Local modifiers in the Tangle

Serguei Popov!*

March 17, 2018

!'Department of Statistics, Institute of Mathematics, Statistics and Scientific Computation, Uni-
versity of Campinas — UNICAMP, rua Sérgio Buarque de Holanda 651, 13083-859, Campinas SP,
Brazil
e-mails: popov@ime.unicamp.br and serguei.popov@iota.org

Abstract

As of today, there are many cryptocurrency systems around. They mostly
share one common feature: all participants of the network interpret the same
ledger in the same way. In this paper, we introduce the idea of local modifiers:
the nodes of the network can interact with the ledger in different ways, depend-
ing on various kinds of information locally available to them. We then argue
that such an approach permits to increase the security and the scalability of
the Tangle.

1 Introduction

In general, cryptocurrency systems are assumed to work in the following way. At
each time ¢ > 0, the network is composed by finitely many nodes. For definiteness,
we assume that all possible nodes are indexed by natural numbers!, and St(n) € &
stands for the state of the node n (i.e., if it exists or not, online/offline etc.); for
now, we assume that all possible nodes’ states are elements os a finite set &. We
also denote by A; C N the set of nodes that are online at time ¢, i.e., Ay = {n € N:
St(n) = “online” }. Next, at each time ¢ > 0 there is a data set Ledger(t) describing
the whole history of the system up to that time moment. In principle, it is stored in

*corresponding author
Yin this paper, we use the notation N = {1,2,3,...} for the natural numbers, and Z, =
{0,1,2,...} for positive integers

all nodes of the network, and is the same for everyone. This ledger is incremental,
in the sense that Ledger(t) C Ledger(s) for all ¢ < s; that is, data is added but never
deleted.

Now, let us make a simplifying assumption that the ledger is a (growing) set of
transactions®. Basically, a node must be able to do three things:

(a) Determine if a given subset of the ledger is walid (no conflicting transactions
etc., let’s not elaborate on it, for now).

(b) Determine the confidence level v;(x) € [0, 1] of a given transaction x € Ledger(t).

(¢c) Know what to do in order to issue a transaction. (in Bitcoin it’s clear, but in
IOTA it must do PoW and know where to attach).

Let us elaborate on item (b) above. We do not yet specify what exactly this confi-
dence level is, apart from mentioning that 7;(x) = 1 means that transaction = must be
accepted (i.e., considered to be confirmed), while v;(z) = 0 means that transaction x
must not be accepted. As an example, the usual rule “accept after six confirmations”
in Bitcoin can be translated to this notation as ;(x) = 1 if transaction x has at
least six confirmations at time ¢, and v(z) = 0 otherwise. Of course, intermediate
(between 0 and 1) confidence levels are also possible. (However, we have to observe
that the confidence level need not be necessarily equal to the probability that the
transaction will eventually be confirmed; rather, it is just the result of application of
some pre-defined rule.) What is important to observe, is that ;(x) is completely de-
termined by the state of the ledger at time ¢: there exists a (deterministic) function I'
such that

Y (z) = I'(x, Ledger(t)). (1)
As for the item (c), the situation is similar: if a node m € A; has to issue a transaction
at time ¢, the action Act™ (¢) of the node at the moment ¢ is determined by the current

state of the ledger together with the properties of account m (such as private keys
etc.): for a deterministic function ¥,

Act™ (t) = W(m, Ledger(t)). (2)

In the case of IOTA, this means that a node chooses the probability distribution
of the pair of attachments’ locations based only on the current state of the ledger

2in general, there may also be smart contracts or any other sorts of data, but we focus on
transactions to make the exposition cleaner

(here we are discussing only the “honest” nodes, i.e., the nodes that use the default
attachment strategy; see [3] for definitions and explanations).
Let us think about the drawbacks of the above approach. For example:

e The assumption that all online nodes have Ledger(¢) at time ¢ is clearly imprac-
tical because of the propagation delays. For the same reason, it can hardly be
true that all nodes have the same ledger at any given time3.

e Also, the requirement that all nodes store the whole history may be problematic,
simply because of limited hard disk space.

e Another important observation is that any person or entity willing to attack the
network, can actually predict the behavior of any node. That is, the attacker
knows which actions other nodes will take if he e.g. broadcasts a given set of
(possibly malicious) transactions, and which transactions they will consider as
confirmed in such circumstances. Example: parasite chain attack, cf. Section 4.1

of [2].

