

A.L.P.S.[®] Proximal Humerus Plating System

Surgical Technique

Table of Contents

Introduction	. 3
Plate Options	. 5
Step 1: Approach Patient and Fluoroscopy Positioning Exposure Managing Biceps Tendon and Deltoid	. 6 . 6
Step 2: Achieve Initial Reduction	. 8
Step 3: Plate Selection	. 9
Step 4: Plate Positioning Visual Positioning K-wire Targeting	. 9
Step 5: Distal Provisional Screw Insertion	11
Step 6: Proximal Peg or Screw InsertionPeg or Screw OptionsRecommended Peg/Screw OrderColor Coded Instrumentation3.2 mm Locking Pegs3.5 mm Locking Cortical and 4.0 mm Locking Cancellous ScrewsPeg or Screw Insertion	12 12 12 13 14
Peg or Screw Options Recommended Peg/Screw Order Color Coded Instrumentation 3.2 mm Locking Pegs 3.5 mm Locking Cortical and 4.0 mm Locking Cancellous Screws	12 12 13 14 15 15 16 16
Peg or Screw Options Recommended Peg/Screw Order. Color Coded Instrumentation 3.2 mm Locking Pegs 3.5 mm Locking Cortical and 4.0 mm Locking Cancellous Screws Peg or Screw Insertion. Step 7: Distal Screw Insertion. Screw Options Holes with F.A.S.T.® Guide Inserts: Holes without F.A.S.T.® Guide Inserts:	12 12 13 14 15 15 16 16 17

Appendix A: Instructions for inserting Multi-Directional Screws Drilling Determine Screw Length Screw Insertion	19 19
Appendix B: Plate Contouring using the Benders	20
Concave/Convex Contouring	20
Axial Contouring	21
Planar Contouring	21
Ordering Information	22

Introduction

The A.L.P.S. Proximal Humerus Plating System is an integral part of the Zimmer Biomet continuum of care for shoulder treatment. Zimmer Biomet offers a diverse portfolio of options for the life-cycle of patients, from sports-related injuries to fracture fixation to shoulder replacement. It features the next generation in humeral plating, offering the surgeon 2 plating options based on preference and fracture pattern.

The A.L.P.S. Proximal Humerus Plating System takes full advantage of the principle of Spatial Subchondral Support, which was successfully used in its predecessors, the S^{3®} Proximal Humerus Plating System and the DVR[®] Anatomic Volar Plating System.

The A.L.P.S. Proximal Humerus Plating System is designed to provide intraoperative flexibility and efficiency to the surgical team. The A.L.P.S. Proximal Humerus Plating System is designed to minimize the risk of some of the complications commonly associated with treating proximal humerus fractures by its design to:

- Minimize articular surface screw penetration by using pegs with smooth blunt ends that engage the subchondral bone with blunt fixation
- Minimize subacromial impingement by sitting 2 cm distal to the greater tuberosity (Low Plate only)

The A.L.P.S. Proximal Humerus Plating System features **A.L.P.S. Technology** which utilizes:

- Pre-loaded, disposable F.A.S.T. Guide Inserts help the surgeon to drill accurately, and reduce intraoperative assembly to save OR time.
- Tapered triple-lead locking screws and dual threaded pegs facilitate easy removal
- Cobalt chrome multi-directional locking screws allow for up to a 25° cone of angulation
- Anatomic plates that can be **contoured in-situ** for optimal fit (11 & 14-hole plates only)

Designed to help minimize the risk **Temporary stabilization** of articular surface penetration by of the fracture and suture using Smooth Blunt Locking Pegs to capture of the tuberosities using suture/K-wire holes engage subchondral bone **Confirm plate positioning** with central K-wire hole targeting The spatial subchondral TiMAX[®] surface treatment, support helps prevent which has been shown to have varus collapse. **Increased Fatigue Strength*** Medial calcar screw provides additional stability in the inferior medial cortex. Locking screws provide stability in osteopenic or osteoporotic bone.

