Data Classes in Python 3.7

Brian Stempin | Yiu Ming Huynh



Goals

1. Discuss what dataclasses are
2. Compare/contrast uses of dataclasses

3. Compare/contrast performance of dataclasses



What are Dataclasses?

They're classes that are wrapped with the "dataclass™ decorator:

from dataclasses import dataclass

@dataclass

class MyExampleClass(object):
x: int
y: int = 20



Dataclass Features

e The dunder methods: implements _eq__, _repr__, _ne__,_gt__, __It
_le_,__ge__
e enables the following properties:
o Order

o Frozen
o Unsafe_hash

e Has post_init functions




Feature Comparison

We want to compare and contrast the features of
dataclasses with other solutions so that we know
which tool to choose for a given situation.



Pros of Dataclasses vs
tuples/namedtuples



Dataclasses as a class have their own names,

whereas tuples are always tuples

@dataclass

class CartesianPoints:
x: float
y:. float

@dataclass

class PolarPoints:
r: float
theta: float

c = CartesianPoints(1, 2)
p = PolarPoints(1, 2)

>>> print(c == p)

False



Dataclasses as a class have their own names,

whereas tuples are always tuples

C (1, 2)
p=(1,2)

>>> print(c == p)
True



Namedtuples kinda solve the problem,

but then vou run into this:

CartesianPoint = namedtuple('CartesianPoint', field_names=['x",

'y 1)
c = CartesianPoint(x=1, y=2)
p=(1, 2)

>>> print(c == p)
True



Tuples are always immutable...

>>> s = (1, 2, 3)
>>> s[0] = 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment



... but dataclasses have options

@dataclass
class MutatingMing:
super_powers: List[str]

@dataclass(frozen=True)
class ForeverMing:
super_powers: List[str]

m1 = MutatingMing(super_powers=["shapeshifting master"])
m1.super_powers = ["levitation"]

m2 = ForeverMing(super_powers=["stops time"])
m2.super_powers = ["super human strength"]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<string>", line 3, in __setattr__
dataclasses.FrozenInstanceError: cannot assign to field 'super_powers'



Dataclasses can inherit from other classes...

@dataclass
class Product:
name: str

@dataclass
class DigitalProduct(Product):
download_link: URL

@dataclass
class Ebook(DigitalProduct):
isbn: str



But try doing that with a tuple

Product = namedtuple(‘Product’, field_names=[‘name’])

DigitalProduct = namedtuple(‘DigitalProduct’, field_names=[ ‘name’,
‘download_link"])

Ebook = namedtuple(‘Ebook’, field_names=[‘name’, ‘download_link’,
‘isbn’])



Dataclasses have class methods...

@dataclass

class CartesianPoint:
x: float
y: float

def calculate_distance(self, other):



vs tuples...

c1 = Tuple(1,2)

def calculate_distance(c1: Tuple[float, float], c2:
Tuple[float, float]):



Cons of Dataclasses vs tuples



Tuples have even less boiler plate to create than dataclasses

t = "hey look", 1, True, "a tuple just like that"
Vs

@dataclass

class ARandomBundleOfAttributes:
opener: str
random_number: int
random_bool: bool
closing_statement: str

ARandomBundleOfAttributes("but look!", 7, False, "i'm a dataclass!")



Misc that I don't wanna do a code demo of

e [spoiler text] (not really) Tuples have better performance... Coming up soon
e Tuples are naturally immutable, so they make a good data structure for

multithreading



Pros of Dataclasses vs Dict



Dataclasses have well structured, specified attributes

@dataclass

class TemperaturePoint:
x: float
y: float
temperature: float

def create_heatmap(temp_points: List[TemperaturePoint]):



Whereas it you just had dictionaries...

temperature_points = |
"x": 1.2, "y": 4.5, "temperature": 20.0},
"x": 5.4, "temperature": 24.0}]

def create_heatmap(point_temps: List[MutableMapping]):



Dictionaries cannot inherit from other dictionaries

species = {

"name"” : "mountain toucan"’
}
pet = {
"species": species,
"name” : "billy"
}

I'm not gonna try anymore...



Cons of Dataclasses vs attrs



Dicts are super {lexible, and syntatically

they are easy to construct

phones_to_addresses = {
"+13125004000" : {"name": "Billy the Toucan"},
"+13125004001": {"name": "Polly the Parrot"},



Try doing this with a dataclass

@dataclass
class PhoneNumberToAddress:

# you can't even have a string that starts with a symbol
or

# number as an attribute
pass

| gave up before | even tried.



Dicts are json-serializable by default

s = {"+13125000000" : "123 Auto Mechanics Inc"}
dumped_string = json.dumps(s)
print(dumped_string)

'{"+13125000000" : "123 Auto Mechanics Inc"}'



You need to do some massaging with dataclasses

@dataclass

class PhoneEntry:
number: str
business_name: str

d = dataclasses.asdict(PhoneEntry('+13125000000', 'Paul and Angela's Bistro'))
json.dumps(d)

print(d)

"{"number": "+13125000000", "business_name": "Paul and Angela's Bistro"}'



Pros of Dataclasses vs attrs



Pros of Dataclasses vs attrs

Dataclasses come with the standard library; you have to install attrs as a library.

# requirements.txt

attrs==17.10.0



Cons of Dataclasses vs attrs



Cons of Dataclasses vs attrs

e Attrs can validate the attributes via validators
e Attrs can also convert attributes
e Attrs also has slots, whereas in dataclasses you have to explicitly state the

attributes you want to slot (Note: the attrs slots class is actually a totally

different class)



Cons of Dataclasses vs attrs

@attr.s(slots=True)
class YellowPageEntry:

phone_number : PhoneNumber =
attr.ib(convert=phonenumbers.parse)

business_name: str = attr.ib(validator=instance_of(str))

So many more features!



Performance in Detail



Performance: Bottom Line Up Front

e dataclasses and attrs are so close in performance that it shouldn't be a factor
in choosing one over the other

e dataclasses and attrs come at a very noticeable cost

e tuples (plain and named, in that order) are the all-time performance king

e dicts are far more performant that | expected them to be



Open Performance Questions

e How much of the dataclasses/attrs slow down has to do with the type
checking and validation?
e How much of the dataclasses/attrs slow down has to do with how the data is

being stored?



Benchmarking Process

e ASV (Airspeed Velocity) was a life saver and was used to measure CPU time
and memory usage

e Every benchmark starts with an attribute count ("ac” for the rest of this
presentation)

e Alist of N random names, types, and values to fit those types are generated
and stored. E.g.: *[['a','b), 'c], [int, str, int], [4, '3vdna9ds’, 9482]]

e We test creation time by instantiation the data container under test 10,000
with the previously mentioned randoom data

e ASV does this several times to generate averages

e For places where applicable, we test how long an instantition plus mutation
costs



Benchmarking Process

e We test creation time by instantiation the data container under test 10,000
times with the previously mentioned random data
e ASV does this several times to generate averages

e Where applicable, we test instantiