
of the McBasic version used as command name:

BAS32E [progname1, ..., prognamen]

where progname.. are names (or paths) of programfiles to be loaded and run when starting McBasic.

If no progname is specified, McBasic stays in the command mode.

 McBasic 3.3 reference manual

 19

2.3 WRITING PROGRAMS

As the McBasic program file is essentially a text file, programs can be written using many different
tools. The recommended tool for working with ACN control systems is the McBench Windows®
programming environment supplied with your ACN system.

One way to write a program for the system is to use the ED command in the command mode of the
McBasic environment. In this mode program lines can be entered from the console (CN: or wherever
the logical console CO: has been redirected to) using a terminal or a PC with a terminal program.
Among other communications programs, the Terminal program of the McBench programming
environment is well suited for this. Program lines should be entered in the order of their execution.

Other ways to work with programs are editing the program files with the TX text editor contained in
McDos as a command file or editing program files in a PC using the McBench program editor or
another editor suitable for editing ASCII files. Programs can then be loaded to the control system
either using an SD card, USB comms or Ethernet (Telnet). (see McBench documentation).

McBasic supports legacy Basic language numbered program lines. Since numbered lines are not
commonly used or recommended for new program development, their use is not described in this
manual. However, they may be useful for running old McBasic programs that still contain numbered
lines. To learn about using line numbers, please refer to earlier McBasic version documentation.

Generally, program lines are written starting from a position with one or more leading spaces. A
program line can be max. 80 characters long. An empty line is also interpreted as a program line.

Labels can be used to define an address in the program in order to use it in conjunction with
command such as GOSUB, TASK, GOTO, RESTORE etc. Because of the legacy support for line
numbers, a label must not be a number or start with a number although it may contain numbers.

A label must begin from the first position of the line. The rest of the line can be empty of contain a
program line.

Lab1 ' sample program snippet

 PRINT "first line"

 PRINT "second line"

 PRINT "third line"

 n=3

Lab2 ' the following lines will be repeated 3 times

 PRINT "fourth line"

 PRINT "fifth line"

 n=n-1

 IF n>0 THEN GOTO Lab2

 PRINT "End of program"

In McBasic command mode program lines with line numbers can be entered by just typing them and
ending the line with a <return>. Program lines can be entered and edited with the ED command
described in chapter 3. Editing a program causes current values of variables to be cleared.

2.4 COMMAND AND VARIABLE NAMES

When typing command and function names, both uppercase and lowercase characters can be used,
whereas variable names and labels are case sensitive.

 McBasic 3.3 reference manual

 20

print sin(3.14);COS(1.65)

Variable names can be either “short” or “long”. A “short” numerical variable name consists of one
letter and optionally one number. A “short” string name consists of a letter followed by $.

Short numerical variable names:

A a A3 a9 z8 z Z b B0 B9

Short string names:

A$ a$ z$ Z$

Variables with “short” names can be used as global variables without declaring them, whereas “long”
variable names must be declared, as described in chapters 6 and 7, before using them in the
program.

2.5 VARIABLE TYPES

String and address variables are the only McBasic variables that McBasic does not automatically
convert according to use. Thus, for example, using a string variable when a command or a function
requires a numerical value, causes McBasic to stop the program and display an error message.

All McBasic numerical expressions can normally be used for commands and functions requiring
numerical values. However, care must be taken not to exceed the minimum and maximum value
allowed.

Some considerations:
- Any non-zero value is considered to be true. Only 0 is false.
- Using a non-integer value in a command or function requiring an integer value causes

normally McBasic to round the value to the nearest integer value.
- When using too high values in some integer operations McBasic normally uses the value

defined by the least significant bits.

When using long variable names or large arrays It is necessary to declare the variables before using
them. Declaration can also be used to limit the scope of the variable as described in chapter 7.

Examples of variable declarations:

STRING Abc$,C$(5),D$(8,8) 'strings and string arrays of 80 character strings
STRING(5) SymFirst$,SymArray(3) 'string of an arbitrary length in the range 1...255,
 here 5 characters.
REAL A,Varia(4),B(3,3) '8 byte floating point numbers (IEEE64 format)
ADDR A@(5),Jump@ 'address arrays and variables

Following types are used for arrays only:

FLOAT N(20),Dx(10,100) '4 byte floating point numbers (IEEE32 format)
LONG INTEGER A(5) '32 bit signed integer (-2147483647...2147483648)
LONG A(5) '32 bit signed integer
WORD a(5),c(5,5) '16 bit unsigned integer (0...65535)
INTEGER Abc(3), Cba(6,6) '16 bit signed integer (-32768...32767)
BYTE Abc(3), Cba(6,6) '8 bit unsigned integer (0...255)

 McBasic 3.3 reference manual

 21

SHORT INTEGER Cba(6,6) '8 bit signed integer (-128...127)
BIT Abc(3), Cba(6,6) '1 bit (0..1)

When numerical data is copied to an array of different type the values are rounded to nearest integer
if necessary. An error condition is generated if the value is not within valid limits.

A single bit in a numerical variable can be referred to using the format Var.n to refer to the bit n of
the variable Var. Bit reference n can also be a variable or expression. All numerical values can be
read using this notation, but only variable values can be set using it. For example:

DIM Status

DIGITS=0

Status.0=1

Status.3=1

PRINT "Status: ";Status

FOR n=0 TO 5

 PRINT n,Status.n

NEXT n

Status: 9

0 1

1 0

2 0

3 1

4 0

5 0

2.6 LABELS

McBasic uses labels to mark program lines to be referred to from applicable commands. Thus, a
label essentially defines an address. A label is a string of characters of arbitrary length starting with a
letter. Upper and lowercase characters, numbers (0...9) and characters: !#$%&@ can be used in a
label.

A label must start at the first column and can be followed by a command.

For example

StartOfProgram

 REAL Abc 'some program lines

 Abc=2

 PRINT Abc 'Print is a command

Label1 Abc=Abc+10 'Label1 is a label

 PRINT Abc 'Print is command. Note spaces before PRINT

 2

12

Following error messages can be generated when misusing labels:
• error #44, when a command addresses a nondefined label
• error #45, when an attempt is made to define a label twice

Labels may be used in the following commands to determine the destination of operation:

 McBasic 3.3 reference manual

 22

GOTO, GOSUB, ON ERROR, ON... GOTO, ON...GOSUB, LIST, DELETE, ED, RESTORE

Additionally, address variables and expressions can also be used in conjunction with the above
listed commands excluding ON GOTO and ON GOSUB.

2.7 PROCEDURES

When using a label to call subroutines with the GOSUB command, it is also possible to define
parameters to be passed to the subroutine as local variables. A subroutine using parameter passing
is called a procedure.

For example

DispArea(R) R=PI*R^2

 PRINT “Area=“;R

 RETURN

The procedure is called by giving a list of parameters with the label. For example

GOSUB DispArea(100*X)

The parameter variable R is local within the procedure with the initial value passed when calling the
procedure. The defined parameters can have any name and are assumed real numbers, max. 80
character strings if ending in $ or addresses if ending in @. Up to 8 parameters can be defined for a
procedure.

 McBasic 3.3 reference manual

 23

3. CONTROL

This chapter describes the commands controlling the operation of the McBasic programming
environment.

3.1 ED

Command Edit program.

Syntax ED[address]

address Place (line) in program to start editing. Label or address expression.

ED command allows typing in and editing program from McBasic command mode. It allows editing
of previously entered lines and typing in new lines.

When the command is issued, the referred line appears on the screen and can be edited. It is then
possible to move up and down in the program with arrow keys. The currently edited line is always
printed on the screen below the previous edited line. ED returns to McBasic command mode with the
<return> key.

When in ED editing mode, using an ANSI compatible terminal, other functions are available as
follows:

 � Move left on line
� Move right on line
� Previous line
� Next line
F1 Insert character
F2 Delete character
F3 Insert line
F4 Delete line
F6 Insert line from buffer.

With the F6 function previously edited lines can be browsed and inserted in the program from the
250 characters long buffer. Moving to another line with �� keys or exiting with <enter> completes
editing the line.

3.2 HELP

Command Print (list of) commands and functions.

Syntax HELP[#nn][searchstring]

nn The output device that is used. (default = CO:)

searchstring Optional string, a substring in the command/function to search for.
If omitted, all commands and functions are listed.

Prints a list of available commands and functions containing the specified substring to the specified
device. Short syntax descriptions are also included. HELP can be used for example to check the

 McBasic 3.3 reference manual

 24

commands and functions available in the McBasic version used. It can also be used as help when
programming.

B>HELP

HELP ...

LINE(#expression)=expression

RESUME_NEXT

.

.

OPEN#2,"LP:" ' the printer is connected here

HELP#2 ' print the list...

Or to look for help on a specific subject:

B>HELP "BUF"

list of functions

MOVEBUFFER(expression, ..)

MOVEBUFFERaxes

3.3 DOS

Command Return to McDos operating system

Syntax DOS
SYSTEM
X

The operation has three alternate syntaxes

B>DOS

D4:/> (McDos prompt: current path+">",

 note the McBasic prompt "B>")

3.4 SYSTEM

Command Call resident McDos commands from program.

Syntax SYSTEM(string)

string Executable resident McDos command

For example create new directory from within an McBasic program.

SYSTEM("MKDIR D4:/TEMP")

Note that in McBasic command mode it is possible to execute McDOS commands using a period
before the command:

B>.DIR

 McBasic 3.3 reference manual

 25

3.5 NEW

Command Clear program memory.

Syntax NEW

Program memory is cleared, variables and program are erased.

B>NEW

McBasic32 3.3cg

 Program

 System tables

 Variables & compilations

 Recycled

65628360 Free

B>

When the program memory has been cleared, a McBasic version/revision and memory status
message is displayed. The message shows that program and symbol areas are empty and all
available memory is free. The amount of the free memory depends on the control system model and
memory size and the McBasic version used.

3.6 RUN

Command Start program execution

Syntax RUN

Program starts at the first line. Variable values are cleared.

3.7 END

Command End of program or task

Syntax END

Ends program execution.

END command can also be used as the last command in the program. However, the use of END in
the end of the program is not obligatory.

When using the TASK command to create more than one simultaneous program tasks, END can be
used to end (kill) a task. Thus, a program can contain several END commands to end tasks.

For example:

 McBasic 3.3 reference manual

 26

 .

 OUT(1000)=1 : TASK Delayed_off(1000,0.5)

 .

 .

Delayed_off(Output,Time)

 DELAY Time

 OUT(Output)=0

 END

3.8 STOP

Command Stop program execution.

Syntax STOP

Equivalent to stopping the program by sending a Ctrl-X in the console serial interface (CN:). A STOP
command can be included in the program for example to stop the program in a special condition or
they can be used as breakpoints for testing purposes.

The variables in the stopped program can be observed. Program execution can be continued with
the CONT command.

3.9 BREAK

Command Set breakpoints in program.

Syntax BREAK addr

addr Address for the new breakpoint

The BREAK command allows setting breakpoints without altering the program. Therefore,
breakpoints can be inserted and removed when the program is stopped without loosing variable
values or having to restart the program.

Examples:

BREAK Skip ' set breakpoint at label Skip

BREAK Skip+5 ' set breakpoint at 5 lines after label Skip

BREAK Finish-2 ' set breakpoint at 2 lines befor label Finish

BREAK MySub() ' set breakpoint at a label starting a procedure

 McBasic 3.3 reference manual

 27

3.10 NOBREAK

Command Remove breakpoints from program

Syntax NOBREAK addr
or
NOBREAKS

addr Adress of the breakpoint to remove. Alternate syntax NOBREAKS
removes all breakpoints.

3.11 CONT

Command Continue program execution after a breakpoint, STOP or Ctrl-X.

Syntax CONT

The program continues from the next line (or lines if several tasks) after the point it was stopped.
Variable values are not affected.

3.12 TRACE

Command Control program tracing.

Syntax TRACE {ON|OFF|n}

ON Program tracing on
OFF Program tracing off
n selected TASK:

0 Program tracing off
1 All TASKs
n Only TASK n

Program execution tracing. Executed lines are listed at console while running the program. If more
than one TASK is being used, only one TASK can be traced by selecting with its TASK number.

TRACE 3

TASKs are numbered 2....n. When the program starts, the first TASK is number 2. New tasks are
numbered in creating order.

Tracing program execution generates intense listing of program lines and therefore causes
programs to run slowly. In some cases it is also useful to insert TRACE commands in the program to
control partial tracing of program to preserve processing speed in other parts of program.

 McBasic 3.3 reference manual

 28

3.13 DELETE

Command Remove program lines.

Syntax DELETE [addr1][,addr2]

addr1 The address of the first line to be removed (default beginning of program).

addr2 The address of the last line to be removed (default end of program).

When used without parameters the DELETE command removes all program lines. This operation
can be done faster with the NEW command.

With the command DELETE addr1 , line addr1 and the lines after it are removed.

With the command DELETE ,addr2 , line addr2 and the lines before it are removed.

With the command DELETE addr1,addr2 , line addr1 and addr2 and the lines between them are
removed.

If addr1 and addr2 are the same line, only that line is removed.

The use of DELETE command clears the values of variables.

For example remove lines Lab1 and Lab2 and the lines between them.

DELETE Lab1,Lab2

3.14 FREE

Function User memory status

Syntax FREE(n)

Type Integer

n -3 size of compressed program source code
-2 size of system tables like LOG, PROF
-1 size of variables and compiled program
0 size of free memory (recycled memory not included)
1 size of total recycled memory
2 size of recycled numerical variables
3 size of recycled string variables
4 size of recycled variables of mixed sizes, arrays, strings
5 size of recycled subroutine links
6 size of recycled task blocks

Value Size of memory occupied by different program components, determined by
n value.

The following relations are valid

FREE(1)=FREE(2)+FREE(3)+FREE(4)+FREE(5)+FREE(6)

 McBasic 3.3 reference manual

 29

Full memory = FREE(-3)+FREE(-2)+FREE(-1)+FREE(0)+FREE(1)

3.15 SOURCECRC

Calculate checksum of the current source program in memory.

Function Source program checksum

Syntax SOURCECRC

Type Integer

Value Cyclic redundancy checksum (CRC16) of the current source program.

SOURCECRC can be used as an additional safety measure to verify that the current source
program has not changed since the checksum has been calculated. For example, it can be
calculated and stored in a variable or also in a file to be able to later recalculate and compare
whether the source program has been changed.

3.16 PROGRAMCRC

Calculate checksum of the current source program and compilation in memory.

Function Source program and compilation checksum

Syntax PROGRAMCRC

Type Integer

Value Cyclic redundancy checksum (CRC16) of the current source program and
its compilation.

PROGRAMCRC can be used as an additional safety measure to verify that the current source
program or the compilation has not changed since the checksum has been calculated.

PROGRAMCRC can be used the same way as SOURCECRC. It gives some additional security
since it also checks the compilation which is actually the program that is running. However,
PROGRAMCRC calculated from a program is also different is some of the system software such as
the McBasic version have been changed.

 McBasic 3.3 reference manual

 30

4. STRUCTURE

The structure commands controlling the program operation are used as follows.

4.1 :

Command Command separator.

Syntax command : command [: command : ... : command]

command Commands written on same program line.

Several commands can be written on same program line when separated by command separator.

Some limitations:
• DATA command must always be the first command of the line.
• DEF command must always be the first command of the line.

4.2 GOTO

Command Jump to given program address.

Syntax GOTO addr

addr Destination address. Label of address expression.

Execution of the program will continue from addresslabel nnn.

GOTO Lab1 'program is continued from line labeled Lab1

By using the GOTO command from command prompt the program can be started or continued from
some other than the very first line. The variable values are not affected.

GOTO MyLabel

starts the program from label MyLabel. Address expressions can also be used:

GOTO Label1+3

A@=Label1+4

GOTO A@ ' A@ is an address variable

Generally, use of the GOTO command especially for long jumps in the program is not good
programming practice, since it makes the program flow difficult to follow. Using
subroutines/procedures and conditional structures should be preferred.

 McBasic 3.3 reference manual

 31

4.3 GOSUB

Command Sub-routine or procedure call.

Syntax GOSUB addr

or

GOSUB label(par1,par2,...)

addr Address of the first line of the subroutine.

label A label in the beginning of the procedure.

par1,par2,. Values for local variables defined in conjunction with the label().

Max. 25 subroutine calls can be nested.

The program continues from addr. RETURN at the end of subroutine returns the operation to the
next command after GOSUB.

GOSUB command can be also used from command prompt, for example for testing the operation of
a subroutine. RETURN command at the end of subroutine returns the control back to command
prompt.

 GOSUB ArrayIni

 GOSUB Draw(100,200)

 GOSUB MoveArm(X(n),Y(n),A(n))

4.4 RETURN

Command Return from a subroutine.

Syntax RETURN

Return from a subroutine. The last command in a subroutine must always be a RETURN command.
After RETURN operation of the program continues from the next McBasic command after GOSUB
and all local variable space used in the subroutine is freed. For example:

 GOSUB MySub : STOP

MySub PRINT "Subroutine"

 RETURN

>RUN

Subroutine

>

 McBasic 3.3 reference manual

 32

4.5 ON GOTO

Command Jump to a selected program line.

Syntax ON expression GOTO addr1,addr2,..,addrn

expression Integer defining which of the given addresses will be used as jump
address. This value must be between 1 and n.

addr1 Jump address, when expression is 1.

addr2 Jump address, when expression is 2.

addrn Jump address, when expression is n.

Selection structure that selects the jump address according to the value of expression.

 ON X0+1 GOTO Lab1,Lab2,Lab3

If X0=0 the jump label is Lab1, if X0=1 the jump label is Lab2 and if X0=2 the jump label is Lab3.

If the value of expression is not between 0 ... N, the McBasic gives an error message.

4.6 ON GOSUB

Command Subroutine call to a selected program line.

Syntax ON expression GOSUB addr1,addr2,..,addrn

expression Integer defining which of the subroutines beginning at given linenumbers
or labels will called. The value must be between 1 and n.

addr1 Address of subroutine, when value of expression is 1.

addr2 Address of subroutine, when value of expression is 2.

addrn Address of subroutine, when expression is n.

Selection structure that selects the subroutine to be called according to the value of expression. This
structure cannot be used for calling subroutines with parameters (procedures).

 ON X0+1 GOSUB Lab1,Bal2,Res3

Operation is similar to ON .. GOTO structure.

 McBasic 3.3 reference manual

 33

4.7 IF THEN [ELSEIF] [ELSE] [ENDIF]

Conditional execution of alternative commands

Command Conditional commands structure (one line).

Syntax IF condition THEN commands [ELSE commands] [: ENDIF :]

IF condition When condition is true, allows the execution of commands after THEN.
Program execution then continues from next line or ENDIF, if used.

ELSE If condition was not true, allows the execution of commands after ELSE or
between ELSE and ENDIF, if used.

ENDIF Only necessary, if the program line continues with a part always executed
regardless of condition.

commands Commands to be executed. If several command are used, they must be
separated with colons (:).

 IF K=0 THEN PRINT "Zero division" ELSE GOTO Lbl1

 IF K><0 THEN GOTO Lbl2

Lbl1 IF A<B THEN C=B-A ELSE C=A-B : ENDIF : A=0

Lbl2 IF A=0 THEN PRINT "A=0" ELSE PRINT "A<>0"

 McBasic 3.3 reference manual

 34

Command Conditional commands structure.

Syntax IF condition THEN [:commands]
[command lines]
[ELSEIF condition THEN [:commands]
[command lines]
[ELSEIF condition THEN [:commands]
[command lines]
[ELSE [:commands]
[command lines]
ENDIF

IF condition THEN When condition is true, allows the execution of commands and command
lines after THEN until next ELSEIF or ELSE command. Program execution
then continues from after ENDIF

ELSEIF condition THEN If preceding conditions were false and condition is true, allows the
execution of commands and command lines after next THEN. Program
execution then continues from after ENDIF

ELSE If all preceding conditions were false, allows the execution of commands
and command lines between ELSE and ENDIF

commands Commands to be executed. Can be on the same line separated with
colons (:)

command lines Any number of command lines between IF, ELSEIF, ELSE and ENDIF
lines.

This command allows programming various case structures. ELSE and ELSEIF commands must be
the first commands on the line, whereas ENDIF can be written in the end of the last command line if
desired. When necessary, IF structures can be nested up to 20 deep.

IF A=>0 AND A<10 THEN

 PRINT "A small"

 ELSEIF A<0 THEN

 PRINT "A negative"

 ELSE

 PRINT "A LARGE"

 ENDIF

or shorter

IF A=>0 AND A<10 THEN : PRINT "A small"

 ELSEIF A<0 THEN : PRINT "A negative"

 ELSE : PRINT "A LARGE" : ENDIF

 McBasic 3.3 reference manual

 35

4.8 FOR NEXT

Command Beginning of repeat loop.

Syntax FOR variable=expression1 TO expression2 [STEP expression3]

variable Loop variable, that gets values according to expressions while repeating
the loop.

expression1 Value, that variable gets at first round.

expression2 When variable reaches the value of expression2, the repeating will
 be finished.

expression3 If STEP part is used, expression3 defines increment of variable between
every round (default 1).

Command End of repeat loop.

Syntax NEXT variable

The program part between FOR and NEXT expressions will be repeated. For the first round of
execution the variable gets the value expression1.

After each repeating execution the variable is incremented in the NEXT statement by 1, or by
expression3 if given, until the finishing condition is reached.

If expression3 is positive the program part will be repeated until variable reaches a value greater
than expression2. For the last execution the value of variable is equal to expression2 or smaller.

If expression3 is negative the program part will be repeated until variable reaches a value smaller
than expression2. For the last execution the value of variable is equal to expression2 or greater.

When repeating is finished the variable keeps the value that it had during the last repetition.

The default value of expression3 is 1. The maximum number of nested FOR/NEXT loops is 10. The
loop variable cannot be an array cell.

The repeat structure must always be terminated with a NEXT command which has the same
variable as the respective FOR command.

 FOR I=1.5 TO 4 STEP 1/2

 PRINT I;" ";

 NEXT I

RUN

1.5 2.0 2.5 3.0 3.5 4.0

A repeat loop cannot be exited in any other way than through a NEXT command. If repetition needs
to be finished without performing all of the rounds, this can be done by setting the value of variable
to a value greater or equal than expression2-expression3 and by jumping to the NEXT command.

 McBasic 3.3 reference manual

 36

 FOR N=1 TO 100

 PRINT N

 IF INP(32) THEN N=100 : GOTO EndOfLoop

 OUT(32)=NOT OUT(32)

EndOfLoop NEXT N

Alternatively the NEXT command can be executed elsewhere in the program, for example

 FOR N=1 TO 100

 PRINT N

 IF INP(32) THEN N=100 : NEXT N : GOTO Lbl1

 OUT(32)=NOT OUT(32)

 NEXT N

 END

Lbl1 PRINT "Finished earlier."

 END

4.9 DO... UNTIL.... LOOP

Command Repeat loop.

Syntax DO [commands] UNTIL condition : LOOP

or

DO [commands]
 command lines
UNTIL condition1

 command lines

UNTIL conditionn

LOOP

commands Commands that are executed in the loop. If several, separated by colons.

command lines Command lines within the loop

UNTIL condition Exit point from loop. If condition is true, program continues from after
LOOP command.

LOOP Point where program execution returns to beginning of loop (DO).

Up to 20 loop commands may be nested in a program.

It is possible to use several UNTIL commands in one LOOP.

DO

 A=A+1 : UNTIL A>100

 OUT(32)=NOT OUT(32)

 UNTIL INP(32)=1

 LOOP

DO UNTIL BYTE(#1)=13 : LOOP

DO UNTIL MOVEREADYXY : LOOP

 McBasic 3.3 reference manual

 37

4.10 TASK

Command Create a task. Branches the program execution.

Syntax TASK address[expression,...]

address Starting point of the task to be created

expression,.. Values for variables local in the new task as defined in conjunction with the
label starting the new task address. Parameter passing is only possible
when address is a label.

This command allows several tasks to be executed simultaneously. Program execution continues
"simultaneously" both beginning from address, and continuing from the next line. The new task will
have the lowest available free task number, so generally tasks are numbered from 2 on according to
the sequence they were created in. However, a new task may get a lower number if a previously
created task has been killed leaving its number free.

The system can switch tasks after finishing a command line, or in conjunction with some commands
like DELAY, motion commands waiting for space in MOVEBUFFER or serial output commands
waiting for free space in buffer.

A task can be killed by an END command. Max. 32 tasks can be run simultaneously. The maximum
task number in the program is set by TASKMAX. Default value for TASKMAX is 9, resulting in max.
8 simultaneous tasks.

Function Current maximum task number.

Syntax TASK

Type Integer (2 ... TASKMAX)

Value Number of task in starting order. The number of the first task (main
program) is 2.

The number of the current task can be read using the TASK function. This may sometimes be useful
for reserving global resources like numbered timers or device numbers for subroutines that can be
called from several tasks.

4.11 TASKMAX

Command Set the maximum task number.

Syntax TASKMAX=n

n maximum task number for simultaneous tasks
2....33, default value is 9.

This command sets the maximum task number available for program tasks.

 McBasic 3.3 reference manual

 38

As the number of the first task is 2 (see 4.8 TASK) with TASKMAX=9 the valid task numbers will be
2...9. In case of TASKMAX=33 it is possible to use up to 32 simultaneous tasks.

Increasing maximum number of tasks consumes memory in the system data structures, so it is
advisable to set TASKMAX to the value necessary for the application. TASKMAX must be set in the
beginning of the program, before any variables with local scope are declared.

Function Maximum number of tasks.

Syntax TASKMAX

Type Integer

Value By default number of tasks is 8. May change in the range 2...32.

The maximum task number can be read using the TASKMAX function.

4.12 PRIOR

Command Set the priority of current task.

Syntax PRIOR=expression

expression Value for priority. Integer 0 ... 127
0 lock to current task
1 .. 127 priority

The task having the smallest PRIOR value gets the most execution time. For non-critical tasks high
PRIOR values can be used.

Function Priority of current task.

Syntax PRIOR

Type Integer

Values 0 ... 127

Each task has its own priority (default value is the priority of the task that creates the new task, the
original priority of the main program is 3).

In a simple case a task gets execution turn after each n lines, where n is the priority value. If there
are several tasks with approximately same priority, the distribution of execution turns operates as
described later. Priority can have values between 0 and 127. 0 priority reserves all execution time
and thus prevents changing tasks.

Priority can be set in a task as many times as needed. Priority value 0 can be used if the task must
not be interrupted by another task.

 McBasic 3.3 reference manual

 39

 TASK ToDo

 FOR I=1 TO 30

 PRINT PRIOR; : NEXT I

 END

ToDo

 PRIOR=2

 FOR J=1 TO 30

 PRINT PRIOR; : NEXT J

 END

 Switching tasks is based on a queue of executable tasks, where each task waits for its execution turn. Each task has its own

so called wait-counter which defines, how many program lines it has to wait for its execution turn. Each line change

decrements the wait-counters of the tasks in the queue.

 After the wait-counter of the first task is 0, task switching is performed, and the first task in the queue is put in execution. The

task ending its execution turn is put back to the queue according to its PRIOR setting so that the value in the wait counters of

the tasks before it is less or equal to the PRIOR setting. The wait-counter of the task is set to its PRIOR value.

 McBasic 3.3 reference manual

 40

5. MATHEMATICS

Mathematical calculations in McBasic 3.3 are performed with 8 byte (IEEE754 binary64) floating
point numbers with a precision of 15 significant numbers. The range of values is ±10

-308
...10

308
.

Values exceeding the range will produce "Infinity" or "-Infinity" and undefined results "Not-a-number"
when printed with the PRINT command:

B>PRINT 1/0,-1/0,0/0

Infinity -Infinity Not-a-number

The operations in the following chapters are listed in calculating order, this means that for an
expression, an earlier operation in the list is executed before a latter operation. Arithmetical
operations are executed first, comparisons second and logical operations last.

5.1 ARITHMETICAL OPERATIONS

() expressions in parenthesis
- sign
^ exponent
* / multiplication and division
+ - addition and subtraction

5.2 LOGICAL OPERATIONS

Comparisons can be done between numerical values or between character strings. Comparisons
return a truth value 0 (false) or 1 (true).

A string comparison returns a result using alphabetical order (according to ASCII code) so, that first
character in order is a "smaller" string. If the beginnings of the strings are equal, the longer string is
"greater".

Logical operations can be done between truth values 0 (false) and 1 (true). In this case the result is
also a truth value 0 or 1. Logical operations can also be performed between other values than 0 and
1. In this case the operations are considered bitwise binary (see next chapter).

Comparison operations

= equal to
< smaller than
> greater than
<= , =< smaller than or equal to
=> , >= greater than or equal to
<>, >< unequal from

logical operations

NOT logical negation
AND logical AND-function

 McBasic 3.3 reference manual

 41

OR logical OR-function
XOR logical absolute OR-function

Comparison and logical operations can be combined. Parenthesis can be used to indicate
calculation order. For example:

IF A>B AND (INP(32) XOR INP(33)) THEN GOSUB Sub1

5.3 BINARY OPERATIONS

Binary operations can be used also between other integers than 0 and 1 up to 49 bits as follows.