> **Designed to reduce the need to release the deltoid** by using pre-contoured anterior curvature

to navigate the deltopectoral interval (7,11,14-hole plates)

Customized contouring

utilizing *in-situ multi-planar bending* of the shaft (11 and 14-hole plates)

*Compared to 316L Electropolished Stainless Steel, Type I Anodized titanium, and machined titanium.¹

Plate Options

Designed to minimize varus collapse using *converging and diverging peg trajectories* that create an internal subchondral support system through range of motion.

Screw Options

Optimal fixation achieved with tapered, triple lead locking and low profile non-locking screw options

25° cone of angulation using cobalt chrome multi-directional locking screws (MDS) that lock into the plate by creating their own threads

One Driver Simplicity T15 driver used for all screws and pegs

F.A.S.T. Guide Inserts

Facilitate accurate drilling and easy plate identification with *pre-loaded F.A.S.T. Guide inserts* – Lime = Left, Rose = Right (shaft holes)

Gold F.A.S.T. Guide Inserts indicate the proximal holes that can utilize *locking peg fixation*

Figure 2

Step 1: Approach

Patient and Fluoroscopy Positioning

Proper patient positioning and fluoroscopy is critical to ensure the fracture can be adequately visualized. For the purposes of this technique, the deltopectoral approach is performed in a 45° beach chair orientation (Figure 1). The arm of the fluoroscopy machine can come in from the top or side, depending on surgeon preference.

Note: An alternative patient position is supine using a radiolucent arm table.

Exposure

Locate and mark the corocoid process and the axis of the humeral shaft and begin your 12–14 cm incision laterally between these two landmarks, in the standard deltopectoral approach (Figure 2). Care is taken to ensure that the incision is not crossing the anterior axillary fold. The deltopectorial interval is developed and the cephalic vein is retracted laterally or medially.

Managing Biceps Tendon and Deltoid

Retract the coracobrachialis medially and the deltoid laterally, taking care not to injure the axillary and musculocutaneous nerves. Identify the pectoralis insertion at the floor of the deltopectoral interval. If necessary, release the proximal third of the pectoralis tendon for better exposure. Develop the subacromial space and mobilize the proximal deltoid with deltoid retractor if desired (Figure 3).

- Note: The biceps tendon is kept intact throughout the procedure for rotational alignment and plate positioning and then may be released/tenodesed after implant fixation.
- Note: The 7, 11 and 14 hole plates are designed to curve anteriorly between the deltoid pectoralis interval, to help minimize release of the deltoid insertion.

Figure 5

Figure 6

Step 2: Achieve Initial Reduction

Reduce the humeral head fragments using traction, manipulation or your preferred technique:

- Place sutures in to the osseotendinous junction of the rotator cuff to reduce the tuberosities (Figure 4).
- Insert a blunt elevator into the fracture to reduce the head and recreate the natural 135° neckshaft angle and correct apex anterior angulation (Figure 5)
- Make a 2-part fracture by tying the head and tuberosities together, then reducing to the shaft (Figure 6)
- Insert crossing K-wires from anterior to posterior to hold the reduction, and then confirm proper reduction using fluoroscopy.

- Note: K-wires may also be used through the suture holes around the proximal edge of the plate for provisional fixation and reduction assistance.
- Note: Zimmer Biomet bone grafting or osteoconductive agents may be considered for bony voids or gaps that are not intrinsic to the stability of the bony structure.

Figure 8

Step 3: Plate Selection

Based on surgeon preference, choose the plate style that is most suited for the fracture. The low plate is designed to minimize the risk of subacromial impingement, whereas the high plate is designed to offer additional screw fixation of the greater tuberosity fragment (Figure 7). Both plate styles provide medial calcar and spatial subchondral support of the humeral head.

Note: Patients with larger anatomy may require the plate to sit more distal. Patients with smaller anatomy may require a more proximal plate position.

Step 4: Plate Positioning

Visual Positioning

Select the appropriate length plate (3, 4, 7, 11 or 14 hole). Choose a right or left plate utilizing F.A.S.T. Guide color identification in shaft holes (Figure 8):

Left plates = Lime-colored

Right plates = Rose-colored

Align the plate immediately lateral to the bicipital groove (Figure 7). To determine the appropriate placement on the greater tuberosity:

- Low plate = approximately 2 cm distal to the greater tuberosity
- High plate = approximately 1 cm distal to the greater tuberosity

Figure 13

K-wire Targeting

Central K-wire Hole

This primary targeting method allows for symmetrical peg or screw distribution in all four quadrants of the humeral head.