1.1 Local modifiers

Now, we describe the main idea of this paper. Let us examine the above-mentioned
parasite chain attack (see Figure 1). The attacker prepares a secret subtangle contain-
ing a transaction z which spends all funds from his address a; to another address as
also controlled by him. In the meanwhile, from the same address a;, he pays to a
merchant (transaction y on Figure 1), transferring some amount to an address b
controlled by the merchant. The attacker then waits until the merchant delivers
the goods, and after that broadcasts his secret subtangle, hoping that its weight is
enough to force the tip-selecting walks of the honest nodes typically end in one of the
attacker’s tips. This will make the attacker’s subtangle outgrow the legitimate one,
and therefore the double-spending transaction will be confirmed, while the legitimate
one will be dropped by the network.

The key observation is that the attacker must first wait, and only after that reveal
his secret subtangle all at once. That is, this secret subtangle will arrive later than
1t normally would to honest nodes. Now, assume that the honest nodes use the

3it may be approximately true for cryptocurrencies with infrequent blocks, such as the Bitcoin
(and only at times when the last block has sufficiently propagated), but we cannot have anything
like this in any globally scalable distributed cryptosystem

time

main tangle

parasite subtangle

Figure 1: An illustration of an attempted double-spend. The transaction x spends the
funds that the attacker wants to spend once more in transaction y, before revealing
the subtangle containing . The thick blue line corresponds to a trajectory of a typical
tip-selecting random walk (with ¢ = 0; see (7) below). (The grey area contains many
transactions which are not shown in order to keep the picture clean.)

following rule: if a transaction arrives later than it should?®, then “penalize” it by e.g.
reducing its (own) weight, or in some other way (we’ll discuss it below).

What would happen then? Well, the honest nodes have made local modifications
by decreasing the weights of attacker’s transactions, thus causing their tip-selecting
random walk to avoid the attacker’s subtangle, causing the double-spending attack
to fail.

Another important observation is that the attacker typically cannot know the
local modifiers of the honest nodes (at least if the honest nodes exchange the in-
formation via encrypted channels), and so the attacker cannot predict the honest
nodes’ behavior. A consequence of this is that it becomes more difficult to attack the
network.

More formally, for m € A; let us denote by Mdf™ () the set of local modifiers of
the node m at time ¢; we put Mdf™ (t) = 0 in the case when there are no modifiers
at all. We then denote by Ledger(t) ® Mdf"™(t) the locally modified (by node m)
ledger at time ¢, with the convention Ledger(t) & () = Ledger(t). The new versions
of (1)—(2) are then

W™ () = T (z, Ledger(t) @ Mdf™ (1)), (3)

4in Section 2 we elaborate on the meaning of this

and
Act'™(t) = W (m, Ledger(t) ® Mdf"™ (1)). (4)

For formal reasons, we also consider a “special” (virtual) node with index 0. This
node has no local modifiers, i.e., Mdf(o)(t) = () for all t > 0. Let us also define
A7 = A, U{0}.

Now, the problem is that, despite the fact that the nodes view the ledger differ-
ently, they still need to achieve consensus on the validity of transactions. What we
need, is that, for all t5 > 0,

P tlggo %(m) (x) exists and is the same for all m € Z, | =1, for all z € Ledger(¢o).

(5)
Note that® (5) means that the newcoming nodes, which have no local modifiers at the
moment they join the system, are nevertheless able to access correctly the validity of
transactions (except maybe for the most recent ones).

Besides proving (5), it would be useful to obtain some quantitative statements,
e.g. on the speed of convergence. Generally, purely qualitative statements in the
crypto context may be misleading: e.g., one can “prove” that the Bitcoin (as well
as anything else) is broken simply by arguing that the probability of guessing the
private key of an address is strictly positive, and so, eventually, someone will guess
it a.s.

Our goal is then to introduce some concrete rules of doing local modifications, in
such a way that (5) holds.

1.2 More definitions and notations

We now recall some definitions and notations of [3]. Define card(A) to be the car-
dinality of (multi)set A. For an oriented graph 7 = (V| E), where V is the set of
vertices and F is the multiset of edges, and v € V', let us denote by

degin(v) = C&l"d{e = (ulu u2> SO Ug = U}a
deg,(v) = card{e = (uj,uz) € E : uy = v}

the “incoming” and “outgoing” degrees of the vertex v (counting the multiple edges).
In what follows, we refer to multigraphs simply as graphs. The vertices of the tangle
are also called transactions. For u,v € V, we say that u approves v, if (u,v) € E. We
use the notation A(u) for the set of the vertices approved by u. We say that u € V'

Srecall that 0 € Z

references v € V if there is a sequence of sites u = xg,x1,...,2, = v such that
z; € A(zj—q) for all j = 1,...,k (i.e., there is a directed path from u to v). If
deg;,(w) = 0 (i.e., there are no edges pointing to w), then we call the vertex w € V'
a tip.