AND AND-operation for a 49-bit integer
OR OR-operation for a 49 bit integer
XOR XOR-operation for a 49 bit integer

In this case the result is also a max. 49-bit integer. For example

PRINT %01010010 AND $0F

2

5.4 NUMBER INPUT FORMATS

Numerical values can be entered and programmed in McBasic in several ways.

1 23 -45 0 basic format
1.0 23.4 -0.0656 .77 decimal format
1E0 2.34E1 1E6 -0.2E-17 exponent format
$41 $BFC0 $0020 $100000 hexadecimal format
0x41 0xBFC0 0x0020 0x100000 alternative hexadecimal format
%11 %01110101 %1111111111 binary format
0b11 0b01110101 0b1111111111 alternative binary format

PRINT %1010,$0D,1E3

10 13 1000

5.5 MATHEMATICAL FUNCTIONS

5.5.1 ON

Function Constant 1.

Syntax ON

Can be used for example as truth value instead of 1.

TRACE ON

TRACE NOT ON

OUT(45)=ON

 McBasic 3.3 reference manual

 42

5.5.2 OFF

Function Constant 0.

Syntax OFF

Can be used for example as truth value instead of zero.

TRACE ON

OUT(45)=OFF

IF INP(35)=OFF THEN OUT(100)=ON

TRACE OFF

5.5.3 ABS

Function Absolute value.

Syntax ABS(expression)

Type Non-negative real number.

expression Real number.

Value Mathematical absolute value of expression

PRINT ABS(3.14), ABS(-3.14)

3.14 3.14

5.5.4 SGN

Function Sign

Syntax SGN(expression)

Type Integer

expression Real number.

Value 1, if expression is positive.
0, if expression is 0
-1, if expression is negative.

PRINT SGN(3.14);SGN(-3.14);SGN(0)

1.00 -1.00 0.00

 McBasic 3.3 reference manual

 43

5.5.5 INT

Function Rounding off to the next smaller integer.

Syntax INT(expression)

Type Integer

expression Real number.

Value An integer next smaller or equal integer to expression.

PRINT INT(3.14);INT(3.9);INT(-3.1)

3.00 3.00 -4.00

5.5.6 MIN

Function Smaller of two numbers.

Syntax MIN(expression1,expression2)

Type Real number.

expression1 Real number.

expression2 Real number.

Value expression1, if expression1<=expression2
expression2, if expression1>expression2

PRINT MIN(-1,-0.5),MIN(2,1)

-1.00 1.00

5.5.7 MAX

Function Greater of two numbers.

Syntax MAX(expression1,expression2)

Type Real number.

expression1 Real number.

expression2 Real number.

Value expression2, if expression1<=expression2
expression1, if expression1>expression2

PRINT MAX(-1,-0.5),MAX(2,1)

-0.50 2.00

 McBasic 3.3 reference manual

 44

5.5.8 RND

Function Random number.

Syntax RND(expression)

Type Real number.

expression Real number, a seed for random number.

Value Random real number between 0 ... 1

Expression other than zero sets the seed for random number generator, zero returns the next
random number.

PRINT RND(7);RND(0);RND(0)

0.89 0.88 0.76

5.5.9 EXP

Function Power of Neper's constant e (2.71828).

Syntax EXP(expression)

Type Non-negative real number.

expression Exponent, real number. With values between approx. -708 ... 709 the
function value remains within number range.

Value e
expression

PRINT EXP(0);EXP(1);EXP(1.5)

1.00 2.72 4.48

5.5.10 LOG

Function Natural logarithm.

Syntax LOG(expression)

Type Real number.

expression Real number.

Value ln(expression)

Natural logarithm of expression. The base of the logarithm is Neper's
constant e (2.71828).

With negative values of expression the function returns the absolute value
of the logarithm of expression.

PRINT LOG(1);LOG(EXP(1))

0.00 1.00

 McBasic 3.3 reference manual

 45

5.5.11 LOG2

Function Base 2 logarithm.

Syntax LOG2(expression)

Type Real number.

expression Real number.

Value log2(expression)

Base 2 logarithm of expression.

With negative values of expression the function returns the absolute value
of the logarithm of expression.

B>PRINT LOG2(1),LOG2(2),LOG2(4)

0.00 1.00 2.00

5.5.12 SQR

Function Square root.

Syntax SQR(expression)

Type Non-negative real number.

expression Real number to take square root from.

Value ����������	

Square root of expression.
With negative values of expression the function returns the absolute value
of the square root of expression.

PRINT SQR(2);SQR(100);SQR(0.01)

1.41 10 0.10

5.5.13 PI

Function Constant π.

Syntax PI

Value π (3.14159.....)

PRINT PI,SIN(0.5*PI)

3.14 1.00

 McBasic 3.3 reference manual

 46

5.5.14 SIN

Function Trigonometric sine.

Syntax SIN(expression)

Type Real number.

expression Argument of the function in radians (2π radians = 360 degrees).

Value sin(expression)

PRINT SIN(0);SIN(1)

0.00 0.84

5.5.15 COS

Function Trigonometric cosine.

Syntax COS(expression)

Type Real number.

expression Argument of the function in radians (2π radians = 360 degrees).

Value cos(expression)

PRINT COS(0);COS(1)

1.00 0.54

5.5.16 TAN

Function Trigonometric tangent.

Syntax TAN(expression)

Type Real number.

expression Argument of the function in radians (2π radians = 360 degrees).

Value tan(expression)

PRINT TAN(0);TAN(1)

0.00 1.56

 McBasic 3.3 reference manual

 47

5.5.17 ATAN

Function Trigonometric arc tangent.

Syntax ATAN(expression)

Type Real number.

expression Argument in radians (2π radians = 360 degrees).

Value atan(expression)

Return values between - π/2 ... π/2

PRINT ATAN(0);ATAN(1)

0.0 0.78

5.5.18 ANGLE

Function Calculates vector angle

Syntax ANGLE(xx,yy)

Type Real number. Unit radians.

xx Vector X component

yy Vector Y component

Value Vector angle 0 ... 2π [rad]

 McBasic 3.3 reference manual

 48

6. STRINGS

A string is an expression consisting of 0..255 characters. Thus a string is essentially a piece of text,
although it may contain any 8bit value in each character position. String values of visible text are
assigned in quotes:

PRINT "Hello"

String variables are variables holding a string value. McBasic string variable names consist of
characters beginning with a letter and followed by any number of letters or numbers and ending with
a $-character. Underline characters are also allowed in variable names.

For example:

A$ B$ c$ SymVariable$ My_string$

String variables with single letter names are automatically defined as 80 character long and can be
used without declaring them. Other string variables must be declared using the DIM, STRING or
STRING(n) commands. The maximum length of a string variable is by default 80 characters. Other
lengths can be set using the STRING(n) command to declare 1...255 characters long variables.

STRING My_string$, YourString$

DIM String1$

STRING(150) LongString$

Arrays of strings can be declared similarly

STRING(10) StrArray$(10,50)

A string can be combined from substrings with "+"-sign.

"Hello "+N$+", how are you"

F$+".TX:D2"

A string may contain any characters, also control characters.

CtrlString$=CHR$(27)+"[101;0X" 'CHR$(27) is esc

6.1 EXEC

Command Execution of a command in a string.

Syntax EXEC(string)

string String containing an executable McBasic command.

A command in the form of a string is interpreted and executed. The string must consist of a McBasic
command without syntax errors.

Since the EXEC command must interpret the command contained in the string, it takes
significantly longer than normally to execute a command using EXEC. Thus, it is not advisable
to include EXEC commands in programs with critical timing, or in frequently performed loops.

!

 McBasic 3.3 reference manual

 49

Also, commands where task switching is possible during the command (DELAY, PRINT, MOV...)
should be avoided and at least care should be taken not to create a circumstance where task
switching would occur during EXEC.

 DO

 INPUT "Enter a command ";A$

 EXEC(A$)

 LOOP

Enter a command ? PRINT 2+3

5

Enter a command ?

6.2 ASC

Function Conversion from character to ASCII code.

Syntax ASC(string)

Type Integer

string Usually a string of one character. If string is longer than one character, the
character to be converted is the first character from left.

Value The ASCII code of the first character of the string (0 ... 255). Also an empty
string returns the value 0.

The function returns the ASCII code of the first character in the string. ASC function in the inverse
function of CHR$.

PRINT ASC("!");ASC("ABC")

33.00 65.00

6.3 LEN

Function Length of string.

Syntax LEN(string)

Type Integer

string String to be measured.

Value Length of the string 0 ... 255 (0 if empty).

LEN returns the current length of the string. Return value can be any integer between 0...255
depending of the contents of the string. However, a string variable always reserves memory
according to the declared length of the variable (or 80 bytes by default).

PRINT LEN("HELLO"+" AGAIN")

11.00

 McBasic 3.3 reference manual

 50

6.4 VAL

Function Type conversion. Converts a string containing a numerical value to
numerical form.

Syntax VAL(string)

Type Real number.

string String to be converted.

Value Numerical value in the string.

A string can contain a numerical value in some of McBasic numbers entry formats or for example an
expression combined from several number formats. For example:

 PRINT VAL("PI"),VAL("1E2"),

 X=PI

 Asym$="COS(X)*10+0.01"

 PRINT VAL(Asym$)

RUN

3.14 100.00 -9.99

VAL function is the inverse function of STR$.

6.5 CHR$

Function Type conversion. Converts a numerical ASCII code to one character
string.

Syntax CHR$(expression)

Type String

expression Code to be converted. ASCII code of the desired character (0 ... 255).

Value String containing one character, where the ASCII code of the character is
expression.

If expression is 0, function returns an empty string.

CHR$ function can be used for example to print characters using PRINT command or to add any
ASCII-character into a string. The value of expression must be between 0..255.

CHR$ function is the inverse function of ASC function.

PRINT CHR$(33)+CHR$(65)

!A

 McBasic 3.3 reference manual

 51

6.6 STR$

Function Type conversion. Converts a value of numerical expression to string
(decimal).

Syntax STR$(expression)

Type String

expression Real value to be converted.

Value String containing the value of the expression as printed with PRINT
command. DIGITS setting defines the number of decimals in string.

With the STR$ function the numerical value of expression can be converted to a string as it would be
printed using PRINT command. This way i.g. numerical data can be formatted using string functions.
Number of decimals set by DIGITS command defines the number of decimals in the resulting string.
STR$ function is the inverse function of the VAL function.

A$=STR$(SQR(2)) : PRINT A$

1.41

DIGITS=2

PRINT RIGHT$("000"+STR$(PII),5)

RUN

03.14

6.7 BIN$

Function Type conversion. Converts an integer value to a binary string.

Syntax BIN$(expression)

Type String

expression Integer value to be converted (-2
48

 ... 2
48

-1).

Value String containing the value of expression in binary (48 bit, 2's
complement). If expression is not an integer, it is rounded off to closest
integer. For numbers greater than number range the last 48 binary
numbers or a 0 value is returned.

The value of the BIN$ function is a string equivalent to the binary value of expression.

PRINT BIN$(9),BIN$(%100000+1)

1001 100001

 McBasic 3.3 reference manual

 52

6.8 DEC$

Function Type conversion. Converts an integer value to a decimal string.

Syntax DEC$(expression)

Type String

expression Value to be converted (-10^14 ... 10^14).

Value String containing the value of expression in decimal form. If expression is
not an integer, it is rounded off to closest integer. For numbers greater
than number range values in exponent form are returned.

The value of the DEC$ function is a string equivalent to hexadecimal value of expression.

PRINT DEC$($1000),DEC$(%100000)

4096 32

6.9 HEX$

Function Type conversion. Converts an integer value to a hexadecimal string.

Syntax HEX$(expression)

Type String

expression Integer value to be converted (-2
53

 ... 2
53

-1).

Value String containing the value of expression in hexadecimal form (48 bit, 2's
complement). If expression is not an integer, it is rounded off to closest
integer. For numbers greater than number range the last twelwe
hexadecimal numbers or a 0 value is returned.

The value of the HEX$ function is a string equivalent to hexadecimal value of expression.

PRINT HEX$(1000),HEX$($100000+1)

3E8 100001

6.10 LEFT$

Function Sub-string of a string.

Syntax LEFT$(string,expression)

Type String

string String to be divided.

expression Length of sub-string.

Value Sub-string of string, length expression characters, taken from beginning of
string.

PRINT LEFT$("ABCDEFG",3)

 McBasic 3.3 reference manual

 53

ABC

6.11 RIGHT$

Function Sub-string of a string.

Syntax RIGHT$(string,expression)

Type String

string String to be divided.

expression Length of sub-string.

Value Sub-string of string, length expression characters, taken from end of string.

PRINT RIGHT$("ABCDEFG",3)

EFG

6.12 MID$

Function Substring of a string.

Syntax MID$(string,expression1,expression2)

Type String

string String from which the subtring is to be taken from.

expression1 The position of the first character of the substring as counted from the
beginning of the string (1 represents the first character).

expression2 Length of substring.

Value A substring of string, length expression2 characters, starting from the
character in position expression1.

PRINT MID$("ABCDEFG",2,4)

BCDE

6.13 REV$

Function Reorder string backwards.

Syntax REV$(string)

Type String

string String to reorder.

Value string in reverse order.

PRINT REV$("ABCDEFG")

GFEDCBA

 McBasic 3.3 reference manual

 54

6.14 INSTR

Function Location of substring in string.

Syntax INSTR(expression,string1,string2)

Type Integer

expression Position in string1, where search for substring begins. 1 represents the first
character position. (Whole string will be searched for).

string1 String, where substring is being searched.

string2 Substring to be searched for.

Value Position of the first character of sub-string string2 in string1.
If substring string2 is not found, value is 0.

PRINT INSTR(1,"ABCDEFGH","CD")

3.00

6.15 STRING

Command Declare string variables

Syntax STRING[(n)] var$,....

n Maximum length of a string n=1....255. If used without n, length will be 80
characters.

var$,... List of names of string variables to declare separated by commas.

The declared variables can be seen in the structure where they were defined and the structures
(subroutines and tasks) under it. This way variables can be defined to have the exact scope desired.

For example, declare a 125 character long string variable Abc$:

STRING(125) Abc$

6.16 UCASE$

Function Converts string to upper case.

Syntax UCASE$(string)

Type String

string String to be converted (up to 255 characters long).

 First$="abcdef"

 Second$=UCASE$(First$)

 PRINT First$,Second$

abcdef ABCDEF

 McBasic 3.3 reference manual

 55

6.17 ADDR$

Function Convert address to string.

Syntax ADDR$(address)

Type String

address Address expression

ADDR$ function converts an address expression to a string to allow manipulation and printing values
of address expressions. The result is the line number or the label at the address referred to, if either
exists. Otherwise the result is an address expression in brackets, consisting of the nearest line
number or label before the address plus followed by +n, where n is the number of lines the address
is down from the label or linenumber.

example program:

'

'

Label 1

 ' program line

 ' program line

Label 2

 ' program line

B>PRINT ADDR$(0)

(+0)

B>PRINT ADDR$(0+2)

Label1

B>PRINT ADDR$(0+3)

(Label1+1)

B>PRINT ADDR$(Label1+3)

Label2

6.18 MC$

Command Windows string convert to 7 bit ASCII

Syntax MC$(string)

string String to convert.

value String converted in 7 bit ASCII character set

 McBasic 3.3 reference manual

 56

6.19 WIN$

Command Convert 7 bit ASCII string to Windows character set

Syntax MC$(string)

string String to convert.

Value String converted in Windows character set

6.20 CRC16$

Command Calculate CRC16 2 character cyclic redundancy check of a string

Syntax CRC16$(string)

string Input string.

Value String containing the 2 characters of the CRC16 of string.

CRC16$ is useful to calculate the popular CRC16 checksum as used in protocols such as MODBUS
RTU. As the output of the function is in string format, it can easily be added to the the message
when sending or compared with the checksum included in a received message.

 McBasic 3.3 reference manual

 57

7. VARIABLES AND ARRAYS

A variable name is a string of characters of arbitrary length beginning with a letter. Although both
upper and lowercase letters are allowed, it is advisable to use an uppercase letter to begin a (long)
variable name, followed by some lowercase letters as this makes it easier to distinguish variables
from other McBasic reserved words. Variable names are case sensitive, upper and lowercase letters
are considered different characters. A variable name can also contain numbers and _ characters.
Reserved McBasic function and command names must not be used as variable names. When using
variable names beginning with an uppercase letter and continuing with a lowercase letter, McBasic
can distinguish them from command and function names.

For example:

Variable, Pix2, Profile, Velo34_56, Sin(3)

Numeric, string or address variables with long names must be declared by one of the following
declaration commands:

DIM var1,..,string1$,.,varn

REAL var1,...,varn

STRING string1$,....,stringn$

STRING(nn) string1$,....,stringn$

ADDR addr1@,...

Additionally, array variables can be declared as

BIT array1(a,b..),..

BYTE array1(a,b..),..

WORD array1(a,b..),..

FLOAT array1(a,b..),..

INTEGER array1(a,b..),..

SHORT INTEGER array1(a,b..),..

LONG INTEGER array1(a,b..),..

Declaration is not necessary for variables with short names, composed of one letter or a letter and a
number, for example

A a A3 a9 z8 z Z b B0 B9

All of the above names refer to different variables.

The name of a string variable ends with $. The maximum length of a string variable is set by
STRING(n) command (default 80 characters)

A$ a$ z$ Z$ Symbol$ 'names of string variables

STRING Abc$ 'defines 80 char. string variable

STRING(125) Abcd$ 'defines 125 char. string variable

STRING(1) Abcde$ 'defines 1 char. string variable

A numerical array name is a string of characters beginning with a letter (following characters may be
letters, _ or numbers with dimension range(s) in parenthesis

A(0,3) Arr(23) a2(3) z(a(4)) Z(z(2),z(3)) Zspeed_z(5,7)

 McBasic 3.3 reference manual

 58

A string array name has a $ before dimension range(s) in parenthesis.

A$(2) a$(17) SymArray$(18)

Similarly, the name of an address variable ends with @. An address variable may have values
formed by a line numbe or a label with an offset if necessary. Address arrays can also be defined to
hold address values.

A@(15) AddrArray@(20)

The scope of a variable or array determines where the variable can be accessed. McBasic 3.3
variables have a scope according to the program structure where they were declared. All variables
declared in the beginning of the program, before creating any further tasks or calling subroutines,
have a global scope, so they may be referred to from any task or subroutine.

Variables created in other tasks or subroutines are only visible from them and from subroutines
called from them or tasks created from them. Variables with this kind of a local scope are created
with DIM, STRING, BIT, BYTE, WORD, SHORT INTEGER, INTEGER, LONG INTEGER, REAL,
FLOAT and ADDR commands. They have an initial value zero ("") and disappear when returning
from the subroutine or when the task ends. They can have the same name as used in some other
scope. The memory space occupied by the disappeared variables is freed and can be used again.

Thus, variables and arrays can be declared as local. In this case they:
− Must be declared with appropriate commands in the (beginning of the) task or subroutine, where

the local variables are needed.
− If variables are declared local with the LOCAL command they inherit dimensions for arrays,

sizes for strings and values which they had (in case there were any) previously.
− In case of declaring with other declaration commands the array dimensions, string lengths and

variable values are not inherited.
− In a new task or subroutine all local variables of the creating task or calling subroutine are visible

unless redefined.
− Variable is local until END / RETURN command of the corresponding TASK / subroutine.
− On return from the level where variables were local, the values of variables existing at the higher

level have been preserved. Variables that did not exist at the higher level disappear.

Arrays are tables of values referenced by the same variable name. An array can have 1 to 7
dimensions. Array names are a strings of characters first of which is a letter followed by other
characters or numbers from 0 to 9 or u. As with variable names, short array names of one letter or
one letter followed by one number are automatically defined global when used in the program.

Array entries (cells) are being referenced using indexes separated with commas in parenthesis after
the array name.

For example ArrSamp(1,3,4,7,8) Block3(1) h(2,7) asize(1,3) K3(5,9) are entries in different arrays.

It is also possible to define an array for strings or addresses. For example SymArray$(3,6) b$(8) are
entries in different string arrays and Addr@(5,5) G@(3) are entries in address arrays.

Each entry in an array reserves memory according to the type of the array variable type.

Array size is defined by DIM or type declaration commands before an array is used. In case a
numerical array with the name of one letter or one letter and a number is not defined before its use,
the default dimension of 10 or 10*10 is assumed. An array can be from one to seven dimensional,

 McBasic 3.3 reference manual

 59

and the only limit for array size is the size of memory available. An array index can have negative,
zero and positive integer values.

For example:

DIM A(-3..2,2) : STRING(1) LetArray$(32)

LetArray(1)="A"

A(-2,0)=1

A(2,2)=1

7.1 DIM

Command Declare real, string or address variables or arrays, define array size.

Syntax DIM arrname(expression1[,..expressionn])[, var][, str$][, addr@].....

also

DIM arrname(expr1..expx2, ... ,expr3 .. expr4),

arrname Array variable name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

var Real number variable name

str$ String variable name. String variables declared using DIM are always 80
characters long.

addr@ Address variable name.

With DIM command variables and dimensions for one or more arrays can be defined in one
command.

DIM ArrOne(12),M(5,5),B$(5)

FOR I=0 TO 12

 ArrOne(I)=-1

NEXT I

FOR I=0 TO 5

 M(I,I)=1

NEXT I

It is also possible to define arrays with the type declaration commands (see 2.5 VARIABLES
TYPES). For example

STRING(125) SymArray$(5,5) : REAL Var(5), Var2(5)

WORD Var(5), Var2(5)

INTEGER Var(5), Var2(5) : BYTE Var(5), Var2(5)

BIT Var(5), Var2(5)

SHORT INTEGER Var(5), Var2(5)

 McBasic 3.3 reference manual

 60

Array index can take negative, zero or positive integer values.
By default the lower limit is assumed 0.

DIM SamArr1(-10..10) ' one dimensional

 ' array with index from -10 to 10DIM

SamArr1(10..-10) ' same as in previous line

DIM Sam2(10) ' one dimension array with index from

 ' 0 to 10

DIM Sam3(7..1,54..89) ' two dimension array, first index

 ' from 1 to 7, second - 54-89

7.2 REAL

Command Declare double precision real (floating point) variables and arrays.

Syntax REAL name[(expression1,...,expressionn),],.....

or for arrays with specified index ranges

REAL name(expr1..expr2,...,expr3..expr4),

name Variable or array names.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Real number is the default number format of McBasic and thus both real variables and arrays can be
declared. It is possible to declare other format single variables also, but their internal format will
always be a real number. This can be done to show intended usage of a variable but declaring a
variable as BIT does not actually limit the range of values the variable can get, like when declaring
different format arrays. This arrangement has been made to allow as fast operation as possible
when using single variables while conserving memory space when using arrays.

Real numbers and array cells can get values from ±1.7E-307 to ±1.7E308 with a resolution of 15
significant numbers.

For example:

REAL MyVar, BigArray(1000,5,3), YearArray(1900...2099)

 McBasic 3.3 reference manual

 61

7.3 FLOAT

Command Declare single precision real (floating point) arrays.

Syntax FLOAT arrname(expression1,...,expressionn),

or

FLOAT arrname(expr1..expr2,...,expr3..expr4),

arrname Array name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Single precision floating point array cells can get values from ±0.2E-37 to ±3.4E38 with a resolution
of 7 significant numbers.

7.4 BIT

Command Declare bit arrays.

Syntax BIT arrname(expression1,...,expressionn),

or

BIT arrname(expr1..expr2,...,expr3..expr4),

arrname Array name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

BIT array cells can get values between 0 or 1.

 McBasic 3.3 reference manual

 62

7.5 BYTE

Command Declare byte (8bit unsigned) arrays.

Syntax BYTE arrname(expression1,...,expressionn),

or

BYTE arrname(expr1..expr2,...,expr3..expr4),

arrname Array name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Byte array cells can get integer values between 0 and 255.

7.6 WORD

Command Declare word (16bit unsigned) arrays.

Syntax WORD arrname(expression1,...,expressionn),

or

WORD arrname(expr1..expr2,...,expr3..expr4),

arrname Array name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Word array cells can get integer values between 0 and 65535.

 McBasic 3.3 reference manual

 63

7.7 SHORT INTEGER

Command Declare short (8bit signed) integer arrays.

Syntax SHORT INTEGER arrname(expression1,...,expressionn),

or

SHORT INTEGER arrname(expr1..expr2,...,expr3..expr4),

arrname Array name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Short integer array cells can get integer values between -128 and 127.

7.8 INTEGER

Command Declare (16bit signed) integer arrays.

Syntax INTEGER arrname(expression1,...,expressionn),

or

INTEGER arrname(expr1..expr2,...,expr3..expr4),

arrname Array name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Integer array cells can get integer values between -32768 and 32767.

 McBasic 3.3 reference manual

 64

7.9 LONG INTEGER

Command Declare long (32bit signed) integer arrays.

Syntax LONG [INTEGER arrname(expression1,...,expressionn),

or

LONG [INTEGER] arrname(expr1..expr2,...,expr3..expr4),

arrname Array name.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Long integer array cells can get integer values between -2147483648 and 2147483647.

7.10 ADDR

Command Declare address variables and arrays.

Syntax ADDR name@[(expression1,...,expressionn),],.....

or for arrays with specified index ranges

REAL name@(expr1..expr2,...,expr3..expr4),

name@ Variable or array names.

expression1 max. first index (range 0 to expression1)
expressionn max. last index (range 0 to expressionn)

expr1 First index lower limit
expr2 First index upper limit (range expr1 to expr2)
expr3 Last index lower limit
expr4 Last index upper limit (range expr3 to expr4)

Address variables and array cells can contain any address values in the program. Thus, the value of
an address variable can be a label or a line number existing in the program with an optional offset.

For example:

 ADDR Pointer@

StartOfData

 DATA 100,200,300

 DATA 110,210,310

 DATA 120,220,320

EndOfData

 McBasic 3.3 reference manual

 65

 Pointer@=StartOfData+2

 RESTORE Pointer@

 READ a,b,c

 PRINT A,B,C

RUN

110 210 310

>

7.11 LOCAL

Command Declare variables local

Syntax LOCAL varname, arrayname(), strname$

varname, arrayname(), strname$, addr@
Names of variables or arrays to be declared local. Arrays get dimensions
according to already existing arrays, giving dimensions is therefore
optional.

Declaring variables local create local instances of the given variables. These local instances get a
default value equal to the value of the variable before declaring local. Declaring local makes it
possible to import values to structures and thereafter alter them while preserving the value of the
original variable.

7.12 [LET]

Command Assign a value for a variable.

Syntax [LET] variable=expression

variable Numerical or string variable.

expression New value of variable.

An assign command. LET command is used for assigning a value expression to variable. Old value
of variable can be used in expression. The word LET is optional.

 A=123*5+9

 A(1,7)=A(7,1)

 LET A3=A+A(1,7)

 A$="string"+" and so on... "

 A=A+1

GetC B=BYTE(#1)

 IF B>0 THEN A$=A$+CHR$(B) ELSE GOTO GetC

 McBasic 3.3 reference manual

 66

8. FILES AND COMMUNICATIONS

In McDos/McBasic systems, data input and output can be done through serial ports, ethernet, or by
reading and writing files.

When operating under McDos operating system every McBasic file, serial port or ethernet port must
be opened before use and closed after use unless operations are meant to point to the default port
(logical console, CO:).

An exception to this rule are the program file operations described in 8.2 PROGRAM FILES.
Program file commands can refer to files using their path/name only like many McDos commands.

8.1 DEVICE NUMBERS

Both physical device names and logical device names are used for ports and files. The syntax for
logical device names is #n, where n is an integer between 1..99. These are also called device
numbers. Various system software versions may limit the maximum available device number to less
than 99.

Under McBasic, a physical device, whether a port or a memory file, is referred to by its device
number, for which it has been opened.

After opening, files are referred to by their device number using command and functions described in
8.3 DATA INPUT AND OUTPUT. In case of an error or when exiting McBasic all open files are
automatically closed. Same commands can generally be used for both files and ports.

Physical device names can be opened for any device number using the OPEN command. Similarly
files can be opened for any device number. The unopened device numbers refer automatically to the
current console device (CO:).

Opening and closing input and output files and ports is explained in more detail in conjunction with
each device type.

8.2 PROGRAM FILES

Under McDos operating system the McBasic environment is called from a memory device by giving
the name of the interpreter/runtime program as a command. The operating system loads and starts
the McBasic programming environment, interpreter and compiler stored in the command file such as
BAS32.C4. The name of the McBasic command file may vary according to the system type and
version used. (See chapter 2.1, McBasic versions).

If a name or a list of names of McBasic program files is given simultaneously with the command,
McBasic loads and starts the program(s) automatically after starting itself. The use of the suffix .BA
in the names is optional

D4:\>BAS32 MYPROGRAM

D4:\>BAS100 PROG1,PROG2,PROG3

 McBasic 3.3 reference manual

 67

8.2.1 STARTING MCBASIC

At power-up, the ACN control system main memory is empty. Usually a startup file called
WAKEUP.EX is used to start McBasic and load the application program in a finished application. For
development/testing the program can be manually loaded from the McBench programming
environment.