- Drill the 2.0 mm K-wire (KW20SS) through the central K-wire hole on the proximal portion of the plate (Figure 11)
- Using fluoroscopy, confirm the K-wire is centrally located in both anterior-posterior and lateral planes (Figure 12)
- If it is off-axis, remove the K-wire and re-drill until the center is reached

Alternate Targeting through Medial Calcar Screw Hole

This targeting method may be preferred if there is comminution in the medial calcar that necessitates peg or screw support.

- Insert the 2.0 mm K-wire Adapter (110017541) into the F.A.S.T. Guide of the medial calcar screw position (Figure 13)
- Drill the K-wire through the adapter into the medial calcar screw hole to estimate the distance from the medial wall of the calcar
- Using fluoroscopy, confirm that the K-wire is 2-4 mm proximal to the medial wall of the calcar (Figure 14)

Step 5: Distal Provisional Screw Insertion

Drill through the proximal oblong hole in the shaft of the plate using the 2.7 mm Calibrated Drill Bit (214227070) through the 2.7 mm end of the Soft Tissue Guide (110017533) (Figure 15).

Determine the required non-locking screw length using the Shoulder Plate Depth Gauge (110017535) (Figure 16). Insert the 3.5 mm T15 Low Profile Non-Locking screw in the oblong hole in the shaft of plate (1100177XX) using the T15 Driver and Ratcheting Screwdriver Handle (214124000) (Figure 17).

- Note: Do not fully tighten the screw to allow for later plate adjustments.
- Note: K-wires may also be used in the shaft or to provide additional provisional fixation.

Figure 18

Figure 19

Step 6: Proximal Peg or Screw Insertion

Peg or Screw Options

Select the appropriate screw based on bone quality or surgeon preference (Figure 18).

Recommended Peg/Screw Order

It is recommended that the medial calcar screw or peg is inserted first. However, if a K-wire is already in place and being used for provisional fixation, proceed to the next hole.

Color Coded Instrumentation

The instrumentation has been color-coded for easy identification (Figure 19):

- Gold = 3.2 mm Gold Locking Pegs (Gold 3.2 mm F.A.S.T. Guide Inserts indicate the positions that are recommended to be used with pegs)
- Silver = 3.5 mm Locking Cortical Screws, 3.5 mm Low Profile Non-Locking Screws, 4.0 mm Locking Cancellous Screws and 3.5 mm Locking MDS
- Note: Prior to drilling, the K-wire(s) should be bent to avoid drill bit obstruction.

3.2 mm Locking Pegs

Drilling

- Preload gold 3.2 mm Drill Sleeve (110017561) on to the 3.2 mm Calibrated Drill Bit (110017537)
- Drill through gold F.A.S.T. Guide Insert
- Before removing 3.2 mm Drill Bit, slide drill sleeve against the F.A.S.T. Guide Insert (Figure 20)

IMPORTANT: Regardless of peg or screw type, drill cautiously to avoid perforation through the far cortex. Using fluoroscopic guidance, advance drill until resistance is felt from subchondral bone.

Determine Peg Length

- Remove 3.2 mm Drill Bit from F.A.S.T. Guide Insert
- Read measurement from proximal end of the gold 3.2 mm Drill Sleeve (Figure 21)
- Note: If a second measurement is required, use the Shoulder Plate Depth Gauge to measure directly off the plate (Figure 22).
- Note: Manual drilling can be used to help reduce the likelihood of perforating the subchondral bone.
- Attach the 3.2 mm Drill Bit to the 2 Nm Torque Limiting Handle (214118001)
- Advance the drill through the F.A.S.T. Guide Insert, stopping when resistance is felt from subchondral bone (Figure 20)

Figure 24

3.5 mm Locking Cortical and 4.0 mm Locking Cancellous Screws

If screws are preferred over pegs in the proximal holes with gold F.A.S.T. Guide Inserts, follow these steps.