Let G be the set of all Directed Acyclic Graphs (also known as DAGs, that is,
oriented graphs without cycles) G = (V| F) with the following properties:

e the graph G is finite and the multiplicity of any edge is at most two;

e there is a (unique) distinguished vertex p € V such that deg,, (v) = 2 for all
v e V\{p}, and deg, . (p) = 0 (this vertex p is called the genesis);

e any v € V such that v # @ references @; that is, there is an oriented path®
from v to p (one can say that the graph is connected towards).

The tangle is a continuous-time Markov process on the space G. The state of the
tangle at time t > 0is a DAG T (t) = (V7 (t), E7(t)), where V7(t) is the set of vertices
and E7(t) is the multiset of directed edges at time ¢. The process’s dynamics are
described in the following way:

e The initial state of the process is defined by V7(0) = p, E7(0) = 0.

e The tangle grows with time, that is, Vr(t1) C Vr(te) and Er(t1) C Er(t2)
whenever 0 < ¢ < to.

e For a fixed parameter A > 0, there is a Poisson process of incoming transactions;
these transactions then become the vertices of the tangle.

e Each incoming transaction chooses” two vertices v' and v” (it is possible that
v’ = "), and two oriented edges from v to v’ and v” are added®.

e Specifically, if a new transaction v arrived at time ¢, then V3 (t'+) = V(') U{v},
and Br(t+) = Br(t) U {(v,0"), (0,0},

Let us write

PO(z) = {y € T(t):y is referenced by =},
FO(z)={z € T(t) : z references z}

5not necessarily unique

"the precise selection mechanism will be described below

8we say in this case that this new transaction was attached to v’ and v”, or, equivalently, v
approves v’ and v”

for the “past” and the “future” with respect to = (at time ¢). Observe that these
introduce a partial order structure on the tangle. Notice that, if ¢y is the time moment
when x was attached to the tangle, then P®(z) = P®)(z) for all t > t,. We also

define the cumulative weight HY of the vertex x at time ¢ by

H =1+ card(FO(z)) =1+ Z 1; (6)

yeF M) (x)

that is, the cumulative weight of x is one (its “own weight”) plus the number of
vertices that reference it.

There is some data associated to each vertex (transaction), created at the moment
when that transaction was attached to the tangle; we assume that it is an element of
some (unspecified, but finite) set D. It is important to note that there is a natural
way to say if the set of vertices is consistent with respect to the data they contain.
To emphasize that the vertices of G € G contain some data, we consider the marked
DAG GPl to be (G,0) = (V, E,d), where 0 is a function V' — D. Let us define GP!
to be the set of all marked DAGs (G,), where G € G.

It is important to observe that the way how a node chooses two transactions
to approve is not enforced. However, the recommended algorithm for this may be
described in the following way. Assume that a node is about to issue a transaction,
and that the state of the tangle that it observes is (G,0) (note that G need not be
equal to the real state of the tangle at that time, since the node may not be fully
synchronized with the network). Let us denote by £ the set of all vertices that are tips
in G. We then define the tip-selecting random walk, in the following way. It depends
on a nonnegative parameter ¢ (the backtracking probability) and on a function f.
The initial state of the random walk is the genesis p, and it is stopped upon hitting
the set L. Let f: R, — R, be a monotone nonincreasing function. The transition
probabilities are defined in the following way: the walk backtracks (i.e., jumps to a
randomly chosen site it approves) with probability ¢ € [0,1/2); if y approves x #

(y ~» x), then the transition probability ngg;) is proportional to f(H, — H,), that is

g, if y € A(z),
PY) — (1=) f(He — Hy) . ifxe Aly), 7
T Do SO —)) g
0, otherwise

(for z = p we define the transition probabilities as above, but with ¢ = 0).

Let us comment on (7), to get some intuition on what the above random walk
really does. In average (since ¢ < 1/2) the random walk “prefers” to go towards
the tips. Now, when it makes a jump toward the tips (cf. the second line in (7)), it
“prefers” to go to the site which minimizes the difference of cumulative weights. For
instance, let us go back to Figure 1 and assume that the walker is currently in u, and
the parasite subtangle have been published already. Then, typically, the cumulative
weight of will be much less than that of v, and so, according to (7), the walk is much
more likely to jump to v than to x. One can also observe that, in the case when f
decays very rapidly and ¢ = 0, the random walk converges to the path chosen by the
GHOST protocol [4].

