
Akka Introduction
LLAAMA - May 2022

© LLAAMA 2022 www.llaama.com

Akka is developed and
supported by Lightbend

© LLAAMA 2022

https://www.lightbend.com/

Agenda

Akka Actors & Cluster
Multithreading, Akka Actors & Systems, Actor location, Actor hierarchy, Supervision,
Exception-handling, Reactive Architecture, Cluster, Domain-Driven Design, Singleton, Sharding,
Split-Brain Resolution, Protocol and serialization…

Akka Streams
Source, Flow, Sink, Backpressure, Materialization, Graph, Operators,...

© LLAAMA 2022

Akka Background

© LLAAMA 2022

Akka Background

● Actor Paradigm first described in a
paper in 1973 by Carl Hewitt

● Akka is a Scala project that started
in 2009, current version is 2.6.x

● Very much inspired from Erlang
Actors

● Akka Actors were not typed
until 2.6

● Akka can be used in a Object
Oriented as well as in a Functional
Programming approach

● Scala engineers tend to favor the FP
approach

● Java engineers tend to use the OO
approach

● Used by ING, PayPal, Tesla, Netflix,...

© LLAAMA 2022

Akka, Bottom-Up

© LLAAMA 2022

Java Concurrency

Java and the JVM aimed from the very beginning at becoming the platforms for
multi-processed, multithreaded and concurrent applications development but :

Concurrency (and reasoning about it) is difficult and has always been!

Low level constructs for concurrent programming are complex:

happens-before relationship

Monitor locks with synchronized

volatile to synchronize writes/reads

Java Memory Model is improving but still difficult to understand

© LLAAMA 2022

Bus

CPU Architecture and Concurrent Programming

CPU

RAM

Memory
cache
lines

L1

L2

L..

CPU

Memory
cache
lines

L1

L2

L..

volatile

Bus

CPU

RAM

Memory
cache
lines

L1

L2

L..

CPU

Memory
cache
lines

L1

L2

L..

N
e
t
w
o
r
k

© LLAAMA 2022

(Java) Concurrent Object-Oriented Programming is Broken

Obj A Obj B Obj C

methodA()

return

methodA()

return

Thread 1

Thread 2

© LLAAMA 2022

Solutions?

runnable() {...}

synchronized(...) {...}

© LLAAMA 2022

Actors: a better
approach of
Concurrent
Programming

© LLAAMA 2022

New Viewpoints

No shared memory anymore
 read-write

Think about inter-CPU
communication (almost) the same

way as network communication

Think distributed as default
Optimize when local

Use immutable messages
for concurrency

© LLAAMA 2022

Actor Model Contract

An Actor is an abstraction for a computational entity that can:

1. send messages to other actors

2. create new actors

3. designate the behavior to be applied to the next message

4. Make local decisions, like modifying private state

© LLAAMA 2022

Akka Actors Happens-Before Rules

1. Actor send rule, send of message M happens before receive of
message M by the same actor

2. Actor subsequent processing rule, processing of a message
happens before processing of next message by same actor

© LLAAMA 2022

Actors, CPU architecture and concurrent programming

● Read-write paradigm is finished: there is no shared memory anymore

● Data exchange over the network is not different from inter-CPU communication

● Actor approach: keep state local and exchange immutable messages

© LLAAMA 2022

Fixing Concurrent Object-Oriented Programming with Actors

Actor A Actor B Actor C

message A

Message D

Message B

Message C

Process
message A

Process message
B

Message B
processed after A

© LLAAMA 2022

Akka Actors

● Akka Actors are distributed by default, all functions are built for clusters
of hundreds of machines and JVMs

● Upside-down: designed to be distributed, optimized when local (instead of
generalization from local to remote)

● Interactions between actors happen through sending asynchronous
immutable messages

● Messages must be immutable and serializable! - when local, JVM object
references

Are Actors what Object-Oriented Programming should be ?
© LLAAMA 2022

Akka Actors:
Lightweight
Objects

© LLAAMA 2022

Akka Actor, Lightweight Construct

Actor
Mailbox

Message C

Message B

Message A

Incoming
messages

Behaviors

State
Execution

context

Processing
next message Behavior

Scheduled to
process message

akka://actor-syst/user/actor1

Children
actors

© LLAAMA 2022

What does an Akka Actor contain?