8.2.2 USING WAKEUP.EX

Under McDos operating system, start up can be automated by saving a WAKEUP.EX file in the root
directory of a mass memory device available in the system at startup. McDos looks for a
WAKEUP.EX file starting from the lowest device (D1: ... D8:). The first WAKEUP.EX file found will be
executed. WAKEUP.EX can contain McDOS commands such as

D8:/BAS32

which would start the McBasic environment located in D8: root and remain in command mode.

or

PATH D8:/

D8:/BAS32 D4:/PROGRAM

which would set the command search path to include first D0: (the alias for the current directory) and
secondly D8:/ (the system directory where system software is stored when the controllers are
shipped). Then it would start McBasic from D8: root and load a program file PROGRAM.BA from D4:
root and start executing it.

It is generally a good idea to include a PATH command in the WAKEUP.EX file setting at least D8:/
to be included in the search path to allow non-resident McDos commands to be accessed
independent of current device. This is necessary for example for McBench McFiles utility to be able
to work.

Once started, program execution can be stopped from console (CO:) with a control-X code. This
causes the system to output to console information about memory use: program size, variables and
compiled size of program as well as size of free memory.

The default WAKEUP.EX file stored in and ACN MPU D8: root directory contains the following
commands:

* SKS Control ACN default WAKEUP.EX file

* 2.4.2012

* CONSOLE 38K

SET CN:38K

PATH D8:/

* address ,subnet mask ,gateway addr

IP 192.168.0.20,255.255.255.0,192.168.0.1

CNTO TELNET://

D8:/BAS32 D6:/PROGRAM.BA

The default WAKEUP.EX contains commands to set the USB console data transfer speed to
38Kbit/s and the command search path to include D8: root. The IP address of the system is set to
192.168.0.20 with a subnet mask 255.255.255.0 and gateway address 192.168.0.1.

 McBasic 3.3 reference manual

 68

The CNTO command sets the system to accept connecting to the console via TELNET. This allows
the use of the TELNET connection from McBench, for example.

Finally, the McBasic version BAS32 (the default version in ACN systems) is started from D8:/ and a
program PROGRAM.BA is loaded from D4:/ and started. This program name is included as an
example, if such a program file does not exist in D4:/, McBasic is started and remains in command
mode.

8.2.3 SAVE

Command Save a program into a file.

Syntax SAVE string

string Program file name in the form [device:]name[.suffix]

Default suffix is .BA and default device is D0:, in other words the drive/path, that has been used last
("current directory"). Program is saved with the given file name. If a file with the same name already
exists, it is overwritten.

SAVE "TEST7"

SAVE "D4:TEST8.BA"

8.2.4 LOAD

Command Load a program from a file.

Syntax LOAD string

string Program file name in the form [device:]name[.suffix]

Loads a program. Default suffix is .BA and default device is D0:. Previously loaded or written
programs and variables are destroyed.

LOAD "TEST2"

LOAD "D4:/TEST8"

8.2.5 APPEND

Command Append a program.

Syntax APPEND string

string Program file name in the form [device:]name[.suffix]

Appends a file into existing program. String is the name of the file to be appended. Default suffix is
.BA and default device is D0:.

Append adds the contents of the program file in the end of the already loaded program. If the file to
be appended contains numbered lines, they are put in sequence with existing numbered lines.
Append command sets all variables to zero.

APPEND "NEWPART"

 McBasic 3.3 reference manual

 69

8.3 DATA INPUT AND OUTPUT

For data input and output, number of commands and functions are available for use with any type of
device.

8.3.1 INPUT

Command Read data from a device.

Syntax INPUT[#nn],[string{,|;}]variable[,..,variable][;]

nn Device number (1 ... 99), for which file or port was opened. If no device
number is given, #1 is assumed (usually =CO:, the console port).

string If string is given, it will be echoed to the device as a prompt, if the device is
a serial or TCP port.

{,|;} If string is followed by a comma, the echoed prompt will be followed by a
question mark, if followed by a semicolon, no question mark is echoed.

variable.. Variables to read values to (string or numerical expressions). When
reading from file, the numerical data much be ASCII numbers with a
comma (,) separator (CSV). Reading a string will return the contents of the
rest of the line, i.e the text from the file pointer (PTR) to the next end of line
<cr>.

[;] If there is a semi-colon in the end of the command, no line feed (cr+lf) is
echoed after reading from a port.

When INPUT is used to read from a serial or TCP port, prompts can be used and input is echoed
back to the port to facilitate manual data input from devices such as data terminals.

When reading from files, no data is written to the file.

McBasic program task, where an INPUT command is encountered, stops until necessary data is
received from device nn. If other tasks exist, they may continue to be executed while INPUT is
waiting.

In cases where it is necessary to be able to observe whether data is available for reading from the
device, other means, such as the BYTE(#n) function, should be used for reading.

 McBasic 3.3 reference manual

 70

INPUT #4,X,Y,A$

INPUT #3,A$

' semi-colon at the end

' prevents line feed

INPUT "ENTER A NUMBER",N;

PRINT " number was ";N

' semi-colon

' prevents echoing question mark

INPUT "ENTER ANOTHER NUMBER ";N

PRINT N

RUN

ENTER A NUMBER?3+2 number was 5.00

ENTER ANOTHER NUMBER 4

4.00

8.3.2 PRINT

Command Output to a device.

Syntax PRINT[#nn,][expression][{,|;}...{,|;}expression][,|;]

nn Device number (1 ... 99), for which the file or port has been opened. If no
device number is given, #1 is assumed (usually CO:, the console).

expression Numerical or string expressions to be output. Without expressions the
command can be used for line feed. The values of numerical expressions

are automatically converted to strings for output using the current DIGITS
setting.

{,|;} A comma used between expressions sets the next output to next column.
Each column is 8 characters wide. A semi-colon used between
expressions sets the next output right next to the previous output.

[,|;] PRINT command performs an automatic line feed after output. If the last
expression is followed by a comma or a semi-colon, no line feed (cr+lf) is
printed. If the character is a comma the cursor is tabulated to the next
column.

When printing strings the output can be formatted using string functions and expressions can be
combined by + sign.

PRINT "ABC"+CHR$(10)+"DEF" 'ASCII 10 is <line feed>

ABC

DEF

DIGITS=3 ' set 3 decimals

PRINT 2+5

7.000

Generally it is good practice to read from and output to a device from only one task. When several
tasks use the same output device it is necessary to control the output so that different tasks do not

 McBasic 3.3 reference manual

 71

print simultaneously as printed sequences might get mixed. This can be accomplished by using flag
variables to time the operation of tasks or by locking tasks with the PRIOR setting.

When using PRINT to output data to various devices, it may be necessary to take care that data
output is not modified unintentionally. PRINT assumes that the output is text, and therefore removes
<nul> and <lf> characters ($00 and $0A) from the data when printing to file or TCP port. This is done
to preserve the text file format used in McDos. To output binary data, the BLOCK$ command is
recommended instead.

8.3.3 LIST

Command List program.

Syntax LIST [#nn,][address1][,[address2]]

nn By giving device number nn program will be listed to device #nn, otherwise
to device #1.

address1 Address of the first line to be listed. Default is start of program. Can be an
address expression such as Label+n, the address of the n:th line after
Label. 0 represents the start of the program.

address2 The last line to be listed. Default is end of program. If only comma is given,
program will be listed until next empty line.

LIST has following features:
• automatic nesting for commands FOR...NEXT, IF..THEN/ ELSEIF/ ELSE/ ENDIF, DO...LOOP;
• removes spaces from before ' on comment lines.
• in case the comment ends with ' the comment will be right aligned with a leader consisting of

characters similar to the character after the ' starting the comment.

LIST ' whole program to console

LIST #2 ' whole program to #2

LIST Lab1,Lab2 ' from line Lab1 to line Lab2 (including)

LIST Lab1, ' from line Lab1 to the next empty line

LIST 0+5,Lab2+6 ' from 5th line from program start

 ' to 6th line after Lab2

8.3.4 DIGITS

Command Set the number of decimals used when printing or making numeric to
string conversions.

Syntax DIGITS=expression

expression Number of decimals (0...20) to be printed in PRINT command when
printing numerical values. A value 0.5 can be added to prevent exponent
notation when printing small values.

 McBasic 3.3 reference manual

 72

Function Read current DIGITS setting.

Syntax DIGITS

Type Number (0…20.5)

Value Current DIGITS setting in the task.

Number of decimals used in printing is defined by the value of expression. Default number of
decimals when starting an McBasic program is 2 decimals. DIGITS setting is local in tasks and is
inherited from the creator of a task. Thus changing DIGITS in another task does not affect printing or
conversion operations in the current task.

DIGITS=3 'print with 3 decimal places

DIGITS=2.5 'print with 2 decimal places and suppress exponent

 'format

4000 FOR I=0 TO 9

4005 DIGITS=I

4010 PRINT I;TAB(12);PII

4020 NEXT I

0 3

1.0 3.1

2.00 3.14

3.000 3.141

4.0000 3.1415

5.00000 3.14159

6.000000 3.141592

7.0000000 3.1415926

8.00000000 3.14159265

9.0000000003.141592653

8.3.5 BYTE(#nn)

Command Output a (8 bit) byte to a device.

Syntax BYTE(#nn)=expression

nn Device number. Can also be a variable or expression.

expression Value to be output, integer 0..255.

 McBasic 3.3 reference manual

 73

Function Read a (8 bit) byte from a device.

Syntax BYTE(#nn)

Type Integer (0 .. 255)

nn Device number to read from. Can also be a variable or expression.

Value Value of the received byte. When text, the ASCII code of the character. If
there are no bytes (characters) in the buffer or the file has no more
characters, function returns value -1.

When writing to or reading from a file, the file pointer PTR(#nn) is automatically incremented by 1.

When working with ASCII text, bytes are generally visible or control characters and their value is the
ASCII code of the character.

When writing numerical values to files using BYTE, WORD, FLOAT, REAL or IEEE.. commands,
they are saved as binary data and therefore can not be inspected or edited for example with a text
editor. When reading the file it is advisable to use BYTE, WORD, FLOAT, REAL and IEEE..
functions.

BYTE(#3)=66 ' write 66 (ASCII code for "B")

A=BYTE(#4)

IF A<>67 THEN GOSUB Subroutine ' call if "C" received

8.3.6 WORD(#nn)

Command Write a (16 bit) word (2 bytes) to a device.

Syntax WORD(#nn)=expression

nn Device number. Can also be a variable or an expression.

expression Value to be written, integer (0 ... 65535).

Function Read a (16 bit) word from a device.

Syntax WORD(#nn)

Type Integer (0 .. 65535)

nn Device number to be read from. Can also be a variable or an expression.

Value Value (0 ... 65535) of the received word. If there were not 2 bytes available
in device buffer or the file did not contain 2 more characters, the function
returns value -1.

In WORD the most significant byte is assumed to be the first byte.

When writing to or reading from a file the file pointer PTR(#nn) is automatically incremented by 2.

 McBasic 3.3 reference manual

 74

Because WORD requires 2 characters ready for reading, it can mainly be used with files. When
using serial ports, the use of BYTE function is recommended.

See BYTE(#nn).

WORD(#3)=64000

P=WORD(#4)

8.3.7 LONG(#nn)

Command Write a (32 bit) integer (4 bytes) to a device.

Syntax LONG(#nn)=expression

nn Device number. Can also be a variable or an expression.

expression Value to be written, integer (0 ... 4294967295).

Function Read a (32 bit) integer from a device.

Syntax LONG(#nn)

Type Integer (0 .. 4294967295)

nn Device number to be read from. Can also be a variable or an expression.

Value Value (0 ... 4294967295) of the received integer. If there were not 4 bytes
available in device buffer or the file did not contain 4 more characters, the
function returns value -1.

In LONG the most significant byte is assumed to be the first byte.

When writing to or reading from a file the file pointer PTR(#nn) is automatically incremented by 4.

8.3.8 FLOAT(#nn)

Command Write a (4 byte) floating point number to a device.

Syntax FLOAT(#nn)=expression

nn Device number to write to. Can also be a variable or an expression.

expression Value to be written, a real number.

 McBasic 3.3 reference manual

 75

Function Read a (4 byte) floating point number from a device.

Syntax FLOAT(#nn)

Type Real number

nn Device number to read from. Can also be a variable or an expression.

Value Received real number. If there were not 4 bytes available in device buffer
or the file did not contain 4 more bytes, the function returns 0.

When writing to or reading from a file, the file pointer PTR(#nn) is automatically incremented by 4.

Because FLOAT requires 4 character ready for reading, it can mainly be used with files. When using
serial ports, the use of BYTE function is recommended.

See BYTE(#nn).

FLOAT(#3)=1000*PI

FLOAT(#4)

8.3.9 REAL(#nn)

Command Write a floating point number to a device.

Syntax REAL[MC|MC32](#nn)=expression

MC Legacy Arlacon MC 64 bit floating point number format indicator. If
omitted, IEEE64 format is assumed

MC32 Legacy Arlacon MC 32 bit floating point number format indicator. If
omitted, IEEE64 format is assumed

nn Device number to write to. Can also be a variable or an expression.

expression Value to be written, real number.

 McBasic 3.3 reference manual

 76

Function Read a floating point number from a device.

Syntax REAL[MC|MC32](#nn)

MC Legacy Arlacon MC 64 bit floating point number format indicator. If
omitted, IEEE64 format is assumed

MC32 Legacy Arlacon MC 32 bit floating point number format indicator. If
omitted, IEEE64 format is assumed

Type Real number

nn Device number to read from. Can also be a variable or an expression.

Value Received real number. If enough data (8 or 4 bytes) was not available from
 device buffer or file, the function returns 0.

When writing to or reading from a file, the file pointer PTR(#nn) is automatically incremented by 4
(32 bit) or 8 (64bit).

Because REAL requires 4 or 8 character ready for reading, it can mainly be used with files. When
using serial ports, the use of BYTE function is recommended.

8.3.10 IEEE

Command Write an IEEE format floating point number (4 or 8 bytes) to a device.

Syntax IEEEnn[I](#devicenr)=expression

nn bits in format, 32 (4 bytes) or 64 (8 bytes)

I PC style format indicator. If omitted, unix style is assumed

devicenr Device number to read from. Can also be a variable or an expression.

expression Value to be written, real number.

 McBasic 3.3 reference manual

 77

Function Read a IEEE format floating point number (4 or 8 bytes) from a device.

Syntax IEEEnn[I](#nn)

nn bits in format, 32 (4 bytes) or 64 (8 bytes)

I PC style format indicator. If omitted, unix style is assumed

Type Real number

nn Device number to read from. Can also be a variable or an expression.

Value Received real number. If specified number of bytes was not available from
device buffer, the function returns 0.

IEEE allows input and output in four different popular floating point number formats according to the
IEEE 754 standard. IEEE64 is the binary64 format in the standard and is the format used by
McBasic 3.3 internally.

8.3.11 BLOCK$

Function Write a string to device

Syntax BLOCK$(#nn)=string

nn Device number to write to. Can also be a variable or an expression.

string String to be written to the device

Function Read a string from a device

Syntax BLOCK$(#nn,length)

Type String

nn Number of device to read from

length Length of string to read (bytes, characters)

Value String containing the specified number of bytes in the same order they
were read. If less than length bytes were available for reading from the
device, the length of the string will be shorter, accordingly.

BLOCK$ is useful for reading and writing data from and to devices especially when working with
ports such as serial ports or TCP ports and binary data. This might be the situation when writing
binary communications protocols, for example.

Unlike PRINT or INPUT, BLOCK$ does not convert data formats or otherwise modify data in any
way.

 McBasic 3.3 reference manual

 78

8.3.12 DATE$

Function Convert date in number format to string.

Syntax DATE$(a)

Type String

a Date in number format (as produced by DATE function) to be converted to
string.

Value Converted number format date in form yyyymmddhhmmss (4 digit year).

DATE$ function provides means to convert date calculation results from number format back to
string format and to convert 2 digit year formats to 4 digits. Notice that the DATE$ function is also
used for reading system real time clock or file dates (see 8.6.6).

Example:

PRINT DATE$(DATE(DATE$(#1)))

20110825135344

8.3.13 DATE

Function Convert date string to number.

Syntax DATE(date)

Type Real number

date Date to convert in form [yy]yy[mmdd][hhmmss]

Value A number representing the date in days from 2.1.2000. Dates before
2.1.2000 are negative numbers and after 2.1.2000 positive numbers.

The DATE function allows calculations with dates. The date 2.1.2000 (first Sunday of year 2000) has
been chosen to be the "zero" date. DATE gives the difference from this date in days, so the integer
part of the value represents full days while the fractional part tells the time. Thus time and date
differences can be calculated.

For example there are 236 days between 1.1.1999 and 25.8.1999 whereas there are 237 days
between 1.1.2000 and 25.8.2000 (2000 is a leap year):

PRINT DATE("990825")-DATE("990101"), DATE("000825")-DATE("000101")

236.00 237.00

DATE also allows week day calculations (0=Sunday, 1=Monday ...). 25.8.1999 is Wednesday:

X$="990825"

PRINT INT(DATE(X$)-7*INT(DATE(X$/7))

3.00

 McBasic 3.3 reference manual

 79

8.3.14 LINK

Command Link input/output of data to two devices.

Syntax LINK#n1,n2,n3

n1 Device number to which other devices are linked.

n2 Number of the first linked device

n3 Number of the second linked device

Printing to a device number n1 linked to two other device numbers copies the output to both devices.
Reading from n1 reads data from either linked device if available.

It is possible to link more that 2 devices to one device number by using more than one level of links.
Max. 30 links can be used simultaneously.

To break a link CLOSE#n1 command is used. It closes #n1, but not the devices linked to it. Devices
linked to another device number can be used also directly to their own device numbers. Several links
can also lead to one device.

 OPEN#2,"S2:"

 OPEN#3,"S3:"

 OPEN#7,"D7:RECORD.TX"

 LINK#10,2,3 'link devices #2 and #3 to #10

 LINK#11,10,7 'link devices #10 and #7 to #11

 PRINT#11,"START" 'print to #2, #3 and #7

 DO: B=BYTE(#10) 'read from #2 and #3

 UNTIL B<0 : LOOP 'if devices #2 and #3 are empty, loop

 CLOSE #3 : OPEN #3, "CN:" 'change device #3 to CN:

 PRINT #11,"STOP"

 CLOSE #10 : CLOSE #11 'break links #10 and #11

 CLOSE #2 : CLOSE #3 : CLOSE #7 'closing primary devices

8.4 CURSOR CONTROL FUNCTIONS

Cursor control functions are provided for controlling text output to display terminals or files etc. They
are compatible with MC300 and MC400 displays and some standard terminals and terminal
programs.

8.4.1 TAB

Function Set cursor on output line in PRINT command.

Syntax TAB(column)

column Column, where the next output is desired.

Set cursor position on output line (1 ... 255). Used only with PRINT command. Moves cursor to
desired column. New column must be to the right of the current position of the cursor.

PRINT X,Y,TAB(20+65*Y);"*"

 McBasic 3.3 reference manual

 80

8.4.2 LINE

Command Set length of output line.

Syntax LINE(#nn)=expression

nn The number of the device whose line length is set.

expression Length of line (integer 0...255). When set to 0 no automatic line feed is
performed (default). Other values cause automatic line feed (cr+lf) after
expression characters have been output.

The LINE command sets an automatic change of line at the specified lenght.

LINE(#1)=132

8.4.3 CURS$(column,row)

Function Set cursor position on display.

Syntax CURS$(column,row)

Type String

column Column, where the cursor is positioned
0 leftmost column on screen

row Row, where the cursor is positioned
0 topmost line on screen

Value Cursor control sequence for Arlacon terminals and displays.

Text output can be directed to desired position on a display screen with this function. Coordinate
range depends on the terminal type and settings used. Can be used for example when printing with
PRINT command.

PRINT CURS$(40,12);"X: ";POSX;" ";

When cursor control is based on CURS$ or other control sequences, TAB function cannot be used.

 McBasic 3.3 reference manual

 81

8.4.4 ANSICURS$(column,row)

Function Set cursor position on display.

Syntax ANSICURS$(column,row)

Type String

column Column, where the cursor is positioned
0 leftmost column on screen

row Row, where the cursor is positioned
0 topmost line on screen

Value Cursor control sequence for ANSI terminals.

Like CURS$(nn,nn), but uses ANSI standard escape sequence.

8.5 SERIAL COMMUNICATIONS

In ACN systems, all serial ports are available for freely programmable asynchronous serial
communications during program execution. One of the ports, the CN: or console port, is acting also
as a programming/monitoring port by default. When the McBasic program is not running (McBasic
command mode) or when in McDos, the console port provides the connection to control the system.
The logical console (called CO:) can be redirected from CN: to other ports including TELNET using
the McDos CNTO command (see McDos User's Manual), leaving the CN: port free for other use by
the application program..

During program execution, also the console port can be used just like any other port. Only
differences are that a ctrl-X received from the console causes the program execution to stop and in
case the program stops for any reason, such as might be an error in program execution, the system
will enter the command mode and all messages, prompts and eventual interaction with the system
will happen through the current logical console.

While any applicable terminal device or program can be used to connect to the console port, the
McBench programming workbench for Windows provides the best tools for working with the system
and developing McBasic programs. McBench also uses the console connection to connect to the
system.

Another logical device name PR: is reserved for the logical printer. By default PR: is connected to
the LP: port, but it can be redirected to other ports or file services using the McDos PRTO or
PRTONET commands (see McDos User's Manual).

 McBasic 3.3 reference manual

 82

8.5.1 OPEN

Command Open a serial port.

Syntax OPEN #nn,string

nn Device number (1 ... 99), for which the serial port is opened.

string serial port name and transfer parameters in the form:
"device:[parameters]"

OPEN #2, "LP:9K68E11"

where

device name

 CN:, LP:..

baud rate

 300,600,1K2,

 2K4,4K8,9K6,

 19K,38K

number of data bits

 7,8

parity

 0 space

 1 mark

 E even

 O odd

 N no

number of stop bits

 1,2

xon/xoff handshake

 0 not used

 1 used

 R xon repeated every 5s

A serial port can be locked so that interrupts are disabled and the related buffer is cleared as follows:

OPEN #2, "LP:OFF"

A serial port that is OFF will not send or receive characters until opened again.

If no communication parameter is given the operating system uses default values as follows:

baud rate 9600 baud (9K6)
data 8 bits (8)
parity no parity (N)
stop 1 bit (1)
xon/xoff hand shake on (1)

After opening, data can be read from ports and written to them with applicable commands and
functions described in chapter 8.3 DATA INPUT AND OUTPUT.

For example :

OPEN #2,"LP:" ' 2. serial port

LIST #2

 McBasic 3.3 reference manual

 83

At the time of system start up (before opening files and ports) all device numbers refer to the logical
console CO: which by default is CN: (to redirect see McDos CNTO command).

Systems running under McDos can have up to 8 physical memory drives D1: D8:. The current
drive is the default drive and can be referred to as D0:. Details of the memory device (disk drive)
setups can be found in the McDOS 2.2 Operating System User's Manual chapter 3.2, Memory
devices.

Details of serial port settings can also be found in the McDOS 2.2 Operating System User's Manual
chapter 4.26, SET command.

Additionally a device XX: is available for use as a "trash bin" to simulate a non-existing port for
example. Any output in XX: is always lost, no input is ever received from XX:.

The default device in commands, that do not require a device number, is #1. Console port, in other
words the port where the programming terminal is connected, is usually left as #1.

8.5.2 ACN serial ports

The following serial devices are available in SKS Control ACN systems:

SKS Control ACN MPU3 processor module has 2 serial ports and 4 ports that can be used either as
McWay I/O loops or serial ports.

physical name device

CN: console port, USB
LP: second serial port

S0: W0: McWay I/O loop, usually used for local I/O modules
S1: W1: McWay I/O loop, alternatively auxiliary serial port
S2: W2: McWay I/O loop, alternatively auxiliary serial port
S3: W3: McWay I/O loop, alternatively auxiliary serial port

ACN MPU serial port S0:-S3: operation is defined automatically using either the OPEN command to
select serial port mode or the WAYMOS$ command to select McWay mode.

8.5.3 CLOSE

Command Close a serial port.

Syntax CLOSE #nn

nn Device number (1 ... 99), for which the serial port was opened.

To finish using a serial port. When closing serial ports the communication parameters remain as set,
input and output for device nn are redirected to CN:.

 McBasic 3.3 reference manual

 84

8.5.4 SIZE

Function Read size of free output buffer space.

Syntax SIZE(#nn)

Type Integer.

nn Device number, for which the serial port has been opened.

Value Size of free output buffer space (bytes).

The size of the serial port output buffer is specific for any physical device. ACN MPU3 serial devices
have a buffer size of 255 bytes, so if no output is in the queue, SIZE(#nn) will return 255. A smaller
value will indicate, that there is data waiting to be sent.

To achieve the best possible timing consistency, it is advisable to output to a port when the whole
buffer is empty (SIZE(#nn)=255). Thus the data will be sent with a minimum delay after putting it in
the queue.

Generally, it is a good idea to avoid putting data in the queue when the buffer is full (SIZE(#nn)=0),
because this will cause the program task to stop at the output command (such as PRINT, BYTE,
etc.) and wait for space to become available in the buffer.

For example:

DO

 IF SIZE(#2)>254 THEN PRINT #2,POSX,POSY

LOOP

 McBasic 3.3 reference manual

 85

8.5.5 STATUS

The STATUS function allows studying the statuses of various communication connections in
conjunction with serial ports or Ethernet. The following describes the use of STATUS in connection
with serial ports.

Command Read serial port status.

Syntax STATUS(#nn,i)

nn Device number of the port

Type Integer

Value Status information of device #nn as specified below.

STATUS (#nn,0) type of device,
1 serial device CN: LP: S0: S1:

For serial ports (where STATUS (#nn,0)=1)
STATUS (#nn,i) i

1 device: 0=CN:, 1=LP:, 2=S0:, 3=S1 n+2=Sn
2 transfer rate [bit/s]
6 rx, number of received unread bytes in buffer
7 tx, number of unsent bytes in buffer

Use STATUS (#nn,0) to determine if the device nn is a serial device. Use other values of i to obtain
information about the device status.

 McBasic 3.3 reference manual

 86

8.6 MEMORY DEVICES AND FILE OPERATIONS

Memory devices in ACN systems are mass memory devices holding data that can be accessed
sequentially or randomly. They can be located in FLASH or RAM memory or on a file server through
Ethernet network. Depending on the memory type and system, there are specific properties
concerning writing and accessing the memory.

There is a default memory device configuration for the system, initialised automatically when starting
the system or using the McDos RESET command. Additional memory devices can be mounted and
configured using the McDos SET command (see McDos User's Manual).

Memory devices have a file system, allowing data to be organised as files in directories. Depending
on the device, McDos McFS or industry standard FAT systems may be used.

Default memory device configuration for ACN MPU3:

Device
D1:
D2:
D3: External flash memory card if inserted (SD/SDHC, FAT16/32 or McFS).
D4: Internal flash memory partition for applications etc.
D5:
D6:
D7: 512K RAM drive. Cleared at power-off
D8: Internal flash memory partition for system files.

Use the McDos SET command to view or change the current device configuration.

Any device, especially those without default function, can be connected to a Netbios file server share
through Ethernet using the McDos NETUSE command.

Please refer to the McDos Operating System User's Manual for details.

8.6.1 OPEN

Command Open a file

Syntax OPEN #nn,string

nn Device number (1 ... 99), for which the file is opened.

string File name in the form [memorydevice:][path]name[.extension]
default memorydevice is D0:, the current device
default extension is .TX
default path is the current path

After opening, files can be read and written with applicable commands and functions.

At the time of system start up (before opening files and ports) all device names refer to the logical
console CO: which by default is CN: (to redirect see McDos CNTO command).

 McBasic 3.3 reference manual

 87

Most important extensions :

.BA McBASIC program file

.EX McDos batch file

.DT binary data file

.TX text file

.CK MC300, MC400 CPU5 generation command file

.CF ACN MPU[2], MC400 CPU6 generation command file

.C4 ACN MPU3 generation command file

8.6.2 CLOSE

Command Close a file.

Syntax CLOSE #nn

nn Device number (1 ... 99), for which the file was opened.

To finish using a file. The file is closed and possible data in buffer is written to the memory device.
The device number nn is released and will point to CO: (the logical console) until otherwise opened.

8.6.3 PTR

Command Set file pointer.

Syntax PTR(#nn)=expression

nn Device number, for which the file has been opened.

expression New value of pointer. Value 0 points to the first byte of file, SIZE(#nn)-1
points to the last byte of file.

Function Read a file pointer.

Syntax PTR(#nn)

Type Integer

nn Device number, for which the file has been opened.

Value Value of file pointer.

The value of the file pointer must be positive and smaller than or equal to the size of free memory in
the device.

The file pointer of a newly opened file is 0.

This command allows reading or writing data from/to any part of a file and thus use the file as a
random access file.

 McBasic 3.3 reference manual

 88

OPEN#3,"D1:\FILE.DT"

PTR(#3)=0 'first character

A=BYTE(#3) 'is read to A

PTR(#3)=SIZE(#3)-1 'last character

B=BYTE(#3) 'is read to B

IF PTR(#3)>=SIZE(#3) THEN STOP

If the value of PTR is set greater than the current size of the file (see SIZE), the file size is
automatically increased accordingly. The new empty space at the end of the file is not initialized, so
it may contain empty (zero value) bytes or some data that has been deleted before.

8.6.4 SIZE

Command Set file size.