The selection of two tips w; 2 where a newcoming transaction will be attached is
done using the following two-step procedure. First, we use the above random walk
with some (very) rapidly decaying function fy (for example, fo(s) = e~ ** with a
large a > 0) in order to choose a “model tip” wy. Then, using random walks with
a “moderately” decaying function f; (for example, fo(s) = s73) we find w; 5 as the
tips where they stopped, also checking that

P(wo) U P(wl) U P(QUQ)

is consistent (if not, then discard the newly chosen tips and rerun the random walk).
One can also require that w; should be different from wsy; for that, one may re-run
the second random walk in the case its exit point happened to be the same as that
of the first random walk.

We say that a transaction is confirmed with confidence ~y (where 7 is some pre-
defined number, close to 1), if, with probability at least 7o, the random walk with
(rapidly decaying fo) ends in a tip which references that transaction.

2 Constructing the local modifiers

There are, of course, many possible ways to construct reasonable local modifiers. In
the following, we describe one basic idea that, apparently, works well against both
parasite chain attack and splitting attack. Let us denote by tq(,m) the time when the
node m received the transaction v. Notice that, for a given m, the dataset (tq(,m)) need
not be necessarily consistent: if u references v, t&m) need not be smaller than tq(,m).
Now, assume that a given node m was online during a relatively long time, and
“believes” that it has a reasonably honest picture of the network. It may then consider
choosing tips not with the random walk defined by (7), but with the following one.

Let g : R,y — R, be a monotone nonincreasing function (it may, although does not

8

necessarily need to, be equal to the function f used in (7)). Analogously, let ¢’ €
[0,1/2) be the backtracking probability. The (new) transition probabilities are defined
in the following way:

/

%, if y € A(x),
(m) (m)
~m 1 — t
plme) — ¢)g((CRRTT ") if v € A(y), (®)
szeA()9((t —)")
0, otherwise,

\

where (a)" := max{0, a} is the positive part of a € R (again, for x = p we define
the transition probabilities as above, but with ¢’ = 0). The basic idea is that, if y
approves x, but the former one was received much later than the latter, the random
walker would typically avoid jumping from x to y. This provides some good defense
against the parasite chain attack, because the attacker needs to keep the parasite
chain hidden for some time, which means that the (local) time differences in the
place where the parasite chain is attached to the main tangle would be rather large.

Another advantage of the abova approach is that the cumulative weight calculation
may be computationally costly; a node using the random walk defined by (8) does
not have to do this task.

Of course (and that may actually be a good idea), one can also use some “combi-
nation” of (7) and (8) to define the transition probabilities (i.e., use both cumulative
weights and the local modifiers).

Then, let us describe how this approach defends against the splitting attack (same
idea). The attacker wants to maintain the balance between two conflicting branches.
Denote by Wi (t), Ws(t) their weights at time ¢ > ¢y (¢ is the time when the attack
starts), see Figure 2. Grosso modo, he needs to maintain W; &~ W5. He checks the
values at times t, = to + on. However, he sees Wi(t,) + £ and Wa(tn) + &5,
where (fﬂ),n > 1) are i.i.d. random variables (errors), let us assume them to be
Normal(0,6%), with o > 1.

The idea is that it is better for the attacker to send transactions in batches. So
he needs to “store” transactions. But then the local modifiers will devalue the stored
transactions.

Some good math will be inserted to this place :) In particular, we will use the
Lyapunov functions method [1].

e ')"/""4//’¢ :

2 W (t)
] Wi(t)
711 5
AN T Y
to t ti'me

Figure 2: Splitting attack.

References

[1] M. MENSHIKOV, S. Porov, A. WADE (2017) Non-homogeneous Random Walks:
Lyapunov Function Methods for Near-Critical Stochastic Systems. Cambridge
University Press, Cambridge.

[2] S. Popov (2015) The Tangle. https://iota.org/I0TA_Whitepaper.pdf

[3] S. Porov, O. SaA, P. FINARDI (2017) Equilibria in the Tangle.
arXiv:1712.05385

[4] Y. SOMPOLINSKY, A. ZOHAR (2013) Secure high-rate transaction processing in
Bitcoin. https://eprint.iacr.org/2013/881.pdf

10