● Actor Reference
○ A kind of proxy that enables to talk to the actor from anywhere while shielding Actor

internal state
● State

○ Any state related to the application logic, hidden from outside, modified like it would own
its own thread

● Behavior
○ Behaviors define what action should be performed for which received message
○ Behaviors change over time and every message processing should provide next behavior
○ Messages are statically typed

● Mailbox
○ An Actor has exactly one mailbox, a FIFO queue.

● Child Actors
○ An Actor can (should) have child actors to delegate tasks

● Supervision Strategy
○ What to do in case of failure ? restart x times - resume - stop, …

© LLAAMA 2022

Akka
ActorSystem:
The plumbing

© LLAAMA 2022

Akka Actor System

● An ActorSystem is the home of a hierarchy of Actors

● An ActorSystem is a heavyweight construct
○ It might allocate many threads
○ There should be one per logical application

● The ActorSystem hierarchy enables splitting-up tasks in small and logical
pieces

● The top-level Actor (given at construction) should be a supervisor

© LLAAMA 2022

Akka Actor Hierarchy

Root guardian

User guardian System guardian

Created while
creating the
Actor System

/user /system

/

/user/a /user/b
/system/internalActor

Internal to AkkaUser created
hierarchy

/user/a/aa /user/a/ab /user/a/ac

context.spawn(behavior, “a”)

context.spawn(behavior, “aa”)

/deadLetters Receives messages that cannot reach destination

/temp Guardian for short-lived system actors (e.g. to manage ask implementation)

/remote For Remote references
© LLAAMA 2022

● Actor references are available when actors are created
○ val greeter: ActorRef[HelloWorld.Greet] = context.spawn(HelloWorld(), “greeter”)

○ ActorRef<HelloWorld.Greet> greeter = context.spawn(HelloWorld.create(), “greeter”

● Actor references can be part of the message protocols

● Actor references correspond to real existing actors and are bound to their life-cycle

● Actor references can be obtained through the Receptionist

● Actor Paths are unique accessors, in form of path structures, from the actor
system, through the actor hierarchy to the actor itself

○ akka://actorsystem/user/a/b/c (local)
○ akka://actorsystem@host.example.com:5555/user/a/b/c (remote)

Akka Actor References and Addresses

© LLAAMA 2022

Call stack

Traditional Actor based

● Non-blocking, message-driven tasks
delegation amongst Threads

● Failures are part of the domain model

● Let it crash approach

● Response deadlines are handle with
timeouts

Main Thread Worker Thread

Delegates some work

Start task

Task fails!

Exception is only propagated
to worker thread

Main thread is not notified
of the exception!

© LLAAMA 2022

Warnings

● In an actor, messages can be processed by different threads

● Don’t close over internal Actor state

● Avoid as much as possible blocking in actors, when unavoidable use a
dedicated dispatcher

● Don’t try to control the order in which messages are processed in big
systems !

© LLAAMA 2022

Asynchronous
Interactions

© LLAAMA 2022

Akka Actor Interactions

Actor A

Tell - Fire and Forget

Actor BMessage

Actor A

Tell - Request-Response

Actor B
Request

Actor A

Ask - Request-Response, 1-1, with timeout

Actor B

Response

Request

Response

● Tell is thread safe!

● Tell is asynchronous and
returns directly

● Wrapper can be used to adapt
protocol objects

● Ask needs timeout

● Many other constructs can be
built up on top of Tell

© LLAAMA 2022

Akka Actor Protocol

● The protocol of an actor are the types the actor understands
○ It includes accepted messages as well as reply types

● Protocols can be defined for multiple actors, contributing to the application
logic

● A Behavior is defined with a protocol type

● sealed trait and case class

● interface and static final class

© LLAAMA 2022

ActorContext
Kind of
“Decorator”

© LLAAMA 2022

Akka Actor Context

ActorContext provides the Actor with important features:

● spawn to create child actors (Actor contract)

● Access to own identity (self)

● Access to children

● messageAdapter (wrap messages to translate protocols)

● Access to ActorSystem of the actor

● Provides watch to register for Terminated notifications

● Logging

© LLAAMA 2022

Message Delivery Contract

1. At-most-once

2. Message ordering per sender-receiver pair

© LLAAMA 2022

“Let it crash!”

© LLAAMA 2022

Akka Fault Tolerance and Supervision

“Shit happens” therefore apply the Let it crash approach !

Actor /user/a

Actor /user/a/b

Actor /user/a/b/c

Database

E.g. database
call exception

child

child

Define supervision strategy on Exception types
restart, restart.withLimit, stop, resume

A parent actor can decide to watch its child for termination

Failures can climb the actor hierarchy with the Terminated signal,
 depending on application needs

Expected exceptions should rather be

included in the actors protocols!

© LLAAMA 2022

Group Router -
ActorSystem - Node 4

Group Router -
ActorSystem - Node 3

Group Router -
ActorSystem - Node 2Pool Router - ActorSystem - Node 1

Routers

● Distributing messages to set of delegated actors
● Enables parallel processing
● Pool Router: routees are router’s children, local
● Group Router: uses ServiceKey and Receptionist to find routee, clustered

○ Available routing strategies: Round Robin, Random, Consistent Hashing

Routees, router’s children

Router
Messages

Messages
forwarded to

children

Group Router - ActorSystem - Node 1

Router
Messages

Forwarding
strategy

© LLAAMA 2022

Akka Message Stashing

● Stashing enables buffering messages before they are passed on to an actor
● It is an important feature in Domain Driven Design and Sharding

new
Actor A

Messages

Datastore

Building initial
state

Buffer

Messages released once behavior changes
(e.g. initialization completed)

© LLAAMA 2022

Akka Actor model and Finite-State Machine

Mathematical model of computation, part of automata theory, a Finite-State
Machine (FSM):

● Has a finite number of states
● Is in one state at a time
● Events change its state

Actor A

BehaviorsMessages
protocol

FSM events as actor messages

FSM states as actor behaviors

© LLAAMA 2022

Under the hood:
MessageDispatcher

© LLAAMA 2022

Akka Dispatchers

● MessageDispatcher is the engine at the heart of an ActorSystem
● Default MessageDispatcher implements a fork-join-executor
● Internal actors are protected by an internal dispatcher
● If needed, other dispatchers can be used (e.g. blocking, for I/O)

MessageDispatcher

 ExecutionContext
ExecutionContextExecutor

 Executor
ExecutorService ForkJoinPoolimplements

extends

extends

akka

scala.concurrent

java.util.concurrent

© LLAAMA 2022

Miscellaneous

● By default, every Actor has an unbounded Mailbox
○ Mailboxes can be configured
○ Other mailbox types are available
○ A custom mailbox can be provided
○ Akka doc - mailboxes

● Configuration
○ All configuration for Akka happens in instances of ActorSystem
○ Defaults come from reference.conf
○ Merging is done with application.conf, application.json, application.properties
○ Akka doc - configuration

● Testing
○ Asynchronous testing and Synchronous behavior testing
○ Akka doc - testing

© LLAAMA 2022

https://doc.akka.io/docs/akka/current/typed/mailboxes.html
https://doc.akka.io/docs/akka/current/general/configuration.html
https://doc.akka.io/docs/akka/current/typed/testing.html

Akka: Top Down

© LLAAMA 2022

Reactive Architecture

Message Driven

 Responsive

ResilientElastic

VALUE

FORM

MEANS

 Maintainable Extensible

The Reactive Manifesto

© LLAAMA 2022

https://www.reactivemanifesto.org/

Reactive Systems Features

Responsive

Flexible

Loosely-coupled

Scalable

Resilient and tolerant to failure

Elastic

Message-drive (asynchronous)

Location transparency

Failures as messages

Back-pressure

Non-blocking

© LLAAMA 2022

Distributed Computing

with Akka Cluster

© LLAAMA 2022

One Actor
is

No Actor
© LLAAMA 2022

What is an Akka Cluster?