Drilling

- Apply end labeled "2.7 mm F.A.S.T. GUIDE" of the 2.7 mm Soft Tissue/Drill Guide (110017533) over the gold F.A.S.T. Guide Insert
- Ensure that Guide is fully seated on to F.A.S.T. Guide Insert before drilling.
- Using the 2.7 mm Calibrated Drill Bit (214227070), drill through the Drill Guide and gold F.A.S.T. Guide Insert (Figure 23)

Determine Screw Length

- Before removing the 2.7 mm Drill Bit, read measurement from proximal end of the 2.7 mm Soft Tissue/Drill Guide (Figure 24)
- Remove the drill bit from the F.A.S.T. Guide Insert

<

3.5 mm Locking Cortical Screws

3.5 Low Profile Non-Locking Screws

3.5 mm Locking Multi-Directional Screws (MDS)

Figure 25

Figure 26

Peg or Screw Insertion

Attach the T15 driver to the pink 2 Nm Torque Limiting Handle (214118001). If F.A.S.T. Guide Insert is still attached to plate, remove and discard. Insert the appropriate size peg or screw with the same driver (Figure 25).

Note: If the drill perforated the subchondral bone, use a shorter peg or screw to help ensure that it is not in the joint.

Step 7: Distal Screw Insertion

The two most proximal shaft screw holes are preloaded with color-coded F.A.S.T. Guide Inserts in order to help with plate identification. The most distal holes in the 4, 7, 11 and 14-hole plates are not preloaded with F.A.S.T. Guide Inserts in order to facilitate submuscular insertion.

Screw Options

Select the appropriate screw based on bone quality or surgeon preference (Figure 26).

Note: The 11 and 14-hole plates can be contoured in-situ using the Long Plate Benders (212000005). See Appendix B for instructions on how to use the benders.

16 | A.L.P.S. Proximal Humerus Plating System Surgical Technique

Figure 28

Holes with F.A.S.T. Guide Technology:

Drilling

- Before drilling, ensure the silver 2.7 mm Measuring Drill Sleeve (110017661) is pre-loaded onto the 2.7 mm Calibrated Drill Bit
- Drill through the F.A.S.T. Guide Insert (Figure 27)
- Before removing 2.7 mm Drill Bit, slide Drill Sleeve against the F.A.S.T. Guide Insert

Determine Screw Length

- Remove 2.7 mm Drill Bit from F.A.S.T. Guide
 Insert
- Read measurement from proximal end of the silver 2.7 mm Drill Sleeve (Figure 27)

Holes without F.A.S.T. Guide Technology :

Drilling

- Before drilling, insert the 2.7 mm Locking Drill Guide (110017559) into the locking hole
- Using the 2.7 mm Calibrated Drill Bit, drill through the Drill Guide (Figure 28)

Determine Screw Length

- Before removing the Drill Bit, read measurement from proximal end of the 2.7 mm Locking Drill Guide
- Note: If a second measurement is required, use the Shoulder Plate Depth Gauge to measure directly off the plate (Figure 29).

Figure 31

Screw Insertion

In holes with F.A.S.T. Guides Inserts, remove F.A.S.T. Guide Insert using the T15 driver and discard. In holes without F.A.S.T. Guide Inserts, remove the 2.7 mm Locking Drill Guide manually or using the T15 driver. Insert the appropriate size 3.5 mm locking or non-locking screw with the same driver (Figure 30).

Step 8: Repair Tuberosities

In order to counteract deforming forces and limit tuberosity displacement, secure the tuberosities to the plate by first passing the needles through the cuff insertion and then through the suture attachment holes in the plate (Figure 31).

Step 9: Closure

Using fluoroscopic guidance, check that reduction has been achieved and confirm there are no screws or pegs in the joint. Suggested soft tissue considerations after implantation:

- Perform Biceps Tenodesis, if indicated
- If the pectoralis major or deltoid insertions were released, repair by suturing to soft tissue, bone or each other
- Irrigate the wound and perform routine incision closure using intracutaneous sutures (Figure 32)

Appendix A: Instructions for inserting Multi-Directional Screws

Drilling

- Remove F.A.S.T. Guide Insert using the T15 Driver
- Using end labeled "2.7 mm" of the 2.7 mm Soft Tissue/Drill Guide, determine 25° cone of angulation
- Drill through the guide with the 2.7 mm Calibrated Drill Bit (Figure 33)
- Important: Drill cautiously to avoid perforation through the far cortex. Using fluoroscopic guidance, advance drill until resistance is felt from subchondral bone (Figure 34).