Syntax SIZE(#nn)=expression

nn Device number, for which the file has been opened.

expression New size (bytes).

Function Read file size.

Syntax SIZE(#nn)

Type Integer.

nn Device number, for which the file has been opened.

Value Size of file (bytes). When using for a serial port the function returns the
size of the free space in output buffer.

Value of the file size must be smaller than or equal to the size of free memory in the device..

This command can be used for example to destroy a file or part of a file. If the size of the file is set to
zero and the file is closed, the file will be removed from disk.

SIZE command is also used to flush UDP and TCP packets that have been written to. Setting
SIZE(#nn)=0 for an UDP or TCP device forces the current packet to be sent. When flushing, the
contents of the packet is sent to its destination. In a TCP connection, packets are flushed
automatically if they get full. To complete sending the rest of the written data, the last TCP packet
has to be flushed.

Output to a port with too little free space in the buffer can be avoided using the SIZE function thus
avoiding interrupting the program and task changing.

 SIZE(#3)=PTR(#3) 'let's destroy the end part of a file

 CLOSE(#3) 'beginning from PTR

 McBasic 3.3 reference manual

 89

 OPEN#4,"FILE.TX"

 SIZE(#4)=0 : CLOSE(#4) 'delete a whole file

 OPEN#4,"FILE.TX"

 IF SIZE(#4)=0 THEN PRINT "File not found"

Prnt(M$)

 'sub-routine, prints M$ to #2 which has an output buffer

 'of 255 bytes, when buffer is empty

 DO WHILE SIZE(#2)<255 : LOOP

 PRINT#2,M$

 RETURN

8.6.5 DIR$

Function Read directory entry.

Syntax DIR$(#nn,expression)

Type String

nn Device number, for which the memory device/directory has been opened.

expression Number of directory entry.

Value Contents of the directory entry in form "nnnnnnnneee" (11 characters).
nnnnnnnn file name
eee extension
A name of a subdirectory is an entry in form "nnnnnnnneee/" (12
characters). Directory entries are filled from position 0. The first empty
entry indicates that the rest of the directory is empty.
If the directory entry is empty, the function returns an empty string "".

Maximum number of files on one memory device is dependent on the type of device. When reading
the directory cells it is possible for example to list the directory in desired order and format.

'DIR

OPEN #2,"D8:"

n=0

DO

 A$=DIR$(#2,n)

 UNTIL A$=""

 IF LEN(A$)=12 THEN

 PRINT LEFT$(A$,8)+" "+RIGHT$(A$,4)+" ";

 ELSE

 PRINT LEFT$(A$,8)+"."+RIGHT$(A$,3)+" ";

 ENDIF

 C=C+1

 IF C=5 THEN C=0 : PRINT

 n=n+1

 LOOP

RUN

 McBasic 3.3 reference manual

 90

40 .C4 BAS100 .C4 BASE .C4 DATE .BA WAX2 .BA

MCDOS7 .C4 VDEMO .BA WAX2A .BA BASIC .C4 ZM .C4

SER .BA TX .C4 WAKEUP .EX WMS2 .BA CPU6 .BA

NBER .TX KELLO .BA BAS32 .C4 DISK .C4 SETCLOCK.BA

8.6.6 DATE$

Command Set file date.

Syntax DATE$(#nn)=string

nn Device number, for which the file has been opened.

string New date in form

yy[mmdd[hhmmss]]
yy = year 80..79 (80 = 1980, 79 = 2079)
mm = month 01..12 (01 = January)
dd = day 01..31
hh = hours 00 23
mm = minutes 00..59
ss = seconds 00..59

or alternatively

yyyy[mmdd[hhmmss]]
where yyyy = year (0000 9999)
other items as above

Function Read file date

Syntax DATE$(#nn)

Type String

nn Device number, for which the file has been opened.

Value Date in form yymmddhhmmss (see above). If #nn refers to the console
device, the value is the current date/time from the real time clock.

Device CN: (console), usually #1, is the real time clock of the system (see chapter 10.1 REAL TIME
CLOCK)

Files are automatically dated according to the console date when written to a disk (closing), if they
have been modified.

For example string 110224123456 represents the date February 02, 2011 and the time 12:34:56

DATE(#1)="110224123456"

PRINT DATE$(#1)

110224123456

 McBasic 3.3 reference manual

 91

8.7 NETWORK

Network communications is available in McBasic to work with a TCP/IP Ethernet network connected
to the system. McDos provides services for McBasic to use TCP and UDP transport protocols from
within McBasic programs. McDos can also connect to NetBios servers to use file and printer shares
and thus provide access to these services for McBasic application programs as well (see McDos
User's Manual).

ACN MPU3 has 2 Ethernet controllers, E1: and E2:. E1: is the default active IP network while E2:
can be used as an EtherCat fieldbus master connection.

Setting the IP address of the system and connecting to NetBios shares is done in McDos and thus
they are usually initialised in the WAKEUP.EX (see 8.2.2) while starting the application or from within
the McBasic program using the SYSTEM command (see 3.4).

After setting the IP address and connecting the possible shared services to devices, NetBios
services can be connected to device numbers as any other device and accessed accordingly like
memory devices or printer connected to serial port.

TCP and UDP transport services can be used with the following commands:

 McBasic 3.3 reference manual

 92

8.7.1 OPEN

Command Open a network port.

Syntax OPEN #nn,string

nn Device number (1 ... 99), for which the file or port is opened.

string if TCP port:
Open for listen, another system can establish a connection:
"port://0.0.0.0:0"

Open connection to another system listening:
"//nnn.nnn.nnn.nnn:targetport

where

nnn.nnn.nnn.nnn is the ip adress and targetport the port number of the
device to connect to

if UDP port
Open read socket:
"UDP:port://[maxpackets]"

Open transmit packet:
"UDP://nnn.nnn.nnn.nnn:targetport"

port ACN MPU port to start listening for connection.

nnn.nnn.nnn.nnn Target system IP address (each nnn=0...255)

targetport Target system port to connect or send to.

maxpackets Maximum number of ethernet packets the system will queue. (Default = all
available buffers). Limit the number of packets to avoid running out of
buffer space if UDP packets are not handled as they are received.

After opening, ports can be read and written with applicable commands and functions (see 8.3).
When using TCP protocol, the data must be written to a socket and read from a socket sequentially.
While packets are sent as they get full when writing to the port, it is necessary to issue a command
SIZE(#nn)=0 for the devicenumber of the port to release (send) the last packet.

UDP packets can be worked with like files. The maximum SIZE of each packet is 1499 but can in
practice be limited by the network infrastructure. Typically at least 1400 byte size packets can be
used. The current size of a packet can be read using the SIZE(#nn) function.

When opening an UDP packet for transmit, the SIZE(#nn) of the packet is initially zero. When writing
to the packet, the SIZE(#nn) reflects the size of the contents of the packet and PTR(#nn) is
incremented as when wiriting to files. By setting PTR(#nn), the packet can also be random accessed
as a file.

Closing the UDP packet with CLOSE(#nn) send the contents of the packet and sets SIZE(#nn) and
PTR(#nn) to zero. Also setting SIZE(#nn)=b can be used to send b bytes from the packet and reset
it. Using this method to send avoids the need to use the OPEN command before preparing the next
packet.

 McBasic 3.3 reference manual

 93

For more information on Ethernet usage refer to the McDos user's manual.

8.7.2 CLOSE

Command Close a port.

Syntax CLOSE #nn

nn Device number (1 ... 99), for which the file or port was opened.

To close a TCP socket or UDP port. A UDP packet will be sent when closing, if its SIZE is greater
than zero. A TCP socket will be closed according to the TCP closing sequence, including sending
any pending data. Device number #nn is released and can be used again immediately.

8.7.3 STATUS

The STATUS function allows studying the statuses of various communication connections in
conjunction with serial ports or Ethernet. The following describes the use of STATUS in connection
with TCP or UDP transport.

Command Read TCP or UDP port status.

Syntax STATUS(#nn,i)

nn Device number of the port

Type Integer

Value Status information of device #nn as specified below.

For any any type of device
STATUS (#nn,i) where i=

-3 number of free TCP connections
-2 number of free ethernet buffers
-1 number of free file buffers
 0 type of device
 0 XX: waste basket
 1 serial device CN: LP: S0: S1: …
 2 TR: Terminal in MC300
 3 McNet (legacy communications serial network)
 4 Dx: file
 5 R1: legacy RAM file
 6 TCP TCP/IP socket
 7 UDP UDP socket

 McBasic 3.3 reference manual

 94

For TCP sockets (where STATUS (#nn,0)=6)
STATUS (#nn,i) where i=

1 own IP address (decimal value)
2 own port number
3 target IP address (decimal value)
4 target port number
5 connection status
 values:
 0 closed
 1 listen
 2 syn send
 3 syn received
 4 established
 5 fin-wait1
 6 fin-wait2
 7 close wait
 8 closing
 9 last acknowledge
 10 timeout wait
 11 closed, device still reserved
6 rx, number of received unread bytes in buffer
7 tx, number of unsent bytes in buffer
8 rx pointer
9 tx pointer
10 last+1
11 tx acknowledged
12 rx, number of urgent unread bytes in buffer

For UDP sockets (where STATUS (#nn,0)=7)
STATUS (#nn,i) where i=

1 own IP address (decimal value)
2 own port number
3 target IP address (decimal value)
4 target port number
5 packets in input queue
6 rx, number of received unread bytes in buffer

For example passive establish and study the status of a TCP socket:

OPEN #10,"10000://0.0.0.0:0" ' start listening at port 10000

PRINT STATUS(#10,0) ' type of device

PRINT STATUS(#10,5) ' connection status

DO : UNTIL STATUS(#10,5)=4 ' wait for connection

PRINT STATUS(#10,5) ' connection status

6 ' TCP socket

1 ' listening

4 ' established

 McBasic 3.3 reference manual

 95

8.7.4 SIZE

Command Flush TCP or UDP packet.

Syntax SIZE(#nn)=x

nn Device number, for which the port has been opened.

x To flush a TCP socket, i.e. send all pending data in transmit buffer, set
SIZE(#nn)=0.

To send a UDP packet, set SIZE(#nn) to the size of the packet to be sent,
for example: SIZE(#nn)=SIZE(#nn)
When sent, the size of the UDP packet is reset to zero automatically.

To discard a received UDP packet, set its size to zero
SIZE(#nn)=0.
This will delete the packet and give access to the next received packet.

Function Read UDP packet size

Syntax SIZE(#nn)

Type Integer

nn Device number, for which the socket has been opened.

Value Size of data in the packet (bytes). When using for a TCP port the function
returns 255.

The size of an Ethernet package limits the maximum data size in a single packet. Generally, the
maximum packet size in McDos is 1499 bytes, although it can be limited by the infrastructure of the
network. Normally it is safe to use up to 1400 bytes packets.

With TCP sockets, transmit packets are automatically sent when they get full and read packets are
accessed sequentially as they come in, so the only thing to worry about is sending the last packet. In
cases, where a message is sent by TCP, it is therefore typical to flush the last packet (set
SIZE(#nn)=0) after writing all data to the port. To observe the number of bytes in TCP transmit and
receive buffers, please use the STATUS(#nn,6) and STATUS(#nn,7) functions.

With UDP packets, every transmit packet is always prepared and sent before working on the next
one, so it is necessary to control the sending of each packet. Similarly, received packets are handled
each in turn, so it is also necessary to control moving on to the next packet. Again, the
STATUS(#nn,5) and STATUS(#nn,6) functions can be used to observe the status of the received
packets.

 McBasic 3.3 reference manual

 96

9. FIELDBUSES

9.1 MODBUS

ModBus is a standard fieldbus protocol that can be used either in conjunction with serial or Ethernet
communications. ModBus protocol support for operation as ModBus RTU, UDP or TCP slave
(server) is available in McBasic firmware. For master operation please use the McBasic ModBus
master library software available from manufacturer.

ModBus RTU is designed for use with serial communications and thus occupies a serial port from
the system. It can be used either as point to point between one master and one slave device, or in a
multidrop configuration with one master and several slave nodes. A selection of physical
connections can be used. The following table illustrates the possible (x) combinations of ModBus
RTU functionality with physical connections.

 RS-232 RS-422 RS-485 4-wire RS-485 2-wire optical fibre

Point-to-point master or slave x x x x x

Multidrop master n/a x x x n/a

Multidrop slave n/a n/a x x n/a

ModBus RTU physical signal compatibility

ModBus UDP and ModBus TCP are protocols designed for use with Ethernet TCP/IP networks.

ModBus UDP operates between a master (client) and slave (server) node(s) by sending UDP
packets through the network. The master sends messages containing read or write functions to
slaves and slaves respond by answering to the master. Because a slave sends its answer to the IP
address of the master, multiple masters can access one slave thus making a multimaster
configuration possible.

ModBus TCP relies on the master establishing TCP sockets between itself and all slaves in the
network. The master can then send function messages to the slaves through these sockets and the
slaves answer to the master accordingly. For any slave to serve multiple masters, more than one
instance of the server must be running. While TCP has the advantage of being able to detect
whether a socket is operable and is able to automatically resend data in case it is lost in
transmission, it is more complicated to maintain than UDP. Thus in simple local communications,
where the network operation is usually quite deterministic, UDP is often preferred when available in
all devices.

 McBasic 3.3 reference manual

 97

9.1.1 MBOPEN()

Function Start ModBus server

Syntax id=MBOPEN(device,addr,conf)

id The number of the started server (1...10) is returned in the variable id.

device Serial port, UDP or TCP port. For example:
“LP:9K68N20” ' serial port LP:
“UDP:502://-2” ' UDP socket with two receive buffers
“502://” ' TCP socket

addr Node address

conf 0 Basic configuration:
 Addressing: 0 based (registers 0 .. 65535)
 32 bit word order: lsw frst, msw last
+1 Addressing: 1 based (registers 1 .. 65535)
+2 32 bit word order: msw first, lsw last

The MBOPEN command is used for starting any type of ModBus server for operation as a slave
node in a ModBus network. Variable id can be any variable accepting integer values and it must be
declared before MBOPEN. It can later be used to monitor the Modbus slave status with MBREG or
close the server with MBCLOSE.

The node address addr is used especially with Modbus RTU, where it defines the slave in a
multidrop RS-485 network. With Ethernet (TCP and UDP), the node is already defined by the IP
address and addr can usually be set to zero.

Parameter conf defines some details of the protocol and the values show are added for the desired
combination.

For example, open a Modbus UDP server with 1 based addressing at port 502 of the controller.

DIM Mb

Mb=MBOPEN("UDP:502://-2",0,1) ' open ModBus UDP server

9.1.2 MBCLOSE

Command Close all Modbus servers

Syntax MBCLOSE[(id)]

id Server number (1..10). If omitted, all Modbus servers are closed.

This command is used to end the operation of selected or all Modbus servers.

 McBasic 3.3 reference manual

 98

9.1.3 MBDATA()

Command Set ModBus data

Syntax MBDATA(type,index) = value

type Data type
0 general addressing for all data types:
 0..$3FFF word (16 bit)
 $4000..$7FFF long (32 bit)
 $8000..$BFFF float (32 bit floating point)
 $C000..$FFFF word (16 bit)
1 word registers (16-bit integer)
2 long registers (32-bit integer)
3 floating point registers (32-bit floating point)
4 coils (bit)
5 discrete inputs (bit)

index 0 .. 65535, address of the register/coil/input

value Numerical value that fits the format of the register:
16 bit unsigned integer 0 .. 65535
16 bit signed integer: -32767 ... 32768
32 bit signed integer: -2147483647 .. 2147483648
32 bit floating point: Any real number (single precision)
bit: 0 .. 1

Data for Modbus servers is organised in holding registers and coils/inputs. This data can be
accessed from within the controller program or from the Modbus master connected to a server. The
data is common for all servers. Some of the data areas (holding registers) are available for free
program use, while others correspond to specific system resources. Especially binary I/O can be
accessed as inputs/coils by the Modbus master using the coil/discrete input funtions. All binary and
analog I/O together with a selection of servo axis related values can be accessed using the holding
register commands. Data type 0 can be used for accessing all holding register data. Data types 1-3
can be used to access the different type user registers with alternate zero based addressing. Data
types 4 and 5 can be used to access binary i/o INP() and OUT().

Function Read Modbus data

Syntax MBDATA(type,index)

type As in MBDATA command

index 0..65535, adress of the register/input/coil

value As in MBDATA command

The MBDATA function allows the application program to read Modbus register values. All values
including those holding system and I/O information can be read.

The addressing of MBDATA can be done in two ways. Using type 0 allows access to all data within a
single address (index) space (0 .. 65535 decimal or $0000 .. $FFFF hexadecimal).

 McBasic 3.3 reference manual

 99

Using types 1 .. 3 allows access to user holding register areas according to data type. In this case
the addressing (index) for each data type starts from zero. In case of 32bit data types (2 and 3) this
type of addressing allows using contiguous addresses (0..511) for each pair of registers.

For example MBDATA(0,16384) is equal to MBDATA(2,0) and MBDATA(0,16386) to MBDATA(2,1)
respectively.

The following table shows the allocation of address space for MBDATA:

 McBasic 3.3 reference manual

 100

MODBUS addressing for MBDATA

MBDATA(0,index), holding registers, global addressing

index (decimal) index (hex) format destination

0 .. 511 $0000 .. $01FF 16 bit integer 16-bit registers for free use.
Also accessible as MBDATA(1,0..511)

3072+a $0C00+a 16 bit signed integer INPA(a) analog inputs, a= 0 .. 511

3584+a $0E00+ a 16 bit signed integer OUTA(a) analog outputs, a= 0 .. 511

4096+a $1000+a 16 bit integer INP(i), 16 inputs / register,
a= 0 .. 2047, b= bit (0 .. 15), i=a*16+b

6144+a $1800+a 16 bit integer OUT(i), 16 outputs / register,
a=0 .. 2047, b=bit (0 .. 15), i=a*16+b

8192 .. 8959 $2000 .. $22FF

$2000+a
$2080+a
$2100+a
$2180+a
$2200+a
$2280+a

16 bit

16 bit signed integer
16 bit signed integer
16 bit signed integer
16 bit signed integer
16 bit signed integer
16 bit signed integer

Axis(a) data (a=0 .. 127)

POS(a) [encoder counts] (16 lsb)
RPOS(a) [encoder counts] (16 lsb)
FPOS(a) [encoder counts] (16 lsb)
POSERR(a) [encoder counts] (16 lsb)
MAXERR(a) [encoder counts] (16 lsb)
OFFSET(a) [encoder counts] (16 lsb)

9216+a $2400+a 16 bit integer, bit:
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

Axis a status, meaning of bits:
MOVE command in progress
CREEP command in progress
MOVEPROF command in progress
HOME command in progress
n/a
FOLLOW command in progress
OPWR command in progress
disabled
filter busy (reference filter not empty)
n/a
n/a
MOVEBUFFER(a)>0
MOVEBUFFER(a)>1
MOVEBUFFER(a)>2
MOVEBUFFER(a)>3
motion in progress (bit 0-3 or bit 8 true)

 McBasic 3.3 reference manual

 101

9344+a $2480+a 16 bit integer, bit:
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9-14
 15

Axis a error status
disabled, PWR=0
NLIM, negative limit activated
PLIM, positive limit activated
EMRG, emergency stop
MAXERR exceeded
WAYERR, excessive McWay errors
ENCERR, excessive encoder errors
n/a
tripped by TRIPGROUP member
n/a
error, some of bits 1-6 true

16384 .. 17407 $4000 .. $43FF 32 bit integer 32-bit registers for free use (even
addresses).
Also accesible as MBDATA(2,0..511)

24576 .. 28671 $6000 .. $6FFF

$6000+a*2
$6100+a*2
$6200+a*2
$6300+a*2
$6400+a*2
$6500+a*2

32 bit

32 bit signed integer
32 bit signed integer
32 bit signed integer
32 bit signed integer
32 bit signed integer
32 bit signed integer

Axis(a) data (a=0 .. 127) (even addresses)

POS(a) [encoder counts]
RPOS(a) [encoder counts]
FPOS(a) [encoder counts]
POSERR(a) [encoder counts]
MAXERR(a) [encoder counts]
OFFSET(a) [encoder counts]

32768 .. 33791 $8000 .. $83FF 32 bit floating point
(IEEE 754)

Single precision floating point registers for
free use (even addresses). Also accessible
as MBDATA(3,0..511)

40960 .. 45055

40960+a*2

41216+a*2

$A000 ... $AFFF

$A000+a*2

$A100+a*2

32 bit floating point
(IEEE 754)

Axis(a) data (a=0 .. 127) (even addresses)

POS(a) [programming units]
RPOS(a) [programming units]

49152 .. 65535 $C000 .. $FFFF 16 bit integer 16-bit registers for free use.

 McBasic 3.3 reference manual

 102

9.1.4 MBREG()

Command Set Modbus status

Syntax MBREG(id,index)=value

id Server number (1..10)

index 20 configuration
 0 registers 0..65535, 32-bit number lsw first, msw last
 +1 registers 1..65535
 +2 32-bit number msw first, lsw last
 +4 32 bit address increment 2
21 node address
22 error counter
23 message counter
24 character counter

The MBREG command allows altering some ModBus server setting while it is running. Setting
MBREG(id,20) alters the same settings as conf when starting the server with MBOPEN. It is also
possible to change the node address the server recognizes, or preset some counters.

For example, setting MBREG(id,23)=0, would reset the message counter and make it easy to count
the number of ModBus messages received by the server during some period.

Example:

' ModBus watchdog

DO ' while the master sends messaged at least every 1 second

 MBREG(1,23)=0

 DELAY 1

 UNTIL MBREG(1,23)=0

LOOP

'

' message timeout, stop machine

STOPMOVE ' stop motion

FOR n=100 TO 131

 OUT(n)=0 ' reset outputs

NEXT n

 McBasic 3.3 reference manual

 103

Function Read ModBus status

Syntax MBREG(id,index)

id Server number (1..10)

index 0..19 similar to STATUS(#nn,i) (see 8.5.5 STATUS, 8.7.3 STATUS)
20 configuration as in MBREG command
21 node address
22 error counter
23 message counter
24 character counter
25 last error:
 1 = illegal function
 2 = illegal data address (register, coil or input address)
 3 = illegal value (data out of range)
 4 = illegal format
26 last error fn: The ModBus function number causing the error.
27 last error addr: Node address in the command causing the error.
28 last error index: Last data address before the error.
29 last error data: Last data value before the error.

The MBREG function shows the communications status for a ModBus server, like the STATUS
function would show for an opened port. It also allows reading the items that can be set using the
MBREG command and provides some data on ModBus errors.

9.2 ETHERCAT

EtherCat fieldbus master functionality is available in ACN MPU3 for connecting to I/O and drives.
McBasic commands and functions are available to setup the fieldbus configuration and to control it.

9.2.1 ETHERCAT

Use the ETHERCAT command to stop and start EtherCat.

 McBasic 3.3 reference manual

 104

Command Control EtherCat master

Syntax [x=]ETHERCAT(n,m[,t])

x Optional return value. Use only when starting Ethercat. Number of
EtherCat nodes found

n Ethernet controller.
1 E1: (Ethernet port 1)
2 E2: (Ethernet port 2)
0 close EtherCat master

m Mode:
0 stop
1 start

t Optional timeout. Use only when starting EtherCat. Time to wait for nodes
to respond. Normally program continues after all specified nodes have
been found. After timeout program continues with uncomplete
configuration (x less than number of specified nodes).

 McBasic 3.3 reference manual

 105

9.2.2 ECMOD$

Use the ECMOD$ command to set the configuration of the EtherCat fieldbus. Before using
ECMOD$, use ETHERCAT(n,1) to set the fieldbus in configuration mode. After all settings have
been made, use ETHERCAT(n,2) to start fieldbus operation.

Command Set EtherCat configuration

Syntax ECMOD$(node,slice)=string

node Number of EtherCat node (0...511)

slice Number of slice in modular I/O.
0 if fielbus coupler or drive (single device).

string Configuration entry for node/slice. For valid devices, see appendix 1.

The list of valid devices is amended from time to time. Therefore it is maintained as an appendix to
this manual (Appendix 1). A sample EtherCat configuration with some I/O and 2 servo drives:

ETHERCAT(2,0) ' stop EtherCat in port 2

ECMOD$(0,0)="NA-9286" ' Crevis I/O coupler

ECMOD$(0,1)="ST-1218 INP(1000)" ' 8 input slice INP(1000..1007)

ECMOD$(0,2)="ST-2328 OUT(1000)" ' 8 output slice OUT(1000..1007)

ECMOD$(0,3)="ST-2744 OUT(1008)" ' 4 output slice OUT(1008..1011)

ECMOD$(1,0)="UNIDRIVE/M700 PWR(0) POS(0)" ' X axis servo

ECMOD$(2,0)="UNIDRIVE/M700 PWR(1) POS(1)" ' Y axis servo

ETHERCAT(2,1) ' start EtherCat in port 2

ECAX(0,-1,1000,1008,-1,-1) ' X axis I/O settings

ECAX(1,-1,1004,1009,-1,-1) ' Y axis I/O settings

Axis I/O setting are such that limit switch/emergency/status inputs are INP(1000..1003) for X axis
and INP(1004..1007) for Y axis. OUT(1008) is configured as hardware enable for X axis and
OUT(2009) for Y axis.

It is often good programming practice to stop EtherCat before configuring and starting it. This allows
restarting EtherCat always when restarting the program when testing, for example. Otherwise
EtherCat is only stopped when exiting McBasic or reseting/ power cycling the system.

9.2.3 ECPAR

Read and write EtherCat parameters. These parameters are normally set by ECMOD$ when
configuring Ethercat. For special debugging/setup purposes ECPAR provides a way to access them.
Writeable values should only be written with EtherCat configuration mode, ETHERCAT(n,1).

 McBasic 3.3 reference manual

 106

Command Write EtherCat parameter

Syntax ECPAR(node,par)=expression

node Number of EtherCat node (0...47)

par Parameter number (0...73). Parameters currently in use:
par function
0 device address 0..65535
1 vendor id (32-bit number)
2 product code (32-bit number)
3 product revision (32-bit number)
4 serial number (32-bit number)
5 axis number, default -1=no, 0=X 1=Y ..
6 output message box base address 0..
7 input message box base address 0..
8 output message box size (bytes) 0..
9 input message box size (bytes) 0..
10 output process data offset, slice 0
11 input process data offset, slice 0
12 output process data offset, slice 1
13 input process data offset, slice 1
.
10+2*n output process data offset, slice n
10+2*n+1 input process data offset, slice n
.
72 output process data offset, slice 31
73 input process data offset, slice 31

Function Read EtherCat parameter

Syntax ECPAR(node,par)

node Number of EtherCat node (0...511)

par 0..72 as in ECPAR command.

 McBasic 3.3 reference manual

 107

9.2.4 ECAX

Command Configure EtherCat axis I/O

Syntax ECAX(axis,aout,inp,ena,nrun,prun)

axis Number of axis

aout Address of analog output used as reference output for axis

inp Adress of first input of the 4 inputs block for axis

INP(inp) drive status as defined by LIMITTYPE(axis)
INP(inp+1) negative limit switch as defined by LIMITTYPE(axis)
INP(inp+2) positive limit switch as defined by LIMITTYPE(axis)
INP(inp+3) emergency swich (1=ok)

ena Drive enable output

nrun When DRIVETYPE(axis)=2, run negative signal

prun When DRIVETYPE(axis)=2, run positive signal

When using ECAX, the EtherCat must be in operating mode, ETHERCAT(n,2).

If any of the aout,inp,ena,nrun,prun are not used, they can be given the value -1.

9.2.5 ECCO

Read and write device registers using CAN-over-EtherCat protocol. ECCO allows single read and
write operations to device registers to access device data and settings such as drive parameters etc.

Command Write Ethercat CoE register

Syntax ECCO(nodeaddr,index,subindex,bytes)=integer

nodeaddr Address of EtherCat node

index EtherCat register index as defined for the device in question.

subindex EtherCat register subindex as defined for the device in question.

bytes Length of integer for the register [bytes].

 McBasic 3.3 reference manual

 108

Function Read Ethercat CoE register

Syntax ECCO(nodeaddr,index,subindex)

nodeaddr Address of EtherCat node

index EtherCat register index as defined for the device in question.

subindex EtherCat register subindex as defined for the device in question.

value Value in the registed, integer.

When using ECCO, the EtherCat must be in operating mode, ETHERCAT(n,2).

For example, write parameter 3.10 (Speed controller P gain, 16 bit value) in Unidrive SP drive as
node 5 on the EtherCat fieldbus:

ECCO(5,$2000+3,10,2)=100

Parameter addresses in the drive map to the EtherCat register addresses so that the index will be
$2000+menunumber and the subindex will be equal to the parameter number. The length of the
parameter is 16 bits, so bytes is 2. Note that it is necessary to define bytes only when writing the
parameter. The actual value of the gain will be 0.0100 as it is defined in the drive with 4 decimal
resolution.

For example, read parameter 3.10:

PRINT ECCO(5,$2000+3,10)

100

9.2.6 ECSERNUM

Specify EtherCat device serial number for verification of configuration.

Command Specify EtherCat device serial number

Syntax ECSERNUM(node)=integer

node Address of EtherCat node

integer 32 bit integer

After specifying the serial number of an EtherCat device the system only accepts a device of the
type specified with ECMOD$ and with the serial number specified with ECSERNUM to be connected
as device number node.

