Parkland FUEL CORPORATION

Burnaby Refinery Fuel Composition

November 2018

Outline

• What are hydrocarbons?

- Current fuels at Burnaby Refinery
- New fuels at Burnaby Refinery

- Carbon and hydrogen are the primary components of fossil fuels/crude oil
- Hydrocarbons are the simplest forms of organic molecules (e.g. methane). There can be many different hydrocarbon chains within various types of crude oil.

https://www.science.org.au/curious/earth-environment/methane

What are Hydrocarbons?

Hydrogen

• Hydrogen is the lightest and most abundant element in the universe. On Earth, it is always bonded to other elements or itself

H		Hydrogen Supply risk 🗖 🖣										High supply risk Low supply risk Medium supply risk Unknown					He 2
Li	Be	Key isotopes			¹ H, ² H			Ŀ	4	В	С	Ν	0	F	Ne		
3	4	Electron configuration			1s ¹			Hydrogen		5	6	7	8	9	10		
Na	Mg	Density (g cm ⁻³)			0.000082					Al	Si	Р	S	сι	Ar		
- 11	12	il and	- 12	1 st ionisa	tion energ	JY	1312.05	0 kJ mol ⁻¹		1	1.008	13	14	15	16	17	18
К	Са	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	тι	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
										_							
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
		58	59	60	61	62	63	64	65	66	67	68	69	70	71		
		Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
		90	91	92	93	94	95	96	97	98	99	100	101	102	103		

http://www.rsc.org/periodic-table

What are Hydrocarbons?

Carbon

• Carbon is found in all organic material; it is the fourth most abundant element on Earth

H		Carbon Supply risk									k 📃 <	High supply risk Low supply risk He Medium supply risk Unknown 2					
Li	Be	Key isotopes					¹² C, ¹³ C	, ¹⁴ C				В	С	Ν	0	F	Ne
3	4	Electron configuration			[He] 2s ² 2p ²			Carbon		5	6	7	8	9	10		
Na	Mg	Density (g cm ⁻³)			3.513 (diamond); 2.2 (graphite)					Al	Si	Р	S	сι	Ar		
- 11	12			1 st ionisa	ation energ	JY	1086.45	4 kJ mol ⁻¹		6	12.011	13	14	15	16	17	18
К	Са	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	тι	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
			_	_	_			_				_		_			
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
		58	59	60	61	62	63	64	65	66	67	68	69	70	71		
		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
		90	91	92	93	94	95	96	97	98	99	100	101	102	103		

http://www.rsc.org/periodic-table

What are Hydrocarbons?

The Carbon Cycle

- Carbon cycle is the movement of carbon between reservoirs (atmosphere, oceans, vegetation, soil, rocks)
- 'Retro' crude contains carbon that has been in the carbon cycle the longest
- 'New' crude contains carbon that has been in the carbon cycle for a shorter amount of time

Yellow numbers are natural fluxes, and red are human contributions in gigatons of carbon per year. White numbers indicate stored carbon https://earthobservatory.nasa.gov/features/CarbonCycle (2008)

Current Fuels at Burnaby Refinery

Material

- Burnaby Refinery processes light sweet crude oil into useful products such as motor gasoline, diesel, jet fuel, asphalt, heating fuels, heavy fuel oils, butane and propane
 - 'Light' = low density
 - 'Sweet' = low Sulphur
- This current feedstock is considered 'retro' crude

Current Fuels at Burnaby Refinery

Material

- Traditional crude oil contains hydrocarbon and non-hydrocarbon components
 - The non-hydrocarbon components are removed through the refining process to ensure the final products meet environmental and performance specifications

Composition of Crude Oil

Current Fuels at Burnaby Refinery

Process

- Refining has three key processes: distillation, conversion and treatment
 - 1. Distillation crude oil is heated and separated into different product streams based on boiling point
 - 2. Conversion molecule chains in the product streams are broken up and/or rearranged and/or recombined
 - 3. Treatment contaminants are removed from the products (e.g. Sulphur, nitrogen, heavy metals) to make them more environmentally-friendly
- Once these processes are complete, products are blended to specific standards and distributed to customers

Graphic courtesy of Bismarck State College National Energy Center of Excellence http://www.wermac.org/equipment/distillation_part1.html

New Fuels at Burnaby Refinery

Background

Low Carbon Fuel Requirements:

- Provincial and Federal policies are having a significant influence on transportation fuel manufacturing and distribution
- Requirement to lower Carbon Intensity of fuels to lower Greenhouse Gas
 emissions
- Carbon Intensity (CI) is how much carbon is emitted relative to a given output of energy and is determined using Life Cycle Assessment (LCA) modeling
- Policy has led us to co-processing biocrudes

Co-Processing, using:

- 1st Generation Feedstocks
- 2nd Generation Feedstocks

'New Crude': 1st Generation Feedstocks

What are they?

- Source material include animal (tallow) and vegetable (canola) products
- These feedstocks for co-processing are currently available at scale

What do they produce?

• Renewable gasoline and diesel

Considerations:

• More oxygen than 'retro' crude but also a much higher hydrogen content

New Fuels at Burnaby Refinery

'New Crude': 2nd Generation Feedstocks

What are they?

- '2nd Gen' is general term for biological feedstocks in development
- Source material varies between wood waste, municipal solid waste, municipal sewage sludge

What do they produce?

- Feedstock in development for renewable gas, jet and diesel production
- Four methods of production:
 - 1. Thermal Pyrolysis
 - 2. Catalytic Pyrolysis
 - 3. Hydro Thermal Liquefaction (HTL)
 - 4. Gasification and Recombination (Fischer-Tropsch)

Considerations:

- Significantly more challenges for co-processing:
 - Oil miscibility
 - Unstable polymerizing
 - High in oxygen and other contaminants
- Parkland is working with several technology partners on solving problems and scaling from R&D to commercial scale

Feedstock Comparison

Current feedstock (light sweet crude oil)	1 st Generation Feedstocks	2 nd Generation Feedstocks
C8 01 C6 C9 C10 C10 C10 C10 C10 C10 C10 C10	$H_2C = O O O O O O O O O O O O O O O O O O $	$H_{3}CO + H_{3}CO + H_{3$
 More carbon Less oxygen Less hydrogen Less contaminants to remove 	 Less carbon More oxygen More hydrogen Different contaminants to remove 	 Less carbon More oxygen More hydrogen Different and more contaminants to remove

Environmental Benefits of 'New' Crude

- Contains lower carbon intensity of liquid fuels (gasoline, diesel, jet fuel) resulting in lower GHG and fewer emissions
- Increases value of waste residuals (tallow, forest residue, municipal wastes)
- Repurposes existing refinery infrastructure for at-scale commercial production of renewable fuels
- Leverages existing technical expertise to create the 'Fuels of the Future'

New Fuels at Burnaby Refinery

Looking Ahead

- Burnaby Refinery is a proud leader in new fuel initiatives
- We are evolving our current refining processes to create 'greener' fuels, but this takes time

References

http://www.chfca.ca/education-centre/what-is-hydrogen/ https://www.visionlearning.com/en/library/Earth-Science/6/The-Carbon-Cycle/95