Determine Screw Length

Measure directly off the surface of the threaded hole using the Shoulder Plate Depth Gauge (110017535) (Figure 35)

Screw Insertion

Attach the T15 driver to the pink 2 Nm Torque Limiting Handle. Insert the appropriate size screw with the same driver.

Note: Stop driving the MDS once the head is flush with the plate.

Appendix B: Plate Contouring using the Benders

Concave/Convex Contouring (for the 11 & 14-hole plates only)

Using the "feet" of the benders the plates can be contoured to conform to the patient's unique anatomic needs (Figure 36). The foot of the bender is placed inside the slotted section of the plate and engaged on the underside of the plate. The benders can be used either facing or opposing each other to create concave or convex bends (Figure 37). Note: When creating convex bends there must be at least one empty slot in-between benders to ensure there is no thread deformation of the locking hole.

Axial Contouring

Using the "teeth" of the benders the plates can be contoured in the axial direction. Insert bender teeth over the waist and slide benders over thicker part of plate shaft. Rotate benders away from each other to impart twist (Figure 38).

Planar Contouring

To apply planar bend, use the "teeth" of the benders. Insert bender teeth over the waist and slide benders over thicker part of plate shaft. Pull benders away from one another to impart planar bend (Figure 39).

Implants

Proximal Humerus Plating System Low Plates

r toximar namerus r lating system	I LOW I lates			
Product	Description	Size	Part Number (Non-Sterile)	Part Number (Sterile)
	Proximal Humerus Low Plate Left 3 Hole	73 mm	110030100	110030105
	Proximal Humerus Low Plate Left 4 Hole	83 mm	110030101	110030106
	Proximal Humerus Low Plate Left 7 Hole	133 mm	110030102	110030107
200,-01,-0-0-00	Proximal Humerus Low Plate Left 11 Hole	190 mm	110030103	110030108
······	Proximal Humerus Low Plate Left 14 Hole	227 mm	110030104	110030109
	Proximal Humerus Low Plate Right 3 Hole	73 mm	110030200	110030205
	Proximal Humerus Low Plate Right 4 Hole	83 mm	110030201	110030206
	Proximal Humerus Low Plate Right 7 Hole	133 mm	110030202	110030207
	Proximal Humerus Low Plate Right 11 Hole	190 mm	110030203	110030208
	Proximal Humerus Low Plate Right 14 Hole	227 mm	110030204	110030209

Proximal Humerus Plating System High Plates

FIOXIMAL FIGURE CONTRACTOR SYSTEM FIGURES				
Product	Description	Size	Part Number (Non-Sterile)	Part Number (Sterile)
	Proximal Humerus Hi Plate Left 3 Hole	80 mm	110030300	110030305
	Proximal Humerus Hi Plate Left 4 Hole	90 mm	110030301	110030306
330,000 - 20,000	Proximal Humerus Hi Plate Left 7 Hole	140 mm	110030302	110030307
	Proximal Humerus Hi Plate Left 11 Hole	197 mm	110030303	110030308
	Proximal Humerus Hi Plate Left 14 Hole	234 mm	110030304	110030309
	Proximal Humerus Hi Plate Right 3 Hole	80 mm	110030400	110030405
	Proximal Humerus Hi Plate Right 4 Hole	90 mm	110030401	110030406
	Proximal Humerus Hi Plate Right 7 Hole	140 mm	110030402	110030407
	Proximal Humerus Hi Plate Right 11 Hole	197 mm	110030403	110030408
	Proximal Humerus Hi Plate Right 14 Hole	234 mm	110030404	110030409