ECSERNUM can also be read with the corresponding function to check whether it has been set.

 McBasic 3.3 reference manual

 109

Function Read EtherCat serial number specification.

Syntax ECSERNUM(node)

node Number of EtherCat node

value Current EtherCat serial number specification for the device, 32 bit integer.

The EtherCat serial number specification can be used to identify the device and to prevent unwanted
configuration. This may be particularly handy in large installations with redundant fieldbus topologies
are used and device fielbus wiring may be rerouted in case of malfunction.

While some EtherCat devices have their serial numbers set by the manufacturer, some allow writing
to the serial number register and may in fact have a zero serial number by default.

To read and write the serial number of an EtherCat device from McBasic, use the ECPAR(node,4)
command and function (see 9.2.3 ECPAR).

9.3 FIELDBUS SLAVE OPTION

A fielbus slave option is available for the ACN MPU3 controller for connection to further popular
fieldbuses, such as Profinet and Profibus, as a slave node. The option uses an Anybus module for
this connection. Different fieldbuses use the same commands and functions for configuring and
using the option.

9.3.1 ANYBUS

The ANYBUS command controls the Anybus fieldbus slave option operation.

Command Control Anybus module operation

Syntax ANYBUS=integer

integer 0 set init/configuration mode
1 start fieldbus operation

To stop the fieldbus and enter configuration mode set ANYBUS=0. To start fieldbus operation set
ANYBUS=1.

9.3.2 ABCONF$

ABCONF$ command is used to configure fieldbus process data objects. Setting object properties
defines the data frame for the fieldbus and creates a fieldbus data buffer for the ACN controller.
Various object types are available for the data frame. It is important to configure the data frame to
match the fieldbus master settings. Depending on the master and fieldbus type, only some of the
object types may be applicable.

Most of the data types need to be connected to input or output registers (INPREG, OUTREG) from
where they can be accessed by the McBasic program. Bit type objects can also be connected to i/o
bit registers (INP,OUT) so that one of more bits long data can be directed to consequtive i/o
addresses.

 McBasic 3.3 reference manual

 110

When using INP/OUT i/o registers, take care not to cause address conflicts with other i/o connected
to the system.

Function Read Anybus module object configuration.

Syntax ABCONF$(a)

a 1..65535 Number of adi (application data instance)
-1 Default device type description (read only)
-11 User configurable device type description (r/w)

Value String

a>0: Current object configuration for adi.
a<0: Current value of description a.

Command Set Anybus module object configuration

Syntax ABCONF$(a)=string

a a>0: Number of adi (application data instance)
a=-11: Set user configurable device type description

string a>0: process data configuration string elements,
"objtype[*count] io(addr)", where

objtype: object type
BOOL boolean 0/1
BITS8 8 bits
BITS16 16 bits
BITS32 32 bits
CHAR 8-bit character
FLOAT 32-bit ieee floating point number
SINT8 signed 8-bit integer -128..127
SINT16 signed 16-bit integer -32768..32767
SINT32 signed 32-bit integer -2147483648..2147483647
SINT64 (signed 64-bit integer), precise upto 52-bits
OCTET 8-bit data
UINT8 unsigned 8-bit integer 0..255
UINT16 unsigned 16-bit integer 0..65535
UINT32 unsigned 32-bit integer 0..4294967295
UINT64 (unsigned 64-bit integer 0..), precise up to 52-bits

count Number of similar fields, if more than 1

io(addr) first McBasic reference (addr is address of first i/o or register)
INP(addr) bit input
OUT(addr) bit output
INPREG(addr) register input
OUTREG(addr) register output

string a=-11 User configurable device type description string

 McBasic 3.3 reference manual

 111

ABCONF

ABCONF is used to access the Anybus fieldbus module numeric parameters.

Function Read Anybus module parameters.

Syntax ABCONF(n,d)

n -1 module status data
-2 user settings

n=-1 d (read only values)
-2 physical network status (binary)
 bit 0 link sensed
 bit 1 ip address ok
 bit 3 port1 link sensed
 bit 4 port2 link sensed
-1 anybus status (integer)
 0 Setup
 1 NW_Init
 2 Wait process
 3 Idle
 4 Process active
 5 Error
 7 Exception
0 device type (Anybus module type specific)
 5 Profibus
 135 Ethercat
 137 Profibus IRT
 143 Modbus TCP
 150 Profinet IO 2-Port
1 manufacturer's vendor id ($10C, HMS Industrial Networks)
2 firmware version
3 ip address
4 subnet mask
5 gateway address
6 cycle time

n=-2 d (user values, R/W)
0 device type
1 vendor id

Value Current object configuration for n,d. Integer.

 McBasic 3.3 reference manual

 112

Command Set Anybus module parameter

Syntax ABCONF(-2,d)=expression

d 0 device id
1 vendor id

expression New value for parameter.

For example:

ANYBUS=0 ' init

ABCONF(-2,0)=ABCONF(-1,0)+$100 ' set device id

ABCONF(-2,1)=$4D43 ' set vendor id

ABCONF$(-11)="ACN MPU3 with Anybus" ' device description

' process data in

ABCONF$(1)="UINT8*2 INPREG(100)" ' 2 8bit unsigned integers

ABCONF$(2)="SINT16 INPREG(102)" ' 1 16bit signed integer

ABCONF$(3)="UINT16 INPREG(103)" ' 1 16bit unsigned integer

ABCONF$(4)="BOOL INPREG(104)" ' 1 boolean (bit)

' process data out

ABCONF$(5)="SINT16 OUTREG(100)" ' 1 16bit signed integer

ABCONF$(6)="UINT32 OUTREG(101)" ' 1 32bit unsigned integer

ABCONF$(7)="SINT16 OUTREG(102)" ' 1 16bit signed integer

ANYBUS=1 ' start fieldbus master

Fieldbus masters such as Profibus and Profinet master usually need a configuration file called the
GSD file for configuring the master for the desired process data configuration. These files are
available from SKS Control. Each GSD file contains a specific process data configuration. For
correct operation, the ACN Anybus must be configured to match the configuration described in the
GSD file.

 McBasic 3.3 reference manual

 113

10. TIMING AND REAL TIME CLOCK

Modified files are dated automatically according to the current time of the MPU3 real time clock,
when closed. The real time clock is set to current time by setting the console date. The date and
time can also be read from console (:CN, usually #1).

10.1 REAL TIME CLOCK

Clock is set with command:

Command Set date/time of the real time clock.

Syntax DATE$(#1)=string

string The new date in form

yy[mmdd[hhmmss]]
yy = year 80..79 (80 = 1980, 79 = 2079)
mm = month 01..12 (01 = January)
dd = day 01..31
hh = hours 00 23
mm = minutes 00..59
ss = seconds 00..59

DATE$(#1)="110224123456"

sets the date to 24.02.2011 and the time to 12:34:56.

Function Read the real time clock date/time.

Syntax DATE$(#1)

Type String

Value The current date and time in form yymmddhhmmss as described above.

Note that short/long date format conversions and date calculations are possible using the DATE$()
and DATE() conversion functions described in chapters 8.3.12 - 8.3.13.

PRINT DATE$(#1)

110919161354

D$=DATE$(#1)

PRINT MID$(D$,5,2)+"."+MID$(D$,3,2)+".20";

PRINT MID$(D$,1,2)+" at ";

PRINT MID$(D$,7,2)+":"+MID$(D$,9,2);

PRINT " o'clock"

19.09.2011 at 16:13 o'clock

 McBasic 3.3 reference manual

 114

10.2 TIME MEASUMENTS

10.2.1 TIMER

Command Set a timer.

Syntax TIMER[(expression1)]=expression2

expression1 Timer number 0 ... 99
If used without timer number, refers to TIMER local for each task.

expression2 Value to set [s] 0 ...2.1E9

The resolution of a timer is <1µs. The maximum value to set is 2.1E9 seconds (about 68years).

There are 100 global timers available in McBasic. Additionally, there is an unnumbered local timer
for each task. Normally timer value is 0 when read. If a timer needs to be started, the timer must be
set to a positive non-zero value. This causes the timer to start counting downwards according to
time.

Timers can be used, for example, for generating delays and for measuring time intervals.

TIMER(0)=5

Function Read a timer.

Syntax TIMER[(expression)]

Type Real number

expression Timer number 0 ... 99.
If used without timer number, refers to TIMER local for each task.

Value Status of a timer, remaining time [s]. If timer has stopped, value is 0.

The status of a timer can be read with this function.

For example measuring the execution time of the subroutine that begins from line Delay1:

 TIMER(3)=1000

 GOSUB Delay1

 PRINT 1000-TIMER(3)

For example to generate a delay of 3,5 seconds:

Delay1 TIMER(0)=3.5

 DO UNTIL TIMER(0)=0 : LOOP

 RETURN

 McBasic 3.3 reference manual

 115

10.2.2 CLOCK

Function Read system on -time

Syntax CLOCK

Type Real number

Value Time elapsed from power-on [s].

CLOCK function provides means to read system uptime in [s].

10.2.3 DELAY

Command A delay.

Syntax DELAY expression

expression Time to wait [s]. Maximum delay is 2.1E9 seconds (about 68 years).

With DELAY command a delay can be generated using only one command. DELAY is independent
of timers.

Each of the simultaneous tasks started with TASK command have DELAY systems of their own. So
a delay in one task does not affect execution of another TASK. When more than one task is being
used, DELAY automatically passes the control to the next task in queue until the specified delay has
elapsed.

For example to list the program after 20 seconds to give the user time to connect a printer to console
port before listing begins.

DELAY 20 : LIST

 McBasic 3.3 reference manual

 116

11. OTHER COMMANDS

11.1 DATA LINES

Data lines form a program structure for defining data in the program. Data can contain numerical,
string or address data. Also expressions can be used as data.

11.1.1 DATA

Command DATA definition.

Syntax DATA expression,....,expression

expression Data entry. Expressions can be numerical, string or address data.

Data definitions of DATA expressions can be read during the program execution with READ
command.

DATA expressions can be located in any part of program.

DataBlock1

 DATA 10,13,15,"SKS CONTROL","MANUFACTURER"

 DATA 3,2,7,"AUTOMATIC MACHINE LTD","CLIENT"

11.1.2 READ

Command Read data from DATA lines.

Syntax READ variable,..,variable

variable Variables, where the data is read to. Types of variables must correspond
to the types of expressions in DATA lines.

Reading of data begins from the DATA line and variable where the read pointer is. If READ
command has not been used before, reading of data begins from the first DATA line in the program.

The division of the variables in DATA lines and the length of DATA lines are not significant. The data
is read from DATA expressions with READ command in the order in which the data is encountered
in DATA lines.

 DATA 120+3," HELLO",34.567,LEN(A$)

 READ A,A$

 PRINT A;A$,

 READ A,B

 PRINT A,B

123.00 HELLO 34.56 6

 McBasic 3.3 reference manual

 117

11.1.3 RESTORE

Command Set the read pointer in DATA expressions.

Syntax RESTORE [address]

address If address is given, the read pointer is set to the beginning of the line at it.
If address is not given, the read pointer is set to the beginning of the first
DATA line in the program.

This command can be used for pointing the DATA line where the next READ command starts to
read the data.

If no RESTORE command is used in a program, the read pointer is set to the beginning of the first
DATA line when the program starts.

Each task has an own read pointer for DATA lines so reading DATA lines or using RESTORE
command in one task does not affect other tasks.

 DATA 1

Data2 DATA 2,3

 RESTORE

 READ A1,A2

 RESTORE Data2

 READ B2,B3

11.1.4 DATAPTR@

Function Read current data pointer

Syntax DATAPTR@

Value Address of the DATA line where READ will read data next. If no DATA
lines exist or pointer is past them, value is: End of program.

DATAPTR@ function allows reading the current status of the data pointer in the current task.

11.2 USER DEFINED FUNCTIONS

Often used expressions can be defined as user functions using the following commands. This will
conserve memory and make programs more efficient, understandable and easier to modify.

 McBasic 3.3 reference manual

 118

11.2.1 DEF

Command Define a user function.

Syntax DEF FNname[$|@][(var1[,..,varn])]=expression

name Function identification name. Name can be any lenght and
always starts with FN. Letters, numbers or_.can be used in name.

[$|@] If the value of expression is a string or an address, a $ or @ -character
must be added to the name of user function respectively (string or address
function).

var1 ... varn Internal variables of a user function. (0 .. 8 pcs).

expression Definition of the value returned by the user function. Both internal and
global variables as well as all the McBasic operators and functions
can be used (also previously defined user functions).

If function identification name is followed by $ or @, the user function is a string or address function
and returns a string or address value respectively. Otherwise return values of user functions are
numerical.

Maximum number of internal variables in a user function is eight. In addition to these variables all
McBasic global variables can be used. Internal variables (var1 ... varn) of a user function are
declared automatically local. String parameters are 80 characters long and numerical are of the
REAL type.

Notice that the DEF command has to be the first command on a program line.

 DEF FNCasd(X,X$)=ASC(MID$(X$,X))

 A$="ABCDEFG"

 N=3

 PRINT FNCasd(N+1,A$)

68.00

11.2.2 FNname

Function A user defined function.

Syntax FNname[$|@][(expression1[,..,expressionN])]

name function identification name as in DEF FNname.

[$|@] $ or @ character indicates a string or address function returning a string or
address value respectively.

expression1 ... expressionN
Arguments of function. 0 .. 8 pcs numerical and/or string or address
expressions according to the definition in DEF command.

Call a user function. Expression1 .. expressionN are internal variables (arguments) of function that
must be given when the function is called. Also values of external variables (instances valid in the
structure where function is used) that were used in the user function definition affect the value of

 McBasic 3.3 reference manual

 119

user function. If no internal variables have been defined for a user function, it is not necessary to
give any arguments when calling the function.

Note: The user function must be defined before it is called in a program.

 DEF FNS(X,Y)=X+Y

 PRINT FNS(3-1,2*3)

8.00

 DEF FNX=POSX-SIN(POSY)

 PRINT FNX

11.3 COMMENTS

11.3.1 REM

Command Comment line.

Syntax REM text

text Comments, can be any text.

Comment. This command is used for writing informative text between program lines in order to make
the program more readable. Comments do not affect the execution of a program.

 REM this line is a comment

 A=3 : REM this comment also works

11.3.2 '

Command Comment line.

Syntax ' text

text Comments, can be any text.

Comment. An alternative command for REM command. In addition comments separated by ' sign
can also be written after other commands without ":" -separator.

 ' this line is comment

 A=A+1 ' also this comment works

 McBasic 3.3 reference manual

 120

12. MOTION CONTROL

The control software for servo motors runs continuously in background of the McBasic environment.
The axes positions are controlled by PID algorithms with separately adjustable parameters for each
axis. The common refresh rate of the algorithms can be set with the PIDFREQ= command.

Motion commands initialize the execution of the desired motion and program execution can continue
immediately simultaneously with the motion. The system the takes care of the performing of the
motion in background. This way, the motion commands in the program actually only start motion and
do not represent the performing of the whole motion.

The available axes are labelled in two ways. The first 10 axes in the system have letter names
X,Y,Z,W,A,B,C,D,T and U. Axes can also be referred to with numbers starting from 0. The number of
axes X-U are 0 to 9 respectively. For all motion control commands and functions, two alternate
syntaxes for letter named and numerically referenced are available. Axes >9 have no letter names
and can only be referred to by their number.

Motion commands can be issued for a desired number of axes simultaneously. Thus, commands
such as

ACCELXYZ=10 : ACCEL(2)=20 : ACCEL(2,4,6)=30

are valid.

For some motion functions producing a single value only one axis can be used as argument. For
example to read current accelerations for axes 2 and 4 functions ACCEL(2) and ACCEL(4) should
be used. However, some functions, such as MOVEBUFFER(n1,n2) or MOVEBUFFERXYZ and
MOVEREADY(n1,n2) can also refer to the status of a combination of axes.

In combined motion commands (XYZ..) or (0:targ1,1:targ2,2:targ3,...) the axes move at speeds
resulting in simultaneous completion of the translation. With cartesian mechanisms this corresponds
to a straight line from starting point to end point (linear interpolation). With separate motion
commands X,Y,Z,.. or (0),(1),(2),.. axes can be controlled independently.

There are separate commands for control of continuous movement. Parameter settings of PID
algorithms have immediate effect on control. Speed and acceleration/deceleration settings affect the
next translation commands. However acceleration/deceleration has immediate effect for speed
controlled motion (CREEP).

Commands with no axis reference can be used to set some parameters for axes 0..9 (axes with
letter names). For example SPEED=100 affects axes 0...9, but SPEEDXZ=50 affects only X and Z
axes (0 and 2). SPEED(13)=100 affects only axis number 13. Accelerations and speeds of
combined axes motion commands are defined so that limitations (for speed and acceleration) for all
axes in the command are taken into account. This way for example the acceleration of a translation
is defined by the axis with the lowest acceleration or speed.

Also, a combination of axes can be configured to use specified combined (vector) speed and
acceleration. To do this the speeds and accelerations of the axes involved must be set using
combined commands such as:

SPEEDXYZ=50 : ACCELXYZ=100

 McBasic 3.3 reference manual

 121

This causes all motion using the X, Y or Z axes (for example XY, XZ, YZ, XYZ) to use the given
track speed and acceleration. An axis can be removed from a track speed group by setting its speed
or acceleration separately (for example SPEEDY=SPEEDY). In this case only X and Z axes use the
track speed setting given before.

Motion control commands such as GAIN=, INTG=, DERV= , SCOMP=, ACOMP=, DCOMP=,
JCOMP= and FILTERSIZE= set parameters for position control. Position controllers are used to
keep the actual position (measured from a position encoder) reasonably close to the set value
(position generated with motion commands). Accuracy, stability, stiffness, etc. of control can be
tuned by setting control parameters according to need. Parameters can be set for each axis
separately and they can also be set during motion.

Operation of position controllers is influenced by the properties of actuators and servo amplifiers as
well as by the properties and gear ratios of transmissions, mechanisms and the location and
resolution of speed and position sensors.

Therefore, the parameter settings of controllers may be quite different in different applications.
McBasic has default values for control parameters and for other parameters of motion control. When
started, McBasic uses these values until set in the program otherwise.

It is recommended that motion control parameters are set at the beginning of the program even if
some of the default values could be used in the application. This makes the program easier to read
and modify.

12.1 ENCODER OPERATION

12.1.1 RES

Command Set resolution for position scale of axes.

Syntax RES[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose resolution is set. If not
defined resolution is set to all axes.

expression Value for resolution [pulse edges/measuring unit].

Function Read resolution for position scale of axis.

Syntax RES{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Resolution of position scale of axis [pulse edges/measuring unit].

Set resolution for axes. Expression defines the number of pulse edges (counts) for a distance or
angle unit (for example [edges/mm]).

 McBasic 3.3 reference manual

 122

1 encoder pulse cycle produces 4 pulse edges from two channels. This means that if a motor axis
has an encoder that gives 500 pulses/revolution and one revolution of the motor moves the
mechanism 5 mm, the resolution should be set to 4*500/5, or 400.

 RES(1,2,3)=4*500/5

or

 RES(1)=400

 PRINT "Resolution is about";1/RES(1);"mm"

RES command affects the position scale and, among other things, interpretation of speed and
acceleration.

Because RES affects many settings, it is advisable to set it at the beginning of the program, before
setting any other parameters.

Setting resolutions of several axes to same value can be done using the combined command

 RESXY=400

A combined RES command sets resolutions of different axes as they were set with separate
commands. The resolutions of all axes 0 thru 9 can be set to the same value using a command such
as:

 RES=400

12.1.2 ENCSIZE

Command Set encoder (counter) bitcount.

Syntax ENCSIZE[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose encoder sizes are set.

expression New encoder size, bits

For incremental encoder -32...32 default 32 bits (max. counter range)
For absolute encoder -24 ... 24, default -24 (centered 24 bit).

Sign controls coordinate system:
positive positive coordinate system
negative centered coordinate system.

 McBasic 3.3 reference manual

 123

Function Read encoder (counter) bitcount.

Syntax ENCSIZE{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current encoder setting.

ENCSIZE setting allows control of counter operation for incremental encoders and data decoding for
absolute encoders.

When using incremental encoders, setting ENCSIZE to a value less than 32 causes the position
counters to wrap around after reaching the specified counter size. Thus for example setting
ENCSIZEX=12 causes the position counter to return to 0 when reaching 4096 counts. Depending on
RESX this may mean any POSX. This feature can be used in connection with binary line count
encoders to wrap the position after for example 1 revolution to keep POSX between 0...1 in
mechanisms such as rotating knives etc. Wrapping can also be achieved after other (non-binary)
count numbers using a rational FOLLOW ratio and a virtual axis connected to the actual axis.

When using absolute encoders, ENCSIZE can be used to limit the bit count used to equal or less
than available from the encoder used.

With either encoder type, the sign of the ENCSIZE setting allows choosing a coordinate system from
0 to 2

ENCSIZE
 counts (positive system) or from -2

ENCSIZE-1
 to 2

ENCSIZE-1
 counts (centered system).

However, in ENCSIZE values 0 and 32 always set a 32 bit centered coordinate system as does
ENCSIZE=-32.

12.1.3 OFFSET

Command Set offset value or move current position

Syntax OFFSET[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose offset are set. If not defined
limits are set for axes 0...9 in the system.

expression Offset value for specified axes, dimension as defined by RES..= command,
for example [mm].

 McBasic 3.3 reference manual

 124

Function Read offset value of axis.

Syntax OFFSET{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current offset value for specified axes, dimension as defined by RES..=
command, for example [mm].

The offset value of an axis represents the difference between the actual position counter (or value
read from a position transducer) and the current position value (POSaxis) of the axis. When McBasic
starts, all OFFSET values are 0. Since the dimension of offset is dependent on the resolution, it is
necessary to set RES before setting offsets in the program.

In case an incremental encoder is being used, the position counters are also reset to 0 when power
is applied to the system, resulting in a zero current position value (POSn). Typically, the HOME..
command is then used in the program to find the correct zero position.

In case an absolute encoder is being used, the initial position at power up is determined by the
encoder. The OFFSET..= command can then be used to set the coordinate system as necessary.
Because the applicable offset value will remain the same unless the absolute encoder is replaced or
moved relative to the mechanism, it is not necessary to find the zero position every time the system
is started. However, it is possible to use the HOME.. command to determine the correct OFFSET
value as a commissioning or service procedure.

When using commands that set the current position such as POS..= or HOME... the value of
OFFSET is changed respectively. It is also possible to change the offset using a command like:

 OFFSETX=OFFSETX+100

which adds 100 to the current position of X-axis (POSX). Setting the offset rather than POSX directly

 POSX=POSX+100

has the advantage that in case X-axis is moving during the operation, no inaccuracy is introduced
because of time difference between reading and writing the values.

Also, OFFSET can be used to "wrap" the position of an axis moving infinitely in one direction, such
as a roller in a converting machine, in order to keep the position between 0 and 1, for example. A
command like:

 IF POSX>1 THEN OFFSETX=OFFSETX-1

will operate correctly (and wrap around) even when the value of OFFSET exceeds its 32bit range.

 McBasic 3.3 reference manual

 125

12.1.4 ENCERR

Function Read encoder error counter.

Syntax ENCERR{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Integer 0...255

Value Number of errors in encoder decoding since last read.

ENCERR provides a tool for monitoring errors and interference in encoder operation when
connected to modules such as AXi, AXa, WAX2 and WAX2A .

In conjunction incremental encoders ENCERR counts decoding errors where edges have been
detected simultaneously in both channels (A and B). This situation indicates that accumulating errors
probably affect encoder operation and therefore the system should be tested for ENCERR to be
always zero during normal operation (first time read may report errors occurred during power-up).

In conjunction with absolute encoders ENCERR reports errors occurred for example in SSI
transmission. 3 successive errors automatically result in a position loop error (MOVEREADY..=-64)
and drive disable.

12.2 POSITION CONTROL SETTINGS

12.2.1 DRIVETYPE

Command Configure operation of motion control.

Syntax DRIVETYPE[{axes...|(n,...,m)}]=type

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose type is set.

type Type setting:
1 ±10V reference (WAX[2][A], or AXi/AXa module)
 with enable at ENA2 only
2 0...10V reference with direction output at ENA1
3 as 1 but enable both at ENA1 and ENA2

Additional setting can be added to type as bits set in DRIVEYPE. Thus
each of the following addition (powers of 2) applies the described setting to
axis:

add
+8 disable automatic PWR on for MOVx commands
+16 disable limit switches, MAXERR and EMRG intervention
+32 disable encoder counter
+64 disable motion commands (MOVE,MOVER,MOVC,CREEP etc.)
+128 disable position controller
+256 do not stop logging at PWR<1
+1024 invert REF output

 McBasic 3.3 reference manual

 126

Function Read operation configuration of motion control.

Syntax DRIVETYPE{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Integer

Value Type of axis as explained above.

The desired type is calculated by taking the sum of the basic type and additional type data.

For example axes to be controlled with normal ±10V reference output

DRIVETYPEXY=1

For example axis number 3 to be used as encoder input and analog output

DRIVETYPE(3)=1+16+64+128

McBasic has preset axis identifications, DRIVETYPE and LIMITTYPE default values (values which
are valid before they are set with DRIVETYPE= and LIMITTYPE= commands).

These settings are system specific and their values depend on the system model and McBasic
language version.

 McBasic 3.3 reference manual

 127

12.2.2 LIMITTYPE

Command Configure axis limit switch operation.

Syntax LIMITTYPE[{axes...|(n,...,m)}]=type

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose type of limit switches is set.

type Type setting. Integer (add values marked with + to 0,1,2 or 3 as
applicable).

type function
0 or 1 no limit switches
2 NLIM and PLIM, normal closed
3 LIM (n.c.) and MASK (open in negative end)
+4 invert limit switch signals
+8 use index pulse (CLKX, edge-activated)
+16 STAT normal open
+32 invert STAT

where the signals are as follows:

signal function connect to

NLIM limit switch NLIM in negative end NLIM
PLIM limit switch PLIM in positive end PLIM
LIM common limit switch (activated in both ends) PLIM
MASK limit switch mask, indicates the section of motion area
 where the servo is currently located NLIM
CLKX index pulse, the exact 0-position CLKX
STAT external trip switch STAT

Function Read axis limit switch configuration.

Syntax LIMITTYPE{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Integer

Value Limit switch type of inspected axis as explained above.

McBasic can be configured with the LIMITTYPE command to use desired type of limit switch signals.
The setting affects also operation of HOME command. When a motion being performed activates a
limit switch while its reference is moving in the direction of the switch, servo power (enable) is cut off
for the axis. However, it is possible to use motion commands to move away from the limit switch. In
case a higher level of security is needed, the EMRG signal can be connected to outer limits and
emergency switch arrangement to disable the axis completely thus requiring manual or mechanical
override to get the axis back to operating area. In cases with high power or dangerous mechanisms
both precautions are often used for maximum safety. It is also advisable to use power contactors to
cut off servo system or motor power when EMRG is activated.

 McBasic 3.3 reference manual

 128

12.2.3 PIDFREQ

Command Set refresh rate of position control loops.

Syntax PIDFREQ=expression

expression New refresh rate (50...2000). The feedback loop and position control
algorithms will be executed expression times per second.

Function Read refresh rate of position control loops.

Syntax PIDFREQ

Type Integer 50 ... 2000

Value Current refresh rate [cycles/second]

PIDFREQ setting provides means for setting the refresh rate of the position control loops. By default
PIDFREQ is 500 in standard McBasic versions for MPU3. The setting is mutual for all axes in the
system. Because the setting affects all time based motion parameters, it is recommended that
PIDFREQ be set in the beginning of the program before any motion parameter settings.

PIDFREQ also sets the refresh rate of real time I/O systems, such as McWay and Ethercat.

12.2.4 RAMPTIME

RAMPTIME can be used to control active braking of a servo axis.

Command Set stop ramp time for axis.

Syntax RAMPTIME[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose ramp time is set.

expression Time [s] for REF to go from 100% to zero (0...60). Default 0.

Function Read stop ramp time of axis.

Syntax RAMPTIME{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Value Current stop ramp time [s] of axis.

By default, the REF output (usually speed reference), goes to 0 when the axis is disabled by setting
PWR=0 or by emergency/limit switch or an error condition. Using the RAMPTIME setting, the
behaviour of the REF output can be adjusted to allow a suitable limited deceleration if the drive is
kept enabled during the stop ramp. If ENA outputs are used they will go off in the beginning of the
ramp to reflect that stop sequence has started and can be used to activate a delayed
disable/emergency power off etc.

 McBasic 3.3 reference manual

 129

During the stop ramp MOVEREADY will reflect the stopping status with a negative value according
to the stopping reason (see chapter 12.6) deducted with a further -512.

When using EtherCat connected drives, the drive will be disabled by the control word after the ramp
has finished.

12.2.5 BRAKETIME

BRAKETIME can used to insert a futher delay after stop ramp before disabling an EtherCat drive.
This may be useful to allow for a brake system to activate before torque is removed from the motor.

Command Set brake delay time for axis.

Syntax BRAKETIME[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose brake delay time is set.

expression Time [s] from REF reaching zero to disable (0...1). Default 0.

Function Read brake delay time of axis.