Multiple ActorSystems nodes joining to form one coordinated distributed application

“Akka Cluster provides a fault-tolerant
decentralized peer-to-peer based Cluster
Membership Service with no single point of
failure or single point of bottleneck. It does
this using gossip protocols and an
automatic failure detector.” (Akka doc -
cluster specification)

An actor

An Actor System (a JVM)A cluster Node
© LLAAMA 2022

https://doc.akka.io/docs/akka/current/typed/cluster-concepts.html#terms
https://doc.akka.io/docs/akka/current/typed/cluster-concepts.html#terms

Akka Cluster Benefits

● Akka Cluster is the best way to build Akka Actor Systems with several hundreds
actors

● Akka Cluster provides everything that is needed to build complex distributed
systems

● Akka Cluster fits perfectly with the goal of Reactive systems as well as cloud
Native systems

● Akka Cluster fits very well with platforms like Kubernetes
○ E.g. it can easily use K8s APIs for node discovery
○ It can use K8s lease feature for SBR

● There is rarely the need to use Akka remote anymore
© LLAAMA 2022

Akka Cluster is
like a Beehive

© LLAAMA 2022

How to Build a Cluster?

Challenges:
● Starting Cluster
● Cluster Membership
● Leadership
● Failure Detection
● Network Partition
● Roles
● Message Serialization

© LLAAMA 2022

Membership

Node Member States
● Joining
● Weakly Up
● Up
● Leaving
● Down
● Removed

?

© LLAAMA 2022

Nodes States Transitions

Joining Up Leaving Exiting Removed

Weakly Up

Down

Join
Leave

Down

Join, Leave, Down: User actions
Weakly up: nodes waiting for gossip
convergence to be reached

Leader action Leader actionLeader action

Leader action

© LLAAMA 2022

Members Events

Joining Up Leaving Exiting Removed

Weakly Up

Down
ClusterEvent.MemberJoined

ClusterEvent.MemberUp

ClusterEvent.MemberExited

ClusterEvent.MemberRemoved

ClusterEvent.Unreachable: member not reachable by failure detector
ClusterEvent.Reachable: member reachable again (after being unreachable)
ClusterEvent.MemberPreparingForShutdown: member preparing for full cluster shutdown
ClusterEvent.MemberReadyForShutdown: member is ready for full cluster shutdown

© LLAAMA 2022

“Anyone can start a
rumor, but nobody
can stop one.”

© LLAAMA 2022

Gossip Convergence

● Gossip Protocol (aka epidemic protocol) to spread out cluster state around nodes
● Random information dissemination, vector clock (node, counter, state) for partial ordering of

events and causality violation detection
● Gossip message Serialization done with protobuf

● Gossip Convergence
○ when “one node can prove that the cluster state

it is observing has been observed
by all other nodes from the cluster”

○ Any unreachable node prevents
Gossip Convergence

● Optimizations of the Gossip Protocol
○ Digests sent instead of full data
○ Changes to the algorithm depending

on number of nodes

Gossip

© LLAAMA 2022

Special Roles in Akka cluster

● Leader
○ Defined when (gossip) convergence is reached
○ No special node, just a role
○ Deterministic way to recognize it
○ Confirms states changes (e.g. joining -> up)

● Seed Nodes
○ Fixed entry points for nodes to join the cluster
○ No special other role
○ Can be defined in conf or as system.properties
○ First seed node needs to be available when starting the cluster
○ Cluster Bootstrap module enable automatic discovery of nodes

application.conf:
akka.cluster.seed-nodes = [
 "akka://MyCluster@host1:2552",
 "akka://MyCluster@host2:2552"]

JVM system properties:
-Dakka.cluster.seed-nodes.0=akka://ClusterSystem@host1:2552
-Dakka.cluster.seed-nodes.1=akka://ClusterSystem@host2:2552

© LLAAMA 2022

Failure Detector

● Detects unreachable nodes
● Decides how to react
● Uses the gossip protocol
● One node is monitored by N (default 5) other nodes
● An unreachable node will be quarantined and eventually downed and removed

● Failure detection is based on Phi Accrual Failure Detector
○ Distinguish expected latencies (network, garbage collections, etc.) from crashes
○ Based on regular heartbeat messages
○ Learns from previous failures
○ Calculates a likelihood (phi) of a node to be down
○ Threshold (acceptable-heartbeat-pause) can be defined by user

© LLAAMA 2022

Split Brain

Machine crashes, unresponsiveness,
network partitions cannot be distinguished from each other !
Only information: unanswered heartbeats messages