Pegs and Screws

3.2 mm Locking Pegs

		Part Number	
Product	(Non-Sterile)	(Sterile)	Size
	110025320	110025420	20 mm
	110025322	110025422	22 mm
	110025324	110025424	24 mm
	110025326	110025426	26 mm
	110025328	110025428	28 mm
	110025330	110025430	30 mm
	110025332	110025432	32 mm
	110025334	110025434	34 mm
	110025336	110025436	36 mm
	110025338	110025438	38 mm
	110025340	110025440	40 mm
	110025342	110025442	42 mm
	110025344	110025444	44 mm
	110025346	110025446	46 mm
	110025348	110025448	48 mm
	110025350	110025450	50 mm
	110025352	110025452	52 mm
	110025354	110025454	54 mm
	110025356	110025456	56 mm
	110025358	110025458	58 mm
	110025360	110025460	60 mm
	110025365	110025465	65 mm
	110025370	110025470	70 mm

3.5 mm T15 Multi-Directional Locking Screws

Looning	0010110		
	Part Number	Part Number	
Product	(Non-Sterile)	(Sterile)	Size
1	110018020	110017920	20 mm
袋	110018022	110017922	22 mm
誓	110018024	110017924	24 mm
甚	110018026	110017926	26 mm
8	110018028	110017928	28 mm
8	110018030	110017930	30 mm
- 長	110018032	110017932	32 mm
誓	110018034	110017934	34 mm
1	110018036	110017936	36 mm
	110018038	110017938	38 mm
	110018040	110017940	40 mm
	110018042	110017942	42 mm
	110018044	110017944	44 mm
	110018046	110017946	46 mm
	110018048	110017948	48 mm
	110018050	110017950	50 mm
	110018052	110017952	52 mm
	110018054	110017954	54 mm
	110018056	110017956	56 mm
	110018058	110017958	58 mm
	110018060	110017960	60 mm
	110018065	110017965	65 mm
	110018070	110017970	70 mm

3.5 mm Cortical	Locking Screws
-----------------	----------------

Product	Part Number (Non-Sterile)	Part Number (Sterile)	Size
	816135020	856135020	20 mm
	816135022	856135022	22 mm
1	816135024	856135024	24 mm
8	816135026	856135026	26 mm
8	816135028	856135028	28 mm
1	816135030	856135030	30 mm
	816135032	8561-35032	32 mm
1	816135034	856135034	34 mm
1	816135036	856135036	36 mm
	816135038	856135038	38 mm
	816135040	856135040	40 mm
	816135042	856135042	42 mm
	816135044	856135044	44 mm
	816135046	856135046	46 mm
	816135048	856135048	48 mm
	816135050	856135050	50 mm
	816135052	856135052	52 mm
	816135054	856135054	54 mm
	816135056	856135056	56 mm
	816135058	856135058	58 mm
	816135060	856135060	60 mm
	816135065	856135065	65 mm
	816135070	856135070	70 mm

4.0 mm Cancellous Locking Screws

	Part Number	Part Number	
Product	(Non-Sterile)	(Sterile)	Size
U	816140020	856140020	20 mm
<u>1</u>	816140022	856140022	22 mm
	816140024	856140024	24 mm
H	816140026	856140026	26 mm
#	816140028	856140028	28 mm
#	816140030	856140030	30 mm
#	816140032	856140032	32 mm
1	816140034	856140034	34 mm
6	816140036	856140036	36 mm
	816140038	856140038	38 mm
	816140040	856140040	40 mm
	816140042	856140042	42 mm
	816140044	856140044	44 mm
	816140046	856140046	46 mm
	816140048	856140048	48 mm
	816140050	856140050	50 mm
	816140055	856140055	55 mm
	816140060	856140060	60 mm
	816140065	856140065	65 mm
	816140070	856140070	70 mm

3.5 mm T15 Low Profile Non-Locking Screws

	Part Number	Part Number	
Product	(Non-Sterile)	(Sterile)	Size
	110017720	110017620	20 mm
- E	110017722	110017622	22 mm
1	110017724	110017624	24 mm
1	110017726	110017626	26 mm
	110017728	110017628	28 mm
1	110017730	110017630	30 mm
1 1 1	110017732	110017632	32 mm
1	110017734	110017634	34 mm
W	110017736	110017636	36 mm
	110017738	110017638	38 mm
	110017740	110017640	40 mm
	110017742	110017642	42 mm
	110017744	110017644	44 mm
	110017746	110017646	46 mm
	110017748	110017648	48 mm
	110017750	110017650	50 mm
	110017752	110017652	52 mm
	110017754	110017654	54 mm
	110017756	110017656	56 mm
	110017758	110017658	58 mm
	110017760	110017660	60 mm
	110017765	110017665	65 mm
	110017770	110017670	70 mm