Syntax BRAKETIME{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Value Current brake delay time [s] of axis.

12.2.6 GAIN

Command Set proportional gain of position control.

Syntax GAIN[{axes...|(n,...,m)}]=expression

{axes...|(n,..,m)} List of axes or (n,...,m) - axes numbers), whose GAIN is set.
If not defined, GAIN is set for axes XYZWABCDTU or 0..9 in the system.

expression Value for gain. Real number. 0 prevents operation of the feedback system.

Function Read proportional gain of position control.

Syntax GAIN{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Gain value for position control of axis.

Proportional gain of the PID-control. GAIN defines the amount of output from the position controller
in proportion to the position error of the axis.

 McBasic 3.3 reference manual

 130

In other words, GAIN represents the P of PID-control, that is the amplification factor. If GAIN is set to
zero, operation of the controller is prevented and output (REF) is set to zero. However, even with
GAIN set to zero, the feedforward part (SCOMP) of the output of the controller remains operable
when using motion commands.

Too low GAIN causes an inaccurate control and too high GAIN causes system oscillation.

GAINXY=40

GAIN(2,12,14)=0.3

DIGITS=3

PRINT GAINX,GAINY,GAINZ

PRINT GAIN(12),GAIN(14)

40 40 40

0.300 0.300

McBasic 3.3 uses a floating point counter for position error in position control. Therefore the
maximum position error is equal to the maximum operating area of the position measurement
system. However, the proportional area, when GAIN is set to 1, equals to ±524288 encoder counts.

When using very low GAIN values, SCOMP parameter must usually be adjusted to correspond to
drive full speed at 10V ref output to avoid excessive position lag. Using SCOMP values larger than
full speed allow for some lag if necessary for tuning positioning settling time (see also FILTERSIZE).

12.2.7 INTG

Command Set integrating factor of position control.

Syntax INTG[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose INTG is set. If not defined,
INTG is set for all axes.

expression Value for INTG. Real number. 0 prevents integration.

Function Read integrating factor of position control.

Syntax INTG{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number

Value Intg value of position control of axis.

INTG defines the part of reference output the position controller gives in relation to position error and
time. The higher the INTG value and the position error are, the faster the reference output increases
during time.

 McBasic 3.3 reference manual

 131

Constant position error, which can not be eliminated by proportional control, can be eliminated using
INTG. Because the integrator increases the order of the control system, it also increases the
tendency to oscillation. Therefore, the use of INTG often requires lower GAIN value for stability.

A too low INTG causes slow error correction and a too high INTG causes oscillation of the system.

In control systems already having one or more integrators, as usually when using a tacho generator
feedback speed control circuit, INTG is usually set to zero.

INTG(1,2)=4

INTGY=3.5

INTGZ=0

PRINT INTG(1),INTGY,INTGZ

4 3.5 0

In control loops accurately speed compensated with SCOMP parameter and with fast acting speed
loop, INTG can in some cases be used to reach better path accuracy without losing stability.

This kind of a control is usually possible in accurate and stiff mechanisms.

INTG value 0 removes the integrating operation. INTG represents the I in PID-control, that is, the
integrating factor.

12.2.8 DERV

Command Set derivation factor of position control.

Syntax DERV[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose DERV is set. If not defined,
DERV is set for all axes.

expression Value for DERV. Real number. 0 prevents operation of derivation.

Function Read derivation factor of position control.

Syntax DERV{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number

Value Derv value of position control of axis.

DERV defines the part of reference caused by quick change in position error. The higher DERV is
set the stronger the reaction to change is. By compensating for delays in actuators and mechanisms
and reducing the control output when the error is diminishing, DERV helps to stabilize the operation
of control circuits.

 McBasic 3.3 reference manual

 132

DERV is mostly needed in conjunction with control setups with direct torque control or low gain
velocity loop. Most servo systems with a high gain velocity loop in the servo drive do not need
DERV.

Usually a high inertia mass and/or slow reacting drive require higher DERV value. On the other hand
a too high DERV value may cause unstability or sluggish settling. In systems with low resolution
position measurement, using DERV can be limited by quantization noise.

DERV value 0 removes derivative operation. DERV represents the D of PID-control, that is the
derivation factor.

GAIN=10 : INTG=0 'affects all axes

DERVXY=7 : DERV(3)=0.6

PRINT GAINX,INTGX,DERVX

PRINT GAIN(3), INTG(3), DERV(3)

10 0 7

10 0 0.6

12.2.9 SCOMP

Command Set speed compensation of position control.

Syntax SCOMP[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose SCOMP is set. If not defined,
SCOMP is set for axes 0....9 (XYZWABCDTU) in the system.

expression Value for speed compensation. 0 prevents operation of compensation.

Function Read speed compensation of position control.

Syntax SCOMP{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value SCOMP value of position control of axis.

Speed feedforward or speed compensation for position control. Value of expression is greater or
equal than speed of axis when control output is set to maximum (=full speed).

SCOMP parameter can be used to add to the control (reference) output a part depending on the
theoretical instantaneous speed of the position set value.

The factor allows for accurate path control of motion even without integration in the position loop.
SCOMP parameter is often used, when the position controller is used in connection with a tacho
generator feedback speed control circuit. In this case the best possible control result is often
reached by setting INTG=0 and using SCOMP parameter as needed.

 McBasic 3.3 reference manual

 133

SCOMP setting is called critical, when the controlled axis follows the generated motion without
noticeable position error at all speeds.

Setting SCOMP according to the speed of the axis when the reference output reaches its maximum
value (for example 10V) results in critical SCOMP.

For example if X axis runs 400 mm/s when the servo amplifier is controlled with a 10V reference
voltage and RESX is set to [pulse edges/mm], the critical compensation is set with

SCOMPX=400

Setting SCOMP to a greater value results in undercritical compensation. Undercritical compensation
can be used for example to prevent overshoot at the end of a motion. A too low SCOMP setting
results in negative position lag, the axis is ahead of the position set value, which is usually not
applicable.

SCOMP value 0 removes the operation of speed compensation.

When calculating actual speed compensation out of the SCOMP setting, McBasic uses the current
RES values.

12.2.10 ACOMP

Command Set acceleration compensation of position control.

Syntax ACOMP[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose ACOMP is set. If not defined,
ACOMP is set for axes 0...9 (XYZWABCDTU) in the system.

expression Value for acceleration compensation. 0 prevents operation of
compensation.

Function Read acceleration compensation of position control.

Syntax ACOMP{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value ACOMP value of position control of axis.

Acceleration feedforward or acceleration compensation for position control. Value of expression is
greater or equal than acceleration of the axis when 100% (10V) is added to the control output.

ACOMP parameter can be used to add to the control (reference) output a part depending on the
theoretical instantaneous acceleration of the position set value.

The factor allows for accurate path control of motion during acceleration even without integration in
the speed loop. ACOMP parameter is often used, when the position controller is used in connection
with a proportional speed control circuit without integration and with limited gain.

 McBasic 3.3 reference manual

 134

ACOMP setting is called critical, when the controlled axis follows the generated motion with similar
position error during acceleration and constant speed. In connection with a critical SCOMP value this
error is near zero. For example if X axis requires an additional 2V (20% of full 10V scale) of
reference in order to accelerate at 400 mm/s2 and RESX is set to [pulse edges/mm], the critical
compensation is set with

ACOMPX=400/0.2

or

ACOMPX=2000

Thus 2000mm/s2 is the theoretical acceleration produced with a 10V (100%) reference at zero
speed (providing such current would be applicable to produce the acceleration).

Setting ACOMP to a greater value results in undercritical compensation. Undercritical compensation
can be used to compensate only partly for the lag caused by acceleration for optimum dynamic
performance. A too low ACOMP setting results in negative position lag during acceleration, the axis
is ahead of the position set value, which is usually not applicable.

Setting ACOMP to zero removes the operation of acceleration compensation.

When calculating actual acceleration compensation out of the ACOMP setting, McBasic uses the
current RES values.

12.2.11 DCOMP

Command Set deceleration compensation of position control.

Syntax DCOMP[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose DCOMP is set. If not defined,
DCOMP is set for axes 0...9 (XYZWABCDTU) in the system.

expression Value for deceleration compensation. 0 prevents operation of
compensation.

Function Read acceleration compensation of position control.

Syntax DCOMP{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value DCOMP value of position control of axis.

Deceleration feedforward or deceleration compensation for position control. Value of expression is
greater or equal than deceleration of the axis when 100% (10V) is deducted from the control output.

The value of DCOMP is set to equal to ACOMP when ACOMP is set for the axis. DCOMP setting
can then be altered after the ACOMP has been set. The dimension of DCOMP is similar to that of
ACOMP, so DCOMP values differing from ACOMP can be used to adjust for differences caused by

 McBasic 3.3 reference manual

 135

friction and efficiency behaviour during acceleration and deceleration thus allowing optimisation of
the dynamic behaviour of the system during different phases of motion. Typically DCOMP must be
set to a somewhat greater value than ACOMP to allow less compensation during deceleration.

12.2.12 JCOMP

Command Set jerk compensation of position control.

Syntax JCOMP[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose JCOMP is set. If not defined,
JCOMP is set for axes 0...9 (XYZWABCDTU) in the system.

expression Value for jerk compensation. 0 prevents operation of compensation.

Function Read jerk compensation of position control.

Syntax JCOMP{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value JCOMP value of position control of axis.

Jerk feedforward or jerk compensation for position control. Value of expression represents the time
in [s] it takes for the acceleration (torque/force) to settle the set value. Usual values with industrial
brushless servo are in the range of 0.001 to 0.02 (1-20ms). Generally, values less than 1/PIDFREQ
have no effect on the control.

JCOMP parameter can be used to add to the control (reference) output a part depending on the
latency of the change of current of the servo drive. It allows the reference signal to compensate for
the latency.

JCOMP setting is called critical, when the controlled axis follows the generated motion with minimum
position error behaviour during positive and negative changes in acceleration.

JCOMP value 0 removes the operation of jerk compensation.

 McBasic 3.3 reference manual

 136

12.2.13 FILTERSIZE

Command Set filter type and length for position set value to limit jerk or noise.

Syntax FILTERSIZE[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose FILTERSIZE is set. If not
defined, FILTERSIZE is set for axes 0...9 (XYZWABCDTU) in the system.

expression Value defining type and length of position set value filter (-255..255).

Positive filter values represent averaging filters with a length of
(expression)*(position loop cycle time).

Negative values represent filters with zero position lag at constant speed
with a response length of (-expression)*(position loop cycle time)

0 prevents filter operation.

Function Read position set value filter type and length.

Syntax FILTERSIZE{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Integer.

Value Current FILTERSIZE setting for axis.

Position set value filtering is typically used for limiting the rate of change of acceleration (jerk) in
various types of motion. This is often referred to as using S-ramps in motion profiles. With
FILTERSIZE it is possible to define the time it takes for the acceleration to change during any type of
motion. The period of time used to reach the new acceleration after a change in the acceleration is
defined as a number of position loop cycles. Thus, for example a FILTERSIZE value of 10
corresponds to 20ms period for a system with PIDFREQ=500 (1s / 500 = 2ms). Limiting jerk
effectively allows limiting the rate of change of torque and current in the drive system. As in practical
drive systems rate of change of current is limited by the bandwidth of the current loop and the
maximum available voltage and the inductance of the motor, using suitable FILTERSIZE allows
generation of position profiles that the drive is able to follow. Also, it is often even more important to
limit the frequency content of motion to be performed by a given machanism. By using suitable
FILTERSIZE values unwanted oscillation and strain in mechanisms can be avoided.

Using positive FILTERSIZE values causes an axis to have a position lag compared to the original
position reference (before fitering). At constant speed this lag is equal to half of the filter period
multiplied by current speed. For example a 20ms filter at 1000mm/s would cause a 10mm lag.

Using a filter also causes the total time for a translation to be one filter period longer than the original
translation. Usually this is well compensated by the shorter actual settling time when using a suitable
filter.

 McBasic 3.3 reference manual

 137

Negative FILTERSIZE values use a different digital FIR (finite response) filter to allow filtering of
measured position such as a reference encoder giving position or speed information for other axes.

A negative FILTERSIZE value causes overshoot when changes in acceleration and speed occur, but
has no position lag during motion at constant speed. While removing unwanted noise from
measured signals FILTERSIZE can also generate a higher resolution reference position from a low
resolution position encoder by adding a 16 bit fractional part to it and thus dividing the actual
increments in 65535 parts for extra resolution in generating new filtered position values every
position control cycle.

The following picture shows the effect of FILTERSIZE for a typical translation (MOVE).

 McBasic 3.3 reference manual

 138

Fig. 11.2.10, The effect of FILTERSIZE

Original

speed
reference

Acceleration

unfiltered

Speed

reference
with
FILTERSIZE=10

Speed

reference
with
FILTERSIZE=-10

Acceleration

with
FILTERSIZE=10

Acceleration

with
FILTERSIZE=-10

25msPIDFREQ=400

=> Position loop
cycle time= 1s /400
= 2,5ms

 McBasic 3.3 reference manual

 139

12.2.14 SPEED

Command Set motion speed.

Syntax SPEED[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose vector speed is set. If there is
only one axis, its speed is set. If not defined, SPEED is set for all axes.

expression Setting for speed.

Function Read motion speed.

Syntax SPEED{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Speed setting for MOVE and MOVC commands for specified axis.

Set the motion speed to value expression for the axes axes.. ([mm/s], if RES is set to [pulse
edges/mm]). Setting influences all future motion commands. SPEED command sets the speed the
translations started with MOVE and MOVC commands use between acceleration and deceleration
phases.

To reach the speed set with SPEED command the length of the translation must be long enough and
value of ACCEL high enough to allow for a constant speed phase between acceleration and
deceleration.

Speed can be set for a single axis, for example:

SPEEDX=750

SPEED(5)=523

The specified axis follows this setting when moved alone. If several axes, with speeds set with
different SPEED commands, are moved by common MOVE or MOVC command, the translation is
executed using linear interpolation and limiting the motion speeds so, that none of the axes exceed
their set speeds or accelerations.

Speed can also be set for a combination of axes, for example:

SPEEDXYZ=750

SPEED(2,5,6)=230

This setting affects the axes involved as if the speeds were set separately when any of the axes is
moved alone. If the axes are moved by common motion commands, the translation follows the set
track (vector) speed. The vector speed is calculated by taking the square root of the sum of squares
of every speed in the group, for example

��
 = �
�� +
�� +

�

 McBasic 3.3 reference manual

 140

When setting all axes available in the system the axis names may be left away. For example in a two
axis system the command SPEED=100 is equivalent to SPEEDXY=100.

The maximum speed value for calculation of a motion is ±32767 counts/control cycle and resolution
is 2.3E-10 counts/control cycle. This means that for example in a normal MC300 or MC400 system
with a control cycle of 2,5ms with a resolution such as 100 edges/mm the maximum speed is about
131 m/s and minimum speed is about 0,00000007 mm/s. Same limitations are valid also for CREEP
command.

12.2.15 ACCEL

Command Set acceleration of motion.

Syntax ACCEL[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose vector acceleration is set. If
only one axis, its independent acceleration is set. If not defined
acceleration is set to all axes in the system.

expression Value for acceleration.

Function Read acceleration of motion.

Syntax ACCEL{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Acceleration used in MOVE, MOVC and CREEP commands with axis.

Sets motion acceleration and deceleration to value expression to axes.. ([mm/ss], if RES has been
set to [pulse edges/mm]).

Setting ACCEL affects motion commands executed after the setting.

SPEED=50 : ACCEL=250

SPEED(2)=60 : SPEEDX=45

PRINT SPEED(2),ACCEL(2),ACCELX,SPEEDX

60 250 250 45

ACCEL command affects the axes as SPEED command and therefore it must be set to same
combinations of axes as SPEED to achieve the desired vector speed and acceleration.

ACCEL setting is limited by the maximum change of speed being ±32767 counts/(control cycle)2
with a resolution of 1/16777216 counts/(control cycle)¨. This means that for example in a system with
control cycle of 2,5ms and resolution such as 100 edges/mm the maximum acceleration is about
52000m/s2 and minimum acceleration is about 3E-7mm/s2.

 McBasic 3.3 reference manual

 141

12.2.16 OVERRIDE

Command Scale speed of motion generated with MOV.. commands.

Syntax OVERRIDE[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose speed is adjusted.

expression Scale factor for speed, 0..10 (default = 1).

Function Read speed scale setting of axis.

Syntax OVERRIDE{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current OVERRIDE factor of axis. During changes in OVERRIDE, where
OVERRIDERATE limits the rate of change of the scale factor, gives the
actual momentary value.

OVERRIDE is a method for scaling programmed paths and motion generated with MOVE, MOVC,
MOVER, MOVCR, CIRCLEMOVER and CIRCLEMOVCR commands. It also scales the
accererations of the motion to preserve the programmed path and shape of the motion. OVERRIDE
can be adjusted from complete standstill to max. 10x speed. Value 1 represents the original
programmed speed.

12.2.17 OVERRIDERATE

Command Set rate of change for OVERRIDE.

Syntax OVERRIDERATE[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose OVERRIDERATE are set.

expression Value for rate of change [1/s].

Function Read rate of change for OVERRIDE.

Syntax OVERRIDERATE{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current OVERRIDERATE.

With OVERRIDERATE the rate change of OVERRIDE can be limited to allow suitable time for the
change so as not to exceed the force available for the extra acceleration for the change. The value
represents the rate of change in [1/s], so a value for 1, for example allows the speed factor to

 McBasic 3.3 reference manual

 142

change from its initial value to a value of 1 lower of higher in 1s. With setting OVERRIDERATE to
0.1 the same change would take 10s.

12.2.18 MAXERR

Command Set limit for position controller position error intervention.

Syntax MAXERR[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose limits are set. If not defined
limits are set for all axes in the system.

expression Value for limit, for example [mm].

Function Read limit for position controller position error intervention.

Syntax MAXERR{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current maximum error limit.

Set limit for position controller position error intervention according to the value expression for axes
axes.. ([mm], if RES is set as [pulse edges/mm]).

If motor (=encoder) position differs from the position set value more than MAXERR, motor control is
automatically disabled. Setting MAXERR=0 prevents the intervention of MAXERR.

To ensure quick and reliable protection function MAXERR should be set to a value somewhat higher
than the practical position error during motion.

12.3 POSITION CONTROL FUNCTIONS

12.3.1 POS

Command Set position counter.

Syntax POS[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose positions are set. If not
defined position is set for axes 0...9 (X,Y,Z,W,A,B,C,D,T and U).

expression New position in units defined by RES..=, for example [mm].

 McBasic 3.3 reference manual

 143

Function Read position counter.

Syntax POS{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current actual position of axis in units as set by RES..= command.

With POS command the position value of an axis can be set to desired value. Position of axis is set
to expression independent of position of axis at time of setting. In other words, POS command
moves the coordinates as specified.

POSZ=10 : POSX(2)=0

When desired, coordinates can be moved relative to the current position of axis by considering the
actual position, for example

POSX=POSX+100

moves the coordinates 100mm in negative direction; in other words the position value is increased
by 100mm.

The POS function can be used to read the current actual position. POS is also convenient for
reading encoder inputs not configured for position control.

IF POS(1)>200 THEN STOPMOVE(1)

The size of McBasic 3.3 position counters is 32 bits. This means, that for example with a resolution
of 100 [edges/mm] position can have values between ±214748364800 mm or ±214km. If position
exceeds either the maximum or minimum value of counter, it "wraps" over to the other end of the
range. This allows moving over the limits of position counters when for example using relative
motion commands or with FOLLOW or CREEP etc..

12.3.2 FPOS

Function Read filtered position set value.

Syntax FPOS{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current position set value of axis in units as set by RES..= command.

FPOS allows reading the position set value as seen by the position control algorithm. The effect of
FILTERSIZE..= ,if filtering is being used, is also seen in FPOS

 McBasic 3.3 reference manual

 144

12.3.3 RPOS

Function Read unfiltered position set value.

Syntax RPOS{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current position set value of axis before filtering in units as set by RES..=
command.

RPOS allows reading the position set value unfiltered. As the use of filtering causes a lag in the
response of FPOS, RPOS can be used for observing the operation of the filter. It may also be
preferred in algorithms programmed in the application requiring the unfiltered position as an input.

12.3.4 FSPEED

Function Filtered current speed.

Syntax FSPEED{axis|(n)}

Type Real number.

{axis|(n)} Identification letter or number of axis.

Values The instantaneous speed of the position set value of axis after filtering if
FILTERSIZEaxis set >0.

The true theoretical speed of an individual axis axis can be inspected with this function. If filtering
with the FILTERSIZE..= command is being used to limit the acceleration rise times (S-ramp), the
effect is also seen in FSPEED. See also RSPEED.

SPEEDX=500 : SPEED(1)=250

ACCELX=500 : ACCEL(1)=250

MOVEX 3000 : MOVE(1:1500)

DELAY .1

PRINT FSPEEDX, FSPEED(1)

DELAY 1

PRINT FSPEEDX, FSPEED(1)

50.00 25.00

500.00 250.00

 McBasic 3.3 reference manual

 145

12.3.5 RSPEED

Function Unfitered current speed.

Syntax RSPEED{axis|(n)}

Type Real number.

{axis|(n)} Identification letter or number of axis.

Values The instantaneous speed of the position set value of axis before filtering if
FILTERSIZEaxis set >0.

In case filtering with FILTERSIZE is being used for the axis, RSPEED can be used to observe the
position reference speed before the filter. This may be necessary for monitoring purposes or for
certain algorithms where extra delay caused by filtering may affect the operation of feedback loops
performed by the application program.

12.3.6 POSERR

Function Read value of position error.

Syntax POSERR{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current position error, for example [mm].

The difference between the set value of position and the actual value of position can be read with
the POSERR function. When motion is stopped, POSERR is equal to the positioning error. During
motion POSERR represents the deviation from desired track along the axis. For example

IF ABS(POSERRX)>2 THEN STOPMOVE

stops motion if error of X-axis is more than 2 mm.

12.4 HOME

Command Automatic synchronization (zero point search) of coordinate system.

Syntax HOME{axes...|(n...)}

{axes...|(n...)} List of axes (or (n...) - axes numbers), participating in search.

Motion axes axes.. begin the zero point search sequence. MOVEREADYaxes..=0 until the zero
points are found and the motion has stopped. Speed when searching is one eight (1/8) of the speed
set with SPEED command.

The operation of HOME command is affected by the selected limit switch configuration (LIMITTYPE)
as follows:

No limit switches or index (LIMITTYPE 1)

 McBasic 3.3 reference manual

 146

Position of axes axes is set to zero. Equal to POSaxes=0.

Limit switches (LIMITTYPE=2 or 6)

When only limit switches (NLIM and PLIM) are used the zero point search operates so, that the
HOME command causes motion into negative direction until the negative limit switch. When the limit
switch is influenced, the motion changes its direction and continues until the limit switch is no longer
influenced. The zero point is set to this position. The axis continues to move to the positive direction
for the deceleration distance.

Limit switches and index (LIMITTYPE=10 or 14)

If the index channel is also used, the axis continues after leaving the limit switch until a pulse is
received from index channel (CLKX). The origin of coordinates is set according to index pulse and
motion stops at the distance of deceleration in positive direction.

Only index (LIMITTYPE=9)

When using only index channel for search of origin the motion moves in the positive direction until a
pulse is received from the index channel. The origin of coordinates is set according to index pulse
and motion stops at the distance of deceleration in positive direction.

Limit switch and mask (LIMITTYPE=3 or 7)

Operation using index mask. In this case limit switch signals are connected so, that the limit switches
in both ends of motion influence the PLIM -input. A signal, which changes its state somewhere in the
motion area close to the position where origin is searched, is connected to NLIM-output.

HOME function will then move the axis to the position where mask signal changes its state and set
origin to a location where mask signal changes its state when running to positive direction. The axis
stops after deceleration distance from this point. Motion speed while searching the edge of the mask
is as set with SPEED command, unlike in other motion performed by HOME command.

Limit switch, mask and index (LIMITTYPE=11 or 15)

If also the index channel used, the axis continues to move after it has passed the edge of mask until
a pulse is received from index channel (CLKX). The origin of coordinates is set at the index pulse
and the axis stops after deceleration to positive direction. Speed when searching the index is one
eight (1/8) of the speed set with SPEED command.

' RUNNING HOME

HOMEXYZ

IF NOT MOVEREADYXYZ THEN 190

RETURN

 McBasic 3.3 reference manual

 147

12.5 STOPMOVE

Command Stop motion.

Syntax STOPMOVE[{axes...|(n...)}]

{axes...|(n...)} List of axes (or (n...) - axes numbers) to stop. If not defined, axes 0..9 are
stopped.

STOPMOVE stops motion generated by MOVE, MOVER, MOVC, MOVCR, CREEP or MOVEPROF
commands using the currently defined deceleration. If higher deceleration is required, DECEL can
be set before STOPMOVE command. Note that STOPMOVE does not cancel any FOLLOW ratios.

Desired axes can be selected to be stopped. Stopping is performed with servo control active. Servo
control also remains active, unless MAXERR limit is not exceeded during stopping.

ACCELXZ=900 : STOPMOVEXZ

STOPMOVE ' axes 0 thru 9

STOPMOVE also provides a method to change the destination of a translation or to change the type
of motion performed. For example:

MOVEX 10000

DELAY 3

STOPMOVEX : MOVCX 1500

would cancel the first translation after 3 seconds and change the destination to 1500 without
stopping.

MOVEPROFXY

DELAY 3

STOPMOVEX : MOVCX 1500

would cancel the profile motion after 3 seconds and start a translation to position 1500 obeying set
ACCELX or DECELX to reach the set SPEEDX.

 McBasic 3.3 reference manual

 148

12.6 MOVEREADY

Function Read motion status.

Syntax MOVEREADY[{axes...|(n...)}]

Type Integer

{axes...|(n...)} List of axes (or (n...) - axes numbers). If not defined all axes are
considered.

Values 1 motion ready, axis enabled
0 motion not ready (busy)
-1 servo control disabled by setting PWRn=0
-2 negative limit NLIM exceeded
-4 positive limit PLIM exceeded
-8 emergency switch EMRG open
-16 MAXERRn exceeded
-32 excessive errors in McWay i/o loop (WAYERR)
-64 encoder errors in an absolute encoder (WAX2A)
-128 external trip from WAX stat input
-256 tripped by another axis in a TRIPGROUP

Read motion status. With the MOVEREADY function it is possible to read whether motion with
defined axis or axes is not ready, ready or stopped (servo control disabled) for some other reason.

If more than one of the above mentioned conditions exist simultaneously, MOVEREADY gets a
value where different error values are added, for example MOVEREADYn=-10 if negative limit
switch is influenced and emergency stop is open.

MOVEREADY is -1 also when control is not yet enabled. Control is enabled for example with the
command

PWRaxis=1

or by performing any translation command. For example MOVERX(0) (relative translation of zero
length) starts the controller, but no motion is performed.

IF MOVEREADY<0 THEN STOP

IF MOVEREADYZ THEN PRINT "Z ready"

12.6.1 TRIPGROUP

Set group of axes to trip together trigged by any of the group members. TRIPGROUP applies to
servo errors generated for axes as described in MOVEREADY (negative values). Each group is
distinguished by its number, so several groups can exist simultaneously. It is possible to add and
remove axes to and from groups using the TRIPGROUP= command.

 McBasic 3.3 reference manual

 149

Command Set trip group of axes.

Syntax TRIPGROUP[{axes…|(n,…,m)}]= expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose trip group are set.

expression Group number (0 .. 255). If set to 0, the axes are no longer a member of a
trip group.

Function Read trip group of axis.

Syntax TRIPGROUP{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Integer number.

Value Axis trip group number. Default 0 (no group).

The axis that caused the trip has its MOVEREADY value set as described before. Axes that have
tripped because of another axis in the group, have their MOVEREADY values set at the
MOVEREADY value of the axis that has caused the trip -256. Thus, for example, if X and Y axes
belong to the same TRIPGROUP and X axis exceeds its MAXERR, both X and Y axes will trip
simultaneously and MOVEREADYX will be -16 and MOVEREADYY -272.

12.7 TRANSLATIONS

12.7.1 MOVE

Command Absolute translation.

Syntax MOVE{axes..(expr,..,expr)|(n:expr,..., n:expr)}

{axes..|n...} axes to perform the translation.

expr Destinations of translation, expressions in same order as the axis
identification letters are defined in the system.

Translation is performed using the given axis combination axes.. along a straight line (linear
interpolation) using accelerations and speeds set with ACCEL and SPEED commands.

Parameters expression must always be given in the order, in which the axes, that are used for the
translation, are defined in the control system. List axes.. defines the axes which are used to perform
the translation. For simplicity, it is recommended to follow the definition order of system. The axis
identification letters (if such type of axis identification is used) are usually in order
X,Y,Z,W,A,B,C,D,T,U.

MOVEXZ(X0,Z1+1)

MOVEY(20.050)

MOVEX100

MOVE(4:X0) : MOVE(1:Xcod0,2:Ycod0,3:Zcod0+Xcod0)

 McBasic 3.3 reference manual

 150

12.7.2 MOVER

Command Relative translation.

Syntax MOVER{axes..(expr,..,expr)|(n:expr,..., n:expr)}

{axes..|n...} List of axes used to perform the translation.

expr Lengths of translations, expressions in same order as the axis.