© LLAAMA 2022

Split Brain Resolution

● Decisions must be taken…
● There are multiple SBR strategies
● Most obvious strategy: Keep Majority

○ Downs the nodes if they are in the minority
● Static Quorum
● Lease
● Keep Oldest
● Down all

© LLAAMA 2022

Singleton

Exactly one instance of an actor with a defined role in the whole cluster

● Goal: single point of responsibility
● Start with ClusterSingleton.init on all nodes with given role
● Singleton will run on oldest node
● Cluster ensures there is one and only one instance available
● ClusterSingleton.init provides a proxy ActorRef to the

Singleton wherever it’s actually running
● Issues

○ Downing
○ Singletons can by definition become bottlenecks!

© LLAAMA 2022

Singleton Reference and Proxy

Node crashesSingleton Actor A,
running on oldest node

Singleton Actor A is restarted
on new oldest node

Message to A

Mes
sa

ge t
o A

Proxy to route message to Actor A

Proxy to route
message to Actor A

Message to A

New route

© LLAAMA 2022

Stateless
versus
Stateful
Applications

© LLAAMA 2022

Stateless (traditional) Applications

Database

Application

API

State

Scaling

Database

Application

State still here

API on Load balancer

Application

cache

© LLAAMA 2022

CAP (Theorem)

Any distributed system can only guarantee 2 out of 3
from Consistency, Availability and Partition tolerance

1. Consistency: read returns the most
recent write

2. Availability: every request gets a
response (maybe not latest write)

3. Partition tolerance: system keeps
working even though some messages are
lost

● Interpretation can be complicated as partitions
will happen but rarely

● It sounds “binary”, but it’s continuous !
● It determines design decisions that can vary

depending on data or use cases

Recommendation: Forget about
CAP, instead reason about

trade-offs between A and C !

A C

P

© LLAAMA 2022

Domain-Driven
Design

© LLAAMA 2022

Domain-Driven Design, Reactive Architecture and Microservices

● Domain-Driven Design and Reactive Architecture are often
used together because they are very compatible

● DDD main goal
○ Breaking down a large domain model into smaller pieces
○ Determine boundaries between different smaller domain
○ Define a good communication channel between domain experts and

software engineers

● Reactive Microservices also try to define clear boundaries
and roles

© LLAAMA 2022

Different Approaches to Domain-Driven Design

Defining the Domain using the domain expert language

Finding subdomains

Boundaries around the domain and subdomains

Analyze the Domain from an Event DDD perspective using the
Subject-Verb-Object Notation

© LLAAMA 2022

Stateful
Applications
through Sharding

© LLAAMA 2022

Cluster for Stateful Application

Stateful entities existing as actors in the cluster,
they connect to the DB when needed

Actors as API entry points

Messages
are routed to
the right
actor

© LLAAMA 2022

Akka Sharding for Stateful Applications

One Actor = one DDD Entity
Actor becomes a Consistency boundary for its data,
enabling Strong Consistency
Unique Entity Id through out the cluster
Messages are addressed to the Entity Id

Actor A1 managing Entity E1

Messages to E1 are routed to A1

Entity Actors are grouped in Shards
A function gives the Shard Id (usually based on the Entity Id)

Shards are grouped in Shard Regions
Typically, one Shard Region per JVM for an Entity type

Shard Coordinator, Singleton for message routing to the
right Shards

© LLAAMA 2022

Sharding: Routing, Entities, Shards

● Entities Ids must be unique throughout the cluster
● A message to an entity contains its Id to enable routing

● A common pattern is an Envelope for a message:
case class EntityEnvelope(entityId: String, message: Any)

● An Extractor function enables to extract the Entity Id

● To distribute Entities in Shards, a function needs to map Entity Ids to Shard Ids

● Example:
Math.abs(entityId.hashCode % nbrOfShards)).toString()

© LLAAMA 2022

Akka Sharding

● Ensures strong Consistency with Single
source of Truth (one Actor, one Entity)

● State is in the Actor, sync with the DB
happens from the Actor

● Single threaded illusion (from Akka
Actor)

● Contention problems can be mitigated in
increasing the number of nodes or
changing cluster topology