Instruments

Instruments

Part Number	Description
110017562	T-15 Driver
110017559	2.7 mm Locking Drill Guide
110017533	2.7 mm Soft Tissue Drill Guide
110017661	2.7 mm Measuring Drill Sleeve
214118001	Small Torque Limiting Driver
110017535	Shoulder Plate Depth Gauge
110017561	3.2 mm Measuring Drill Sleeve
110017541	2.0 mm K-Wire Adapter Long
214124000	Ratchet Screwdriver Handle
212000005	Long Plate Bender W/2 Slots
231218020	Torque Limiting Power Adapter
110017572	T15 Tapered Driver Short
110025471	Prox Hum Plate Template 90 mm
110025472	Prox Hum Plate Template 140 mm
110025473	Prox Hum Plate Template 234 mm
110017641	2.0 mm K-Wire Adapter Short
110017635	Shoulder Plate Depth Gauge Hook (Replacement)

Disposabl		
Part Number (Non-Sterile)	Part Number (Sterile)	Description
214227070	214227160	2.7 mm x 160 mm Calibrated Drill Bit
110017537	110017737	3.2 mm Calibrated Drill Bit
KW20SS	231201310	2.0 mm x 152 mm K-Wire (6 in)
Tray		

Part Number Description

110018101 PHP System Case & Tray

INDICATIONS

The Biomet A.L.P.S. Proximal Humeral Plating System is indicated for fixation of fractures and fracture dislocations, fusions, osteotomies and nonunions of the humerus, particularly in osteopenic bone.

Patient selection factors to be considered include:

- 1. Need for alignment and stabilization of bone fractures
- 2. Ability and willingness of the patient to follow postoperative care instructions until healing is complete
- 3. A good nutritional state of the patient.

CONTRAINDICATIONS

- 1. Active infection.
- 2. Patient conditions including blood supply limitations, and insufficient quantity or quality of bone.
- 3. Patients with mental or neurologic conditions who are unwilling or incapable of following postoperative care instructions or materials.
- 4. Foreign body sensitivity. Where material sensitivity is suspected, testing is to be completed prior to implantation of the device.

Notes

References

1. Data on file at Biomet. Test # DVA-107504-DVER. Mechanical testing is not necessarily indicative of clinical performance.

This material is intended for healthcare professionals and the Zimmer Biomet sales force. Distribution to any other recipient is prohibited. For indications, contraindications, warnings, precautions, potential adverse effects and patient counseling information, see the package insert or contact your local representative; visit www.zimmerbiomet. com for additional product information. All content herein is protected by copyright, trademarks and other intellectual property rights, as applicable, owned by or licensed to Zimmer Biomet or its affiliates unless otherwise indicated, and must not be redistributed, duplicated or disclosed, in whole or in part, without the express written consent of Zimmer Biomet.

For indications, contraindications, warnings, precautions, potential adverse effects and patient counseling information, see the package insert or contact your local representative; visit www.zimmerbiomet. com for additional product information. Check for country product clearances and reference product specific instructions for use. Zimmer Biomet does not practice medicine. This technique was developed in conjunction with health care professional. This document is intended for surgeons and is not intended for laypersons. Each surgeon should exercise his or her own independent judgment in the diagnosis and treatment of an individual patient, and this information does not purport to replace the comprehensive training surgeons have received. As with all surgical procedures, the technique used in each case will depend on the surgeon's medical judgment as the best treatment for each patient. Results will vary based on health, weight, activity and other variables. Not all patients are candidates for this product and/or procedure. Caution: Federal (USA) law restricts this device to sale by or on the order of a surgeon. Rx only.

©2015, 2021 Zimmer Biomet

0035 4-GI BI-en-Issue Date 2021-12-16

Legal Manufacturer Biomet Trauma P.O. Box 587 56 East Bell Drive Warsaw, Indiana 46581-0587 USA

www.zimmerbiomet.com

CE mark on a surgical technique is not valid unless there is a CE mark on the product label.