Similar to MOVE, with the difference that axes are moved a distance defined by expressions from
their current position.

MOVERXZ(X0,Z1+1)

MOVERY(20.050)

MOVERX100

MOVER(4:X0) : MOVER(1:Xcod0,2:Ycod0,3:Zcod0+Xcod0)

Fig. 11.7.2, two axis translations

12.7.3 CIRCLEMOVER

The CIRCLEMOVER command allows generating circular motion with two axes forming a cartesian
two axes frame of reference, like the XY plane. Optionally, one or more additional axes can be
included to be linearly interpolated together with the circular motion. The motion obeys speeds,
accelerations and decelerations set for the axes so that for the circular motion the axis with the lower
parameter sets the limits that are then combined with the limits of the linear interpolation similar to
other linear motion commands.

 McBasic 3.3 reference manual

 151

Command Relative circular move.

Syntax CIRCLEMOVER(aa,axis1:xx,axis2:yy[,nz:zz,.. nw:ww])

aa Angle to move [radians].
axis1 Number of first axis
xx Center point offset in the direction of axis1
axis2 Number of second axis
yy Center point offset in the direction of axis2
nz Number of first optional axis to perform linear interpolation.
zz Relative move length.
. .
. .
nw Number of last optional axis to perform linear interpolation.
ww Relative move length

The circular motion starts from the current position of axes axis1 and axis2 forming the cartesian
frame of reference, such as the XY plane. The centerpoint of the arc to be performed is defined by
xx and yy as offsets from the starting position in the directions of axis1 and axis2 respectively. The
length of the circular motion is defined as an angle aa in radians (π radians equals 180 degrees).
Thus, for example a full circle is about 6.28 radians. The sign of aa defines the direction of the
motion. A positive value of aa moves the vector position of (axis1, axis2) in the positive angular
direction (ccw) and a negative value of aa in the negative angular direction (cw) respectively.

Examples:

CIRCLEMOVER(2*PI,0:5.0,1:5.0) 'full circle (ccw)

CIRCLEMOVER(-PI,0:0,1:5.0,3:6) 'half circle (cw) with W-ax

 'linear 6 unit move

12.7.4 MOVC AND MOVCR

Command Absolute continuous translation.

Syntax MOVC {axes..(expr,..,expr)|(n1:expr,..., nn:expr)}

{axes..|n...} List of axes to perform the translation.

expr Destinations of translation, expressions in same order as the axis.

Command Relative continuous translation.

Syntax MOVCR{axes..(expr,..,expr)|(n:expr,..., n:expr)}

{axes..|n...} List of axes to perform the translation.

expr Lengths of translation, expressions in same order as the axis.

MOVC.. commands operate as MOVE.. commands, with the difference that the translation is started
before the previous translation has stopped.

 McBasic 3.3 reference manual

 152

Deceleration and acceleration phases of translations are combined so, that the result is continuous
motion.

When performing MOVC translations with several axes, the path does pass accurately through every
corner point. Instead, the path is "shaved" to allow for continuous motion. Amount of rounding
depends on speed and acceleration settings. Low speed with high acceleration produces sharp
corners and high speed with low acceleration produces smooth corners.

When performing motion commands McBasic calculates phases of translation and saves them into
the motion buffer (MOVEBUFFER). This is called initializing a translation. If no motion is being
executed by axes concerned, the translation is performed immediately.

If a translation is currently being executed, the new translation remains waiting in the buffer. For
continuous motion using MOVC commands, at least one initialized translation defined by a MOVC
command must be waiting in the buffer when the deceleration phase of the previous translation
begins. The maximum number of translations in the motion buffer is 4 for each axis combination.

If a MOVC.. motion command is executed during the previous translation deceleration phase, the
acceleration phase for the new translation begins immediately after motion command has been
executed. This can be used for example to limit speed to a desired level in motion path corners.

FOR A=0 TO 2*PII STEP 0.1

 MOVCXY(R*SIN(A),R*COS(A))

NEXT A

or the same in an other form

REAL Angle, Radius

:

FOR Angle=0 TO 2*PII STEP 0.1

MOVC(1:Radius*SIN(Angle),2: Radius*SIN(Angle))

NEXT Angle

Fig. 11.7.3, Speed profiles

12.7.5 CIRCLEMOVCR

The CIRCLEMOVCR operates the same way as the CIRCLEMOVER command, with the difference
that it can start before the previous motion with the same axes has stopped. The joining of

 McBasic 3.3 reference manual

 153

consecutive motion commands operates in the same way as with other continuous motion
commands like MOVC etc., additionally considering the angular ramps that are generated during the
circular motion.

Command Relative continuous circular move.

Syntax CIRCLEMOVCR(aa,nx:xx,ny:yy[,nz:zz,.. nw:ww])

aa Angle to move [radians].
axis1 Number of first axis
xx Center point offset in the direction of axis1
axis2 Number of second axis
yy Center point offset in the direction of axis2
nz Number of first optional axis to perform linear interpolation.
zz Relative move length.
. .
. .
nw Number of last optional axis to perform linear interpolation.
ww Relative move length

12.7.6 MOVEBUFFER

Function Read motion buffer status.

Syntax MOVEBUFFER[{axes...|(n...)}]

Type Integer 0 .. 4

{axes...|(n...)} List of axis (or (n...) - axes numbers) combination to inspect. If not defined,
the buffer for axes 0..9 in the system is inspected.

Values 0 motion ready
n one translation not ready, n-1 waiting to start

Read motion buffer memory status. The number of initialized translations for a given axis
combination axes..(see MOVC -commands) can be read with this function.

if MOVEBUFFER is

0 motion is ready
1 1 translation not ready, none waiting
2 1 translation not ready, 1 in buffer
3 1 translation not ready, 2 in buffer
4 1 translation not ready, 3 in buffer (buffer full)

Because there is not space for more than 4 translations in the motion buffer, giving a motion
command for an axis combination axes.. while MOVEBUFFERaxes.. is 4 causes the program to
stop at the motion command until free space is available in motion buffer (an unfinished translation
becomes ready). If this happens in a program with several tasks, the task waiting for space in
MOVEBUFFER passes control to the next task waiting to be put in execution.

 McBasic 3.3 reference manual

 154

Example: Move along a polygon approximation of a circle:

 REAL Radius,Ang 'Circle radius, current angle

 REAL Xorig,Yorig 'coordinates of the center

 PWR(1,2)=1

 Radius=100 : Xorig=50 : Yorig=50

 FOR Ang=0 TO 2*PI STEP PI/8

 DO : UNTIL MOVEREADY(1,2)<4

 IF MOVEREADY(1,2)<0 THEN STOP

 LOOP

 MOVC(1:Xorig+Radius*COS(Ang),2:Yorig+Radius*SIN(Ang))

 NEXT Ang

12.8 CREEP

Command Start axis motion at given speed.

Syntax CREEP{axes..(expr,..,expr)|(n:expr,...,n:expr)}

{axes..|n...} List of axes, whose speed is set.

expr Speeds of motion, expressions in the same order as axes are.

With the CREEP command it is possible to produce servo axis motion according to speed setting
without destination. For example with command

CREEPX(10)

CREEP(2:100,3:X0*3.0)

X axis is set to run at 10mm/s (if RES is [edges/mm]). Acceleration and deceleration are performed
according to current ACCEL and DECEL values. Changes in parameters influence immediately, also
during acceleration and deceleration.

CREEPXYZ(10,20,15)

ACCELX=100 'see Fig. 11.8

CREEPX100

DELAY 3

ACCELX=150

CREEPX70

DELAY 1

ACCELX=50

CREEPX30

DELAY .5

ACCELX=100

DELAY .75

ACCELX=75

CREEPX100

DELAY.2

CREEPX0

 McBasic 3.3 reference manual

 155

Fig. 11.8, motion with CREEP -command

 McBasic 3.3 reference manual

 156

12.9 FOLLOW [AT]

Command Set an axis to follow another axis.

Syntax real ratio:
FOLLOWaxis1axis2(i)
FOLLOW(axnr1,axnr2,i) [AT (axnr3,pos)]

or rational ratio:

FOLLOWaxis1axis2(n,m)
FOLLOW(axnr1,axnr2,n,m) [AT (axnr3,pos)]

axis1, axnr1 Axis, which follows.

axis2, axnr2 Axis, which is followed.

i Gear ratio between the axes. Setting gear ratio to 0 disables the follow
function between the axes and also resets any condition set with FOLLOW
AT.

n,m Gear ratio between axes as rational number. n is the number of teeth in
the primary gearwheel and m the number of teeth in the secondary
gearwheel. n and m can be integers between 1 to 8000000.

axnr3 Defines the axis that triggers the follow ratio to be activated when using
FOLLOW AT. If [AT (axnr3,pos)] is omitted, follow ratio is activated
immediately. Axnr3 can be same as axnr1 or axnr2 or any other axis in the
system.

pos Defines the position at which the follow ratio is activated when using
FOLLOW AT.

Set axis1 to follow position of axis2 with a gear ratio of i between axes. Axis1 has to be enabled.
FOLLOW can be also operate for example while other types of motion (translations, CREEP, profile)
is performed by these axes.

FOLLOWXY(.1) ' X follows Y with a ratio 1:10

The FOLLOW AT command can be used to start the follow function when a specified axis reaches a
specified position. This can be used to accurately syncronize axes also when using profile motion.

FOLLOW(0,1,17,23) AT (1,500) ' start axis 0 to follow 1 with

 ' ratio 17:23 when 1 reaches 500

Because the ratio used in FOLLOW command is defined internally as a fixed point binary number
with an 16 bit integer and 32 bit decimal part, the following limitations are valid regarding its
operation:

Maximum value of ratio i is ±2

15
 counts/count with accuracy of 1/2

32
 counts.

To follow continuous reference motion such as that of a of a master encoder without inaccuracy
caused by rounding error, the reference (or master) encoder must be selected to have a pulse
number so that the cycle of the slave axis can be defined as an exact real number (less than 14
significant digits) or a rational number of counts from the reference encoder.

 McBasic 3.3 reference manual

 157

12.10 FOLLOWRATIO

Function Read current follow ratio for axis.

Syntax FOLLOWRATIO(axis)

Type Real number

axis Identification number of axis.

Value The ratio with which axis is currently following some other axis. 0 if no
current ratio exists.

FOLLOWRATIO function can be used for example to test if a FOLLOW AT condition has been
reached.

12.11 PWR

Command Start and stop position control. Set maximum value of control output.

Syntax PWR[{axes...|(n...)}]=expression

[{axes...|(n...)}] List of axes. If not defined, axes 0...9

expression Value to set. (0 .. 1)
0 Control off.
0<a<1 Start with maximum output of a*physical maximum (a*10V)
1 Start normal operation

Function Read control output limit.

Syntax PWR{axis|(n)}

Type Real number (0 .. 1)

{axis|(n)} Identification letter or number of axis.

Values Maximum value of control output (ref), as explained above for expression.

PWRXYZ=1 ' enable XYZ

PWR=0 'all axes off

PWRX=0 'only X axis off

The output of a position controller can be limited by using values of expression between 0 <
expression < 1 for example to dampen the torque glitch when starting and stopping the controller or
to prevent damages when testing or during critical parts of work cycle, for example, in case of an
encoder fault.

1 represents the full output (for example +/-10V). 0.5 represents the half of maximum value (for
example +/-5V).

 McBasic 3.3 reference manual

 158

When using a drive in torque control mode, the maximum torque can be limited with PWR setting.

PWR=0

FOR N=0 TO 1 STEP .1

PWRX=N

TIMER(0)=.1

IF TIMER(0) THEN 240

NEXT N

12.12 OPWR

Command Forced set position control reference output.

Syntax OPWR[{axes...|(n...)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers). If not defined, outputs of all axes are
set.

expression Value to set. (-1 .. 1). Output is set to expression*physical maximum.

Function Read the position controller output.

Syntax OPWR{axis|(n)}

Type Real number (-1 .. 1)

{axis|(n)} Identification letter or number of axis.

Values State of reference output of axis. As expression above.

For example in a ±10V control output, the following values correspond to each other:

OPWR VREF
-1 -10V
-0.5 -5V
0 0V
0.5 5V
1 10V

Using OPWR= command disables the normal operation of position controller.

If limit switches are in use, they are also operable when using OPWR command. EMRG and
MAXERR also operate normally.

The state of the reference output can be read with the OPWR function also when the controller is
operating. This can be used to study load effects etc.

For example to set speed compensation of X axis automatically:

MOVERX1000 : DELAY 2 : SCOMPX=RSPEEDX/OPWRX

 McBasic 3.3 reference manual

 159

12.13 FAST POSITION CAPTURE

12.13.1 CAPTTYPE

Command Activate position capture operation.

Syntax CAPTTYPE[{axes...|(n,...,m)}]=expression

{axes...|(n...)} List of axes (or (n...) - axes numbers), whose capture operation is
activated.

expression Controls mode of operation (input and edge)
Capture position when:
0 encoder index channel falling edge
1 encoder index channel rising edge
2 inp0 falling edge
3 inp0 rising edge

The CAPTTYPE= command can be used with the AXi or WAX2 servo connection module with
incremental encoder to arm the fast position capture logic included in the module hardware.
CAPTTYPE= command allows use of the encoder index channel (X-channel) or module first input
(inp0) falling or rising edge as a trigger for the capture event. Note that the inp0 referred to is the first
input on the module with the encoder for the axis in question. It also has an input address as defined
by WAYMOD$..= command for use with the INP() function.

Function Read position capture status.

Syntax CAPTTYPE{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Current status of position capture of axis.
-2 not used
-1 ready (position captured)
0 waiting for index falling edge
1 waiting for index rising edge
2 waiting for inp0 falling edge
3 waiting for inp0 rising edge

Note that since the operation of the capture function involves communication between the processor
and the axis module, CAPTTYPE= command should only be executed once to arm the logic. About
2 position loop cycles should be allowed for the logic to be active. When CAPTTYPE function reports
that a position has been captured (CAPTTYPE=-1), it takes some time (about 2 position loop cycles)
for CAPTTYPE function to return the corresponding value. Thus it is advisable to set CAPTTYPE
only once and the ensure that the value of the CAPTTYPE function indicates that the logic has been
armed. Trying to arm the logic several times with a CAPTTYPE= command without waiting for
CAPTTYPE to reach the set value first may cause position loop malfunction.

 McBasic 3.3 reference manual

 160

Example:

DO

 CAPTTYPEX=0 'look for index rising edge

 DELAY .05 'wait for logic to be armed

 DO UNTIL CAPTTYPEX=-1 : LOOP 'wait for edge to be found

 IF CAPTTYPEX=-1 THEN X=CAPTPOSX 'read captured position to X

 LOOP

12.13.2 CAPTPOS

Function Read captured position.

Syntax CAPTPOS{axis|(n)}

{axis|(n)} Identification letter or number of axis.

Type Real number.

Value Position captured from axis. 0, when no position has been captured yet.

CAPTPOS allows reading the position captured by AXi or WAX2 module fast position capture logic.
It should only be read after CAPTTYPE.. returns -1 (ready). The position thus acquired represents
the actual position at the trigger event. The accuracy using the index channel is approximately ±1
encoder pulse edge, and . ±0.1 millisecond using inp0.

12.14 PROFILE CONTROLLED MOTION

With MOVEPROF commands it is possible to connect one or more axes to operate relative to
another axis according to a pre-programmed position profile.

In this case the synchronizing axis controls an array pointer in the profile array of the axis to be
synchronized. The position of the synchronized axis is defined by the value in the profile array. The
values between array values are calculated using linear interpolation.

12.14.1 PROFSIZE

Command Set profile array size.

Syntax PROFSIZE{axes|(axnr,...}=expression

axis | axnr Axes, whose profile array size is being redefined.

expression New size for profile array. Must be a power of 2, max. 2
18

within limits of
available memory.

 McBasic 3.3 reference manual

 161

Function Read profile array size.

Syntax PROF{axis|(axnr)}

Type Real number

axis | axnr Axis, whose profile array size is being read.

Value Current profile array size of axis.

PROFSIZE provides a method for setting the size of the motion profile array of any axis individually.
By default the setting is 2048 when McBasic is started. McBasic reserves the memory for the profile
only after using the profile (writing to it), so profile settings for unused axes do not reserve memory.

After using a profile it is not possible to redefine the profile size for the axis until McBasic is restarted
from McDOS or NEW command is used.

12.14.2 PROF

Command Write to a profile array.

Syntax PROF{axis(n)|(axnr,n)}=expression

axis, axnr Axis, whose profile array is being written to.

n Number of the profile array entry.

expression Value to write into cell (position).

Function Read from a profile array.

Syntax PROF{axis(n)|(axnr,n)}

Type Real number

axis, axnr Axis, whose profile array is being read from.

n Number of the profile array entry.

Value Value of cell (position).

The number of array entries for each axis is can be set with the PROFSIZEn= command.

For example, when using a 512 size profile, cells 0-511 form the actual motion profile. Array entry
512 is set in non-progressive motion equal to entry 0. In progressive motion the progression of the
profile is PROFaxis(512)-PROFaxis(0) for each cycle.

For example to set a sine formed profile for X axis and a cosine formed profile for Y axis (circulating
motion in a plane)

 McBasic 3.3 reference manual

 162

FOR N=0 TO 511

PROFX(N)=SIN(2*PII*N/512)

PROFY(N)=COS(2*PII*N/512)

NEXT N

PROFX(512)=PROFX(0)

PROFY(512)=PROFY(0) 'Note! PROF as function

12.14.3 MOVEPROF

Command Start profile motion.

Syntax MOVEPROFaxes(axis2)

MOVEPROF(axnr1:axnrp1,...,axnrn:axnrpn)

axes Axes, which are started to move according to their PROF arrays.

axis2 Axis controlling the array pointer.

axnr1 .. axnrn Axes, which are started to move according to their PROF arrays.

axnrp1 ... axnrpn Axes controlling the array pointers.

Moving by a profile array is performed by moving axis2 or axnrpn which may be same or different
axes. Usually the axes used as pointer axes are so called virtual axes, existing only theoretically
(DRIVETYPE=176). A virtual axis does not represent any real, physical axis.

A virtual axis is actually an axis, whose DRIVETYPE is set so, that only motion commands are
operable. Usually an axis that has no physical control connection is used as a virtual axis.

 For example

 DRIVETYPET=16+32+128

When starting profile motion the necessary axes must be active (in other words PWRaxis1=1 and
PWRT or PWRaxis2=1). It is recommended to set the resolution of the synchronizing axis to same
as the number of entries in profile array, for example REST=512. With this resolution a command
MOVERT(1) moves the axis (axes) one profile array cycle.

For example to start a circulating motion (see the profile tables generated in the example in
paragraph (12.28.1)) with axes X and Y:

REST=512 : ACCELT=2

PWRXYT=1

MOVEPROFXY(T)

CREEPT(2)

 McBasic 3.3 reference manual

 163

12.15 POSITION CONTROL LOG

12.15.1 LOGSIZE

Command Set motion control data log size.

Syntax LOGSIZEaxes=n
or
LOGSIZE(axnr,...)=n

axes Axis letter or a list of axis letters, whose log size is set.

axnr,... Axis number or a list of axis numbers, whose log size is set.

n Size of log array (samples) to be reserved for specified axes. Max. 65535
within available memory.

Function Read data log size.

Syntax LOGSIZE{axis|(axnr)}

Type Real number

axis | axnr Axis, whose log size is being read.

Value Current log array size (samples) of axis.

The LOGSIZE..= command is used before LOGDATA or LOG commands to set the size of the log
array used for storing logged data. The default value for the log array size is 400 samples.

McBasic reserves the memory for the log only after using it (LOG...=), so log size settings for axes
not logged do not reserve memory.

After using a log it is not possible to redefine the log size for the axis until McBasic is restarted from
McDOS or NEW command is used.

12.15.2 LOG

Command Motion control data log control.

Syntax LOGaxes=k

or
LOG(axnr,...)=k

axes Axis letter or a list of axis letters, whose log is controlled.

axnr,... Axis number or a list of axis numbers, whose log is controlled.

k Logging interval expressed in control cycles (1/PIDFREQ). After each
interval the data is written into the log. If k =0, the log is stopped.

Start/stop motion control data log on specified axes. Value k specifies the log interval as a multiple of
position control cycles. If k is 1 the control data is saved for every control cycle (for example after

 McBasic 3.3 reference manual

 164

every 2,5 ms if PIDFREQ is set to 400). With higher values of k, data is saved after each k control
cycles. This way data can be logged for a longer period while not using more memory. Starting
logging automatically clears all log data in the log array.

The array is always filled so, that the first entry in the array is the latest data. The older data is
automatically shifted in the log array. This way, history of data from the desired time period can
easily be maintained in the log array. If k is 0 data logging is stopped.

example:

LOGSIZEXY=1000 ' set log array sizes for X and Y

LOGXY=5 ' data logging every 5 cycles

SPEEDXY=100

ACCELXY=1000

MOVERXY(150,150)

DO UNTIL MOVEREADYXY : LOOP 'during motion

DELAY .1 'small delay

LOGXY=0 'stop logging

No data will be logged if PWR(axnr) <= 0. Therefore logging stops also if a servo error occurs for
an axis or the axis is disabled. This can be prevented by adding 256 to the DRIVETYPE of the axis
(see chapter 12.2.1).

12.15.3 LOGDATA

Function Read motion control log data.

Syntax LOGDATAaxis(sample,data)
or
LOGDATA(axnr,sample,data)

Type Real number.

axis Identification letter axis.

axnr Number of axis when number reference is used

sample The number of sample read, integer (0..LOGSIZE-1). Sample 0 is the
latest sample, LOGSIZE-1 is the oldest sample.

data The number of data to read, integer (0..7, see below)

Read the data stored in log array gathered using the LOGaxes..=n command. With different values
of parameter data the following data can be read. Type of all data is real number. The variable tsample
means the time when sample was stored calculated backwards from latest sample.

 McBasic 3.3 reference manual

 165

data content dimension
-1 PID count 32bit integer
0 time t0-tsample s (gets value 0, if sample
 greater than size of log)
1 actual position mm
2 set position mm
3 position error mm
4 control output -1 ... 1 as OPWR
5 actual speed mm/s
6 set speed mm/s
7 analog channel -1 ... 1 as INPA()

additionally with some axes using EtherCat connected drives such as Unidrive M, some of the
following data may be available:

8: ethercat status word (6041.0)
9 ethercat control word (6040.0)
10 motor current (6077.0) (M700 series)
11 drive bus voltage Vdc (2005.5) (M700 series)
12 drive i/o (2008.20) (M700 series)
13 actual velocity (6043.0) (M300)
14 target velocity (6042.0) (M300)

In the above RES is assumed to be set as [pulse edges/mm].

To set an analog channel of a WIA analog input module to be logged synchronously with the other
data, use the LOGSIZE..= command before starting logging with the LOG..= command.

Logging an analog input can be used to monitor values such as motor torque or current that may be
available as analog signals from a drive or some other transducer.

Command Set analog input for LOGDATA data 7

Syntax LOGDATAaxis=a
or
LOGDATA(axnr)=a

axis Identification letter axis.

axnr Number of axis when number reference is used

a Analog input number. Number of analog input INPA(a) to be logged.

Each log entry uses 10 bytes of memory without and 14 bytes with analog data logging.

 McBasic 3.3 reference manual

 166

13. I/O CONNECTIONS

The digital and analog inputs and outputs in ACN control systems are available for programming
with dedicated McBasic commands and functions.

Inputs and outputs exist in the control system in various devices connected to the system either in
the ACN chassis, through external McWay I/O system or EtherCat fieldbus.

13.1 McWay I/O configuration

McWay is the I/O connection system used for ACN I/O modules installed in the ACN chassis or other
McWay I/O modules connected to ACN external McWay loops.

Before a McWay loop can be used, it must be initialised using the McBasic WAYMOD$ command.

 McBasic 3.3 reference manual

 167

13.1.1 WAYMOD$

Command McWay I/O system configuration.

Syntax WAYMOD$(n,m)=string

n Loop number (0...3). Loop 0 is the ACN chassis internal McWay loop.

m Module number (0...120). Module 0 is the first module in the loop.

string specification and information of module:
“END” end of modules in loop
“EMPTY(n)” no module in current position, reserve n bits
 of I/O space in the loop
"AXi INP(n1) [OUT(n2)] IO(n3)"
 AXi axis connection module (incr.enc., 32bits)
"AXa INP(n1) [OUT(n2)] IO(n3)"
 AXa axis connection module (abs.enc., 40bits)
 4 limit inputs starting from n1 (0..4x255)
 4 control outputs starting from n2 (0..4x255)
 8 digital i/o starting from n3 (0..4x65535)
 n2 = n1 if OUT(n1) omitted

"WIN INP(nn)" WIN with 24 inputs from nn (0..4x65535)
“WOU OUT(nn)” WOU with 32 outputs from nn (0..4x65535)
"WIO IO(nn)" WIO with 16 in/ 16 out from nn ((0..4x4095)
"WIO INP(n1) OUT (n2)" WIO with 16 in from n1 and
 16 out from n2 (0..4x4095)
“WOA OUTA(nn)” WOA with 6 outputs from nn (0..65535)
"WIA INPA(nn)" WIA with 6 inputs from nn (0..65535)
"WIA6 INPA(nn)" WIA with 6 inputs from nn (0..65535)
"WIA4 INPA(nn)" WIA with 4 inputs from nn (0..65535)
"WIA2 INPA(nn)" WIA with 2 inputs from nn (0..65535)
"WAX INP(n1) [OUT(n2)] IO(n3)"
 WAX 02006 (32bits)
"WAX2 INP(n1) [OUT(n2)] IO(n3)"
 WAX2 (32bits)
"WAX2A INP(n1) [OUT(n2)] IO(n3)"
 WAX2A for absolute encoder (40bits)
"WAX POS(n1) [OUTA(n2)] IO(n3)"
 WAX for position input(32bits)
 n1 position input (0..255)
 n2 analog output (0..255)
 12 digital i/o starting from n3 (0..4x65535)
 n2 = n1 if OUT(n1) omitted

For further details on module specific syntaxes refer to chapter 6.8 of "ACN Motion Control System
User's Manual" or chapter 3 of "McWay I/O - system user’s manual".

 McBasic 3.3 reference manual

 168

13.1.2 WAYERR

Function Read and reset McWay i/o loop error counter.

Syntax WAYERR(loopnr)

Type Integer 0...255

Value Number of failed refresh cycles after last read. Reading resets the counter.

loopnr McWay loop number (0...7).

The WAYERR function gives access to an error counter in the control system that counts defective
transmissions in the McWay i/o loop. Each loop in the system has its own counter that can be
accessed using the number of the specific loop. In MC300 based systems loopnr is always 0.
MC400 systems can be configured to have up to 8 loops (0...7).

Each error counter advances when the controller sends a loop refresh message but does not receive
a correct response from the loop. Thus, WAYERR essentially counts failed refresh cycles. The
maximum error count can be 255. When reading the WAYERR function for a loop, the respective
counter is reset to zero. Therefore, if WAYERR is used in a program to monitor the correct operation
of the installation, it should only be read after suitable intervals, such as some minutes, or the value
should be accumulated in a separate variable. When starting a system, several error may
accumulate in the counters because of power-up sequencing. Therefore the first read-reset of
WAYERR should be ignored.

As 3 consecutive failed cycles cause axis position control to automatically switch off, error should not
occur regularly in any loop. In a correctly operating system no more than 1 error occurs within a
minute and no more than 10 errors occur within a day. While considerably higher error rates can
occur without affecting the operation of an application, it is a good practice to observe that the error
levels are within normal and even include error level check in the program.

Example of a simple WAYERR check routine:

CheckWay

 IF TIMER(5)=0

 IF WAYERR(0)>3 THEN PRINT "Wayerrors"

 TIMER(5)=300

 ENDIF

 RETURN

13.1.3 WAYSLAVE

McWay I/O system provides functionality to build hierarchical motion controller systems using
several ACN MPU3 controllers. In such systems, a master controller can distribute position and
status information through McWay loops to slave controllers connected in the loop. To set a loop to
function as a slave, use the WAYSLAVE command.

 McBasic 3.3 reference manual

 169

Command Set McWay I/O slave mode.

Syntax WAYSLAVE=n

n Number of McWay connection to be used as slave. Set to -1 to exit slave
mode.

Function Read slave mode status.

Syntax WAYSLAVE

Type Integer -1 ... 3

Value -1 slave mode off
0 .. 3 number of loop in slave mode

To use slave mode for axes, data must be configured to the master loop and slaves as virtual i/o
modules. 56bit data objects are available for this. The objects transfer 32bit position information and
16bit status information for axis master/slave operation. To configure, use the WAYMOD$ command
to set master loop:

Command Set McWay axis output virtual module.

Syntax WAYMOD$(n,m)="WMC POS(a)"

n Number of master McWay loop.

m Position of slave in the loop.

a Number of master axis.

Command Set McWay axis input virtual module.

Syntax WAYMOD$(n,m)="WMCIN POS(a)"

n Number of slave McWay loop.

m Position of master virtual module in the loop.

a Number of slave axis.

In a master controller, one or more WMC modules can be configured in any of the available McWay
loops. Slave controller(s) must then be connected in the loop(s) at the correct location with
WAYSLAVE set to the McWay connection used and WMCIN modules configured at the
corresponding locations. It is also possible to configure WMC modules in the slave and WMCIN
modules in the master to read position data from the slave to the master.