● Failures are isolated to actors or actor
Systems

Actor A

Actor gets its state
from the Database at
startup

DB

updateState(value)
message

getState() message

state 0

state 1

state 1

state 1

sta
te

 1

state 0

© LLAAMA 2022

Akka Sharding Features

Blocking
● Blocking calls can be wrapped into Futures
● Messages can be stashed (e.g. during processing of non-blocking database calls)
● Stashed messages are kept while an actor is restarting

Passivation
● Automatically stop and removes Actor after a defined period without a message
● Messages are buffered during passivation
● Can be done manually (Passivate message)
● Passivation time can be optimized looking at memory footprint and/or actor being active

Rebalancing
● Rebalancing happens when the number of nodes in a cluster is changed (failure, scaling)
● The Shard Coordinator initiates the rebalancing, redistributing the shards among nodes
● The cluster must be in an healthy state (no Unreachable nodes)
● During Rebalancing, messages to re-balanced shards are buffered

© LLAAMA 2022

Akka Cluster Miscellaneous

● Coordinated shutdown
○ Enables clean and stepwise shutdown of an ActorSystem

● Akka Management
○ Akka Discovery

■ Endpoint lookup delegation using some kind of discovery service (e.g. DNS)
○ Akka Cluster Bootstrap
○ Cluster HTTP Management

■ Extension library providing a REST API to query and manage an Akka cluster
■ Enables Health checks queries

● Akka Serverless
○ Fully managed Akka Stateful application environment

● Lightbend Subscription
○ Tools (e.g. Telemetry) and support directly from the Akka team

© LLAAMA 2022

Akka Cluster Miscellaneous

● Serialization
○ Akka for its internal messages uses protobuf
○ Jackson is a good choice but any other library or own code can be used
○ Obvious: Java serialization should be avoided !!

● Event-Sourcing
○ Storing events, not state
○ State is reconstructed from stored events

● Command Query Responsibility Segregation (CQRS)
○ Fits well with ES, but is also possible without it

© LLAAMA 2022

Akka Streams

© LLAAMA 2022

Introduction

● Why?
○ Some real big data can only be processed as streams
○ Always more data only exist as streams

● How?
○ Reactive Streams Specification (www.reactive-streams.org)
○ Asynchronous streams with back-pressure
○ Constructs: publisher | processor | subscriber
○ Reactive streams is a Service Provider Interface (SPI)
○ included in JDK9
○ Akka Streams is a friendly user API that can use Reactive Streams Interfaces

© LLAAMA 2022

http://www.reactive-streams.org

Akka Streams implementation

Akka Streams big picture

Akka Streams APIEnd-users

Akka ActorsReactive
Streams*

*https://www.reactive-streams.org/

© LLAAMA 2022

Akka Streams

● Source: produces elements asynchronously
● Sink: receives elements
● Flow: processes elements (transformer)
● Back pressure included

● From Source to Flow to Sink
● Blueprints at every level

© LLAAMA 2022

Akka Streams, Backpressure

Source Flow Sink

Speed of stream is defined by consumers

Consumers define the demand

Backpressure is implemented in an
non-blocking and asynchronous way!

upstream downstream

© LLAAMA 2022

From Source to Sink

source.via(flow) is a source

flow.to(sink) is a sink

Blue prints are executed with .run() which needs an ActorSystem
for materialization

Nothing happens with the graph blueprint until materialization (run)

Nulls are not allowed!

© LLAAMA 2022

Source + Flow = New Source

Flow + Sink = New Sink

Source, Flow, Sink: Lego blocks

Source Flow Sink

Source Flow Sink

© LLAAMA 2022

Materializing

● A graph element can be used multiple times (think blueprint)
● Graph component are static until run is called
● Every run is a different materialization
● Run result is a materialized value, running graph = materializing

○ Resources allocations for a blueprint happens at materialization
■ Actors, threads, connections, etc.

● For every component, running => producing a materialized value
● But the graph produces only one materialized value

Materialized values can be everything from nothing to any object!

© LLAAMA 2022

Graphs

Fan-out Fan-in

© LLAAMA 2022

Graph DSL

● Fan-out
○ Broadcast
○ Balance

● Fan-in
○ Zip
○ ZipWith
○ Merge
○ Concat

© LLAAMA 2022

The End

© LLAAMA 2022