When set, the position(s) are transferred in real time and can be used as references for axes
motion. The axes that are used are typically configured as virtual axes to be able to build axes
groups to be moved using FOLLOW or MOVEPROF, for example. Axis status data is also copied
between master and slave axes so that if one detects an error condition, the other one will also trip.
TRIPGROUP can be used to further distribute error reaction to cover axes in several controllers.

 McBasic 3.3 reference manual

 170

13.1.4 MOTION CONTROL I/O LOGICAL ADDRESSES

When connecting axis I/O to the system, motion control related inputs and outputs are numbered
according to the axis number. Each axis occupies four i/o addresses in and out as follows.

axisnr address INP(address) OUT(address)

n n*4 ENCX encoder index n/a
 n*4+1 NLIM negative limit switch ENA1 relay output
 n*4+2 PLIM positive limit switch ENA2 relay output
 n*4+3 EMRG emergency stop n/a

Output addresses marked n/a are not in use. In a limit switch configuration with index mask, nlim is
the mask and plim is the limit switch data.

The axes in the system are numbered starting from 0 upto 31 or 99 depending on the McBasic
version used. The first I/O address for each axis is its number multiplied by 4. This address is also
be used in conjunction with axis module settings (WAYMOD$, ECMOD$) to specify the axis for an
axis connection module. Axes can be numbered freely within the available axis count in the system
(usually 16 axes). The first 10 axes numbered 0 thru 9 have also letter names X,Y,Z,W,A,B,C,D,T,U
in the same order.

13.1.5 I/O LOGICAL ADDRESSES

Also other I/O devices connected to the ACN system are configured using the WAYMOD$ function
for ACN McWay modules and ECMOD$ for Ethercat connected modules. Please refer to the ACN
User's manual and McWay User's manual for more information on McWay configuration and chapter
9.2 in this manual for information on EtherCat configuration.

 McBasic 3.3 reference manual

 171

13.2 DIGITAL I/O

13.2.1 INP

Function Read status of input.

Syntax INP(a[,n])

Type Truth value.

a Input address. A numerical expression (integer).

n Number of inputs to read (-32...32).
Default 1. When n is positive, INP(a) is the LSB. When n is negative,
INP(a) is the MSB.

Values if 0 inputs not active (off)
 1 input INP(a) active (on) (n=1)
 x when n>1, x= INP(a)+...+2

n-1
*INP(a+n-1)

 when n<-1, x= 2
-n-1

*INP(a)+...+INP(a-n-1)
 -1 Communications error
 -2 Missing module

INP function is used for reading the status of a binary input or n inputs.

DO UNTIL INP(3)=0 AND INP(4)=1 : LOOP

PRINT INP(100),INP(101),INP(102),INP(103)

PRINT INP(100,4)

PRINT INP(100,-4)

1 0 1 0

5

10

13.2.2 OUT

Command Control an output.

Syntax OUT(a[,n])=expr

a Address of output.

n Number of consequtive outputs to set. Default 1.

expr Value to set. 1 or 0 (ON or OFF).
0 output(s) off
1 output(s) on
x when n>1, OUT(n)= LSB of expr , OUT(n+1)=the next bit etc.
 when n<-1,OUT(n)=bit n-1 of expr, OUT(n+1)=bit n-2 etc.

Set a binary output on or off. For example:

OUT(35)=1 : OUT(36)=ON

or

 McBasic 3.3 reference manual

 172

OUT(35,2)=3

sets on outputs 35 and 36.

OUT(100,8)=%10011001

sets on output 100,103,104,107 and sets off outputs 101,102,105,106.

Function Read output status.

Syntax OUT(a)

Type Truth value.

a Address of output.

Values Output status(es) as in INP function.

OUT function is used for reading statuses of outputs. If an output has not been set previously, its
status is 0.

IF OUT(5)=0 THEN

 OUT(5)=1 : DELAY 0.5

 ENDIF

OUT(5)=0

13.3 ANALOG I/O

Analog I/O may be available as McWay analog I/O modules or as EtherCat fieldbus connected
analog I/O modules. Analog I/O is accessed using the INPA and OUTA commands and functions.

13.3.1 INPA

Function Read analog input.

Syntax INPA(expression)

Type Real number.

expression Address of analog input.

Values Status of input
-1 highest negative input voltage(current)
0 zero
1 highest positive input voltage(current)

The function can be used for reading the voltage or current that is connected to an analog input.

PRINT INPA(0)

0.54 (5.4V in input with ±10V scale)

Expression defines the address of the analog input to read. Function returns the value 0, if there is
0V/mA at the input.

 McBasic 3.3 reference manual

 173

For McWay analog i/o the values are read from the A/D converters on the i/o modules every i/o
cycle. Thus the maximum sample rate is determined by PIDFREQ.

13.3.2 OUTA

Command Set analog output.

Syntax OUTA(expr1)=expr2

expr1 Address of analog output.

expr2 Value to set (-1 .. 1)

 -1 highest negative value
 0 zero
 1 highest value

Function Read analog output.

Syntax OUTA(expression)

Type Real number.

expression Address of analog output.

Values Status of out
-1 highest negative input voltage(current)
0 zero
1 highest positive input voltage(current)

Analog outputs can be set using this command. When starting the control system, all analog outputs
are set to 0.

Expr2 is the value to be set to output and can vary between -1 .. 1. Value zero represents the
smallest output value (usually 0V or 0mA). Value 1 represents the highest positive value (for
example 10V or 20mA, depends on the scale of output). Value -1 represents the most negative
output value when using ± type output.

OUTA(2)=0.7

With McWay analog i/o outputs can also be read with the OUTA() function.

13.4 STATUSOUTS

The STATUSOUTS command can be used to configure some outputs in the system I/O to reflect
system status.

 McBasic 3.3 reference manual

 174

Command Configure system status outputs.

Syntax STATUSOUTS(run,noerr[, timeout])

run Number of run output. On (=1) when application program is running
normally.

noerr Number of no error output. On (=1) when no runtime error has been
detected and

timeout Timeout parameter [s]. During running McBasic checks the console
connection for ctrl-X characters. If timeout is exceeded between
consecutive checks, both run and noerr outputs go off. Default value 0.25.

STATUSOUTS can be used to add to system safety by using some outputs to stop the system in
case of system failure or program error. To achieve this, an output can be connected to operate
emergency stop, for example.

Giving a value of -1 for run or noerr cancel the configuration for the respective output.

 McBasic 3.3 reference manual

 175

14. ERRORS

When an error condition occurs, McBasic normally stops program execution, closes open files and
prints an error message and the address where the error was found. Program execution can be
continued from the error line by 'CONT' command. Usually it is not desirable to stop program
execution for example because of a mistake the user makes on keyboard. For this kind of cases an
error handling routine can be defined to sort the error situation and continue program execution.
However, if an error is encountered in the error handling routine, the program stops and a normal
error message is generated.

Error messages used in McBasic:

1 parameter overflow

2 'INPUT' error

3 strange character or variable

4 closing parenthesis missing

5 'DIM' error

6 strange expression

7 linenumber error

8 variable overflow

9 too many subroutines

10 strange 'RETURN'

11 strange variable

12 strange command

13 parenthesis error

14 too big program

15 index error

16 too many 'FOR'/'NEXT'-loops

17 odd 'NEXT'

18 'FOR'/'NEXT'-loop structure error

19 unfinished 'FOR'/'NEXT'-loop

20 'ON' error

21 Error #21

22 'DEF' structure error

23 function error

24 string error

25 string overflow

26 I/O error

27 strange address

28 address error

29 internal string error

30 '=' error

31 'IF' structure error

32 end of DATA

33 renumber error

34 cannot CONT

35 internal stack error

36 stack overflow

37 internal structure error

38 ','-error

 McBasic 3.3 reference manual

 176

39 odd 'RESUME'

40 too many TASKs

41 structure stack overflow

42 structure nesting error

43 'DO/LOOP' structure error

44 strange label

45 same label twice

53 file error

54 strange date

55 too many links

56 you can not use links here

57 loop in links

60 strange module

61 address error

62 I/O-loop full

63 address should be multiple of four

14.1 ERROR

Command Print an error message on console.

Syntax ERROR expression

expression Number of error message. (1 .. 127)

Error message. This command is used to generate an error message. Program execution stops or
jumps to error handling program (see ON ERROR). Number of error message is the value of
expression.

IF A>100 THEN ERROR 1

14.2 ON ERROR

Command Jump in case of an error. Set error trap.

Syntax ON ERROR address

address Address, where to jump in case of an error.

Defines the address of the error handling routine. If this command has been executed, an error
anywhere in the program causes a jump to line address. The error trap is task specific, so it can be
set differently for each task if necessary. By default, every new task inherits its error trap setting from
its parent task.

 ON ERROR ErrHandling

 McBasic 3.3 reference manual

 177

ErrHandling

 STOPMOVE

 FOR N=32 TO 47

 OUT(N)=0

 NEXT N

 PRINT "CALL FOR SERVICE"

 PRINT "ERROR ";ERR,ERR$(ERR)

 PRINT "ON LINE",ERL

 STOP

14.3 RESUME

Command Return from the error handling routine of ON ERROR command.

Syntax RESUME [NEXT]

[NEXT] If NEXT part is not used the return address is the beginning of the line
 where the error occurred. If NEXT is used, return address is the beginning
of the next line.

RESUME

IF ERR=2 THEN RESUME NEXT

14.4 ERR

Function Number of the last occurred error.

Syntax ERR

Type Integer (0 .. 127)

14.5 ERL

Function Line number of the line, where an error last occurred.

Syntax ERL

Type Integer 0 ... 65535.

Values Line number of the line where the error occurred.
0 for line without linenumber
1..65535 program line

This function is not effective if line numbers are not used in the program. In this case it is always
equal to 0. For programs without line numbers, use the ERR@ function instead to obtain the address
of the line where the error last occurred.

PRINT "Error #";ERR;

PRINT " on line ";ERL

 McBasic 3.3 reference manual

 178

14.6 ERL$

Function Contents of the line, where an error last occurred.

Syntax ERL$

Type String 80 characters.

Values Contents of the line as text string.

PRINT "Error #";ERR;

PRINT " on line ";ERL$

14.7 ERR$

Function Error message as string.

Syntax ERR$(expression)

Type String

expression Number of error message.

Values Error message as defined in error message table.

This function can be used for example to print the error message corresponding to an error number.

PRINT ERR$(ERR)

FOR I=1 TO 255

PRINT ERR,ERR$(I) : NEXT I

14.8 ERR@

Function Error line address.

Syntax ERR@

Type Address

Values Address of the line where an error last occurred.

For example:

PRINT ERR@

(Label+3)

 McBasic 3.3 reference manual

 179

14.9 ONERR@

Function Error trap current address.

Syntax ONERR@

Type Address

Value Current error trap address for current task. If error trap not set, value is
(+0).

ONERR@ function can be used to check the status of the error trap.

 McBasic 3.3 reference manual

 180

Appendix 1, list of EtherCat device configuration strings for ECMOD$

addr is the address (number) of the first input or output in the device of subnode.
axis is the number of the axis used to refer to a drive output PWR(axis) or position input POS(axis)

Configuration string description

Generic devices
"INP2 INP(addr)" 2 bit binary input

"INP4 INP(addr)" 4 bit binary input

"INP8 INP(addr)" 8 bit binary input

"INP16 INP(addr)" 16 bit binary input

"OUT2 OUT(addr)" 2 bit binary output

"OUT4 OUT(addr)" 4 bit binary output

"OUT8 OUT(addr)" 8 bit binary output

"OUT16 OUT(addr)" 16 bit binary output

"DRIVE PWR(axis1)[POS(axis2)]" drive, axis1 is the axis to control,

 axis2 is the encoder to measure

"UNKNOWN" unknown ethercat device

SKS Control devices:
"ACN/EIO IO(addr)" Base module with 32 bit binary input/outputs and 4 option slots

subnodes (options):
"ENC1/INC POS(axis) PWR(axis) OUT(addr)" Axis connection with incremental encoder

"ENC1/ABS POS(axis) PWR(axis) OUT(addr)" Axis connection with SSI absolute encoder

Crevis NA devices:
"NA-9186" ethercat coupler

"NA-9286" ethercat coupler

subnodes (i/o slices):
"ST-1114 INP(addr)" 4 bit binary input, 5V DC

"ST-111F INP(addr)" 16 bit binary input

"ST-1124 INP(addr)" 4 bit binary input, source, 5V DC

"ST-112F INP(addr)" 16 bit binary input

"ST-1214 INP(addr)" 4 bit binary input, sink, 12/24V DC

"ST-1218 INP(addr)" 8 bit binary input

"ST-121F INP(addr)" 16 bit binary input

"ST-1224 INP(addr)" 4 bit binary input, source, 12/24V DC

"ST-1228 INP(addr)" 8 bit binary input,

"ST-122F INP(addr)" 16 bit binary input

"ST-1314 INP(addr)" 4 bit binary input, sink, 48V DC

"ST-1318 INP(addr)" 8 bit binary input

"ST-131F INP(addr)" 16 bit binary input

"ST-1324 INP(addr)" 4 bit binary input, source, 48V DC

"ST-1328 INP(addr)" 8 bit binary input,

"ST-132F INP(addr)" 16 bit binary input

"ST-1804 INP(addr)" 4 bit binary input, 120V AC (AC 85V~132V)

"ST-1904 INP(addr)" 4 bit binary input, 240V AC (AC 170V~264V)

"ST-2114 OUT(addr)" 4 bit binary output, TTL inverting, 5V DC/20mA

"ST-2118 OUT(addr)" 8 bit binary output

"ST-221F OUT(addr)" 16 bit binary output, sink, 24V DC/0.5A

"ST-222F OUT(addr)" 16 bit binary output, source, 24V DC/0.5A

"ST-2314 OUT(addr)" 4 bit binary output, sink, 24V DC/0.5A

"ST-2318 OUT(addr)" 8 bit binary output

"ST-2324 OUT(addr)" 4 bit binary output

"ST-2328 OUT(addr)" 8 bit binary output

"ST-2414 OUT(addr)" 4 bit binary output, sink, diagnostics, 24V DC/0.5A

"ST-2418 OUT(addr)" 8 bit binary output

"ST-2514 OUT(addr)" 4 bit binary output, sink, diagnostics, 24V DC/2A

"ST-2518 OUT(addr)" 8 bit binary output,

"ST-2614 OUT(addr)" 4 bit binary output, sink, 24Vdc/2A

"ST-2624 OUT(addr)" 4 bit binary output, source, 24Vdc/2A

"ST-2742 OUT(addr)" 2 bit binary output

 McBasic 3.3 reference manual

 181

"ST-2744 OUT(addr)" 4 bit binary output

"ST-2748 OUT(addr)" 8 bit binary output

"ST-2792 OUT(addr)" 2 bit binary output, source, 240Vac/2A, Manual Type

"ST-3114 INPA(addr)" 4 channel analog input, 0~20mA, 12Bit, RTB

"ST-3118 INPA(addr)" 8 channel analog input

"ST-3134 INPA(addr)" 4 channel analog input, 0~20mA, 14Bit, RTB

"ST-3214 INPA(addr)" 4 channel analog input, 4~20mA, 12Bit, RTB

"ST-3218 INPA(addr)" 8 channel analog input

"ST-3234 INPA(addr)" 4 channel analog input, 4~20mA, 14Bit, RTB

"ST-3274 INPA(addr)" 4 channel analog input, 4~20mA, 12Bit, status

"ST-3424 INPA(addr)" 4 channel analog input, 0~10Vdc, 12Bit, RTB

"ST-3428 INPA(addr)" 8 channel analog input

"ST-3444 INPA(addr)" 4 channel analog input

"ST-3474 INPA(addr)" 4 channel analog input, 0~10V DC, 12Bit

"ST-3524 INPA(addr)" 4 channel analog input, -10~+10Vdc, 12Bit, RTB

"ST-3544 INPA(addr)" 4 channel analog input, -10~+10Vdc, 14Bit, RTB

"ST-3624 INPA(addr)" 4 channel analog input, 0~5Vdc, 12Bit, RTB

"ST-3644 INPA(addr)" 4 channel analog input, 0~5Vdc, 14Bit, RTB

"ST-4112 OUTA(addr)" 2 channel analog output, 0~20mA, 12Bit, RTB

"ST-4114 OUTA(addr)" 4 channel analog output

"ST-4212 OUTA(addr)" 2 channel analog output, 4~20mA, 12Bit, RTB

"ST-4214 OUTA(addr)" 4 channel analog output

"ST-4274 OUTA(addr)" 4 channel analog output, 4~20mA, 12Bit

"ST-4422 OUTA(addr)" 2 channel analog output

"ST-4424 OUTA(addr)" 4 channel analog output

"ST-4474 OUTA(addr)" 4 channel analog output, 0~10V, 12Bit

"ST-4522 OUTA(addr)" 2 channel analog output

"ST-4622 OUTA(addr)" 2 channel analog output, 0~5V, 12Bit, RTB

"ST-5101 POS(axis)" incremental encoder input

"ST-5351 POS(axis)" ssi encoder input

Crevis RT devices
"RN-9286" ethercat control device

subnodes (i/o slices):
"RT-1238 INP(addr)" 8 bit binary input

"RT-2328 OUT(addr)" 8 bit binary output

"RT-12DF INP(addr)" 16 bit binary input

"RT-226F OUT(addr)" 16 bit binary output

"RT-1218 INP(addr)" 8 bit binary input, sink, 12V / 24Vdc

"RT-1228 INP(addr)" 8 bit binary input, source, Terminal, 12V / 24Vdc

"RT-1238 INP(addr)" 8 bit binary input, sink/source, 24Vdc

"RT-12DF INP(addr)" 16 bit binary input

"RT-1804 INP(addr)" 4 bit binary input, 110Vac (AC 85V ~ 132V)

"RT-1904 INP(addr)" 4 bit binary input, 220Vac (AC 170V ~ 264V)

"RT-225F OUT(addr)" 16 bit binary output, sink, 24Vdc / 0.5A

"RT-226F OUT(addr)" 16 bit binary output

"RT-2318 OUT(addr)" 8 bit binary output, sink, 24Vdc / 0.5A

"RT-2328 OUT(addr)" 8 bit binary output, source, 24Vdc / 0.5A

"RT-2428 OUT(addr)" 8 bit binary output, source, self -Diagnostic, 24Vdc / 0.5A

"RT-2734 OUT(addr)" 4 bit binary output, MOS Relay,220V,110V, AC/DC, 0.5A

"RT-2744 OUT(addr)" 4 bit binary output, 230Vac / 2A, 24Vdc/2A

"RT-2748 OUT(addr)" 8 bit binary output, 230Vac / 2A, 24Vdc/2A

"RT-2772 OUT(addr)" 2 bit binary output, 24Vdc / 220Vac/2A

"RT-2944 OUT(addr)" 4 bit binary output, MOS Relay, AC /DC Output, 24V/2A

"RT-3114 INPA(addr)" 4 channel analog input, 0~20mA, 12Bit, status

"RT-3118 INPA(addr)" 8 channel analog input

"RT-3134 INPA(addr)" 4 channel analog input, 0~20mA, 14Bit, status

"RT-3138 INPA(addr)" 8 channel analog input

"RT-3154 INPA(addr)" 4 channel analog input, 0~20mA, 15Bit, status

"RT-3158 INPA(addr)" 8 channel analog input

"RT-3214 INPA(addr)" 4 channel analog input, 4~20mA, 12Bit, status

"RT-3218 INPA(addr)" 8 channel analog input

"RT-3234 INPA(addr)" 4 channel analog input, 4~20mA, 14Bit, status

"RT-3238 INPA(addr)" 8 channel analog input

"RT-3254 INPA(addr)" 4 channel analog input, 4~20mA, 15Bit, status

"RT-3258 INPA(addr)" 8 channel analog input

"RT-3424 INPA(addr)" 4 channel analog input, 0~10Vdc, 12Bit, status

 McBasic 3.3 reference manual

 182

"RT-3428 INPA(addr)" 8 channel analog input

"RT-3444 INPA(addr)" 4 channel analog input, 0~10Vdc, 14Bit, status

"RT-3448 INPA(addr)" 8 channel analog input

"RT-3464 INPA(addr)" 4 channel analog input, 0~10Vdc, 15Bit, status

"RT-3468 INPA(addr)" 8 channel analog input

"RT-3624 INPA(addr)" 4 channel analog input, 0~5Vdc, 12Bit, status

"RT-3628 INPA(addr)" 8 channel analog input

"RT-3644 INPA(addr)" 4 channel analog input, 0~5Vdc, 14Bit, status

"RT-3648 INPA(addr)" 8 channel analog input

"RT-3664 INPA(addr)" 4 channel analog input, 0~5Vdc, 14Bit, status

"RT-3668 INPA(addr)" 8 channel analog input

"RT-3704 INPA(addr)" 4 channel analog input, RTD, status

"RT-3804 INPA(addr)" 4 channel analog input, Thermocouple

"RT-3914 INPA(addr)" 4 channel analog input, 12bit diff., 0~20mA, 4~20mA, -20~20mA

"RT-3924 INPA(addr)" 4 channel analog input, 12bit diff., 0~10V, 0~5V, -10~10V, -5~5V

"RT-3934 INPA(addr)" 4 channel analog input, 15bit diff., 0~20mA, 4~20mA, -20~20mA

"RT-3944 INPA(addr)" 4 channel analog input, 15bit diff., 0~10V, 4~5V, -10~10V, -5~5V

"RT-4114 OUTA(addr)" 4 channel analog output, 0~20mA, 12Bit

"RT-4118 OUTA(addr)" 8 channel analog output

"RT-4134 OUTA(addr)" 4 channel analog output, 0~20mA, 14Bit

"RT-4138 OUTA(addr)" 8 channel analog output

"RT-4154 OUTA(addr)" 4 channel analog output, 0~20mA, 15Bit

"RT-4158 OUTA(addr)" 8 channel analog output,

"RT-4214 OUTA(addr)" 4 channel analog output, 4~20mA, 12Bit

"RT-4218 OUTA(addr)" 8 channel analog output,

"RT-4234 OUTA(addr)" 4 channel analog output, 4~20mA, 14Bit

"RT-4238 OUTA(addr)" 8 channel analog output,

"RT-4254 OUTA(addr)" 4 channel analog output, 4~20mA, 15Bit

"RT-4258 OUTA(addr)" 8 channel analog output,

"RT-4424 OUTA(addr)" 4 channel analog output, 0~10V, 12Bit

"RT-4428 OUTA(addr)" 8 channel analog output,

"RT-4444 OUTA(addr)" 4 channel analog output, 0~10V, 14Bit

"RT-4448 OUTA(addr)" 8 channel analog output,

"RT-4464 OUTA(addr)" 4 channel analog output, 0~10V, 15Bit

"RT-4468 OUTA(addr)" 8 channel analog output,

"RT-4524 OUTA(addr)" 4 channel analog output, -10~10V, 12Bit

"RT-4544 OUTA(addr)" 4 channel analog output, -10~10V, 14Bit

"RT-4564 OUTA(addr)" 4 channel analog output, -10~10V, 15Bit

"RT-4624 OUTA(addr)" 4 channel analog output, 0~5V, 12Bit

"RT-4628 OUTA(addr)" 8 channel analog output,

"RT-4644 OUTA(addr)" 4 channel analog output, 0~5V, 14Bit

"RT-4648 OUTA(addr)" 8 channel analog output,

"RT-4664 OUTA(addr)" 4 channel analog output, 0~5V, 15Bit

"RT-4668 OUTA(addr)" 8 channel analog output,

Wago devices
"750-354" ethercat coupler

subnodes (i/o slices):
"750-431 INP(addr)" 8 bit binary input

"750-454 INPA(addr)" 2 bit analog input

"750-459 INPA(addr)" 4 bit analog input

"750-461 INPA(addr)" 2 bit analog input

"750-469 INPA(addr)" 2 bit analog input

"750-476 INPA(addr)" 2 bit analog input

"750-512 OUT(addr)" 2 bit binary output

"750-530 OUT(addr)" 8 bit binary output

"750-556 OUTA(addr)" 2 bit analog output

"750-630 POS(axis)" ssi encoder input

 McBasic 3.3 reference manual

 183

Beckhoff devices
"EK1100" ethercat coupler

subnodes (i/o slices):
"EL1002 INP(addr)" 2 bit binary input 24vdc 3ms typ3 pnp

"EL1004 INP(addr)" 4 bit binary input 24vdc 3ms typ3 pnp

"EL1008 INP(addr)" 8 bit binary input 24vdc 3ms typ3 pnp

"EL1012 INP(addr)" 2 bit binary input 24vdc 10us typ3 pnp

"EL1014 INP(addr)" 4 bit binary input 24vdc 10us typ3 pnp

"EL1018 INP(addr)" 8 bit binary input 24vdc 10us typ3 pnp

"EL1024 INP(addr)" 4 bit binary input 24vdc 3ms typ2 pnp

"EL1034 INP(addr)" 4 bit binary input 24vdc 10us typ1 pnp

"EL1084 INP(addr)" 4 bit binary input 24vdc 3ms typ3 npn

"EL1088 INP(addr)" 8 bit binary input 24vdc 3ms typ3 npn

"EL1094 INP(addr)" 4 bit binary input 24vdc 10us typ3 npn

"EL1098 INP(addr)" 8 bit binary input 24vdc 10us typ3 npn

"EL1124 INP(addr)" 4 bit binary input 5vdc 10uS

"EL1134 INP(addr)" 4 bit binary input 48vdc 10us typ1

"EL1144 INP(addr)" 4 bit binary input 12vdc 10uS

"EL1252 INP(addr)" 2 bit binary input 24vdc 1us typ3 npn

"EL1702 INP(addr)" 2 bit binary input 230v

"EL1712 INP(addr)" 2 bit binary input 120v

"EL1722 INP(addr)" 2 bit binary input 230v

"EL1862 INP(addr)" 16 bit binary input 24vdc 3ms typ3 pnp

"EL1872 INP(addr)" 16 bit binary input 24vdc 10us typ3 pnp

"EL2002 OUT(addr)" 2 bit binary output 24vdc 0.5A

"EL2004 OUT(addr)" 4 bit binary output 24vdc 0.5A

"EL2008 OUT(addr)" 8 bit binary output 24vdc 0.5A

"EL2022 OUT(addr)" 2 bit binary output 24vdc 2.0A

"EL2024 OUT(addr)" 4 bit binary output 24vdc 2.0A

"EL2042 OUT(addr)" 16 bit binary output 24vdc 0.5A

"EL2084 OUT(addr)" 4 bit binary output 24vdc 2.0A npn

"EL2088 OUT(addr)" 8 bit binary output 24vdc 2.0A npn

"EL2602 OUT(addr)" 2 bit binary output 230v 5.0A relay

"EL2612 OUT(addr)" 2 bit binary output 230v 2.0A relay

"EL2622 OUT(addr)" 2 bit binary output 230v 2.0A relay

"EL2624 OUT(addr)" 4 bit binary output 230v 2.0A relay

"EL2652 OUT(addr)" 2 bit binary output 230v 1.0A relay

"EL2712 OUT(addr)" 2 bit binary output 12-230v 0.5A triac

"EL2722 OUT(addr)" 2 bit binary output 12-230v 1.0A triac

"EL2732 OUT(addr)" 2 bit binary output 12-230v 0.5A triac

"EL2828 OUT(addr)" 8 bit binary output 24vdc 2.0A

"EL2872 OUT(addr)" 16 bit binary output 24vdc 2.0A

"EL4001 OUTA(addr)" 1 analog output 12-bit 0..10V

"EL4002 OUTA(addr)" 2 analog output 12-bit 0..10V

"EL4004 OUTA(addr)" 4 analog output 12-bit 0..10V

"EL4008 OUTA(addr)" 8 analog output 12-bit 0..10V

"EL4031 OUTA(addr)" 1 analog output 12-bit -10..10V

"EL4032 OUTA(addr)" 2 analog output 12-bit -10..10V

"EL4034 OUTA(addr)" 4 analog output 12-bit -10..10V

"EL4038 OUTA(addr)" 8 analog output 12-bit -10..10V

"EL5001 POS(axis)" 1 SSI encoder interface

"EL5002 POS(axis)" 2 SSI encoder interface

Control Techniques devices (drives)
"COMMANDER/SK PWR(axis)"

"UNIDRIVE/SP [PWR(axis1)] POS(axis2)" axis1 is number of axis, axis2 is number of encoder

"UNIDRIVE/SP POS(axis)" drive, axis is number of axis and encoder

"UNIDRIVE/M300 PWR(axis)" drive, axis is number of axis, no encoder

"UNIDRIVE/M400 PWR(axis)" drive, axis is number of axis, no encoder

"UNIDRIVE/M600 PWR(axis)" drive, axis is number of axis, no encoder

"UNIDRIVE/M700 [PWR(axis1)] POS(axis2)]" axis1 is number of axis, axis2 is number of encoder

"UNIDRIVE/M701 [PWR(axis1)] POS(axis2)]" axis1 is number of axis, axis2 is number of encoder

"UNIDRIVE/M702 [PWR(axis1)] POS(axis2)]" axis1 is number of axis, axis2 is number of encoder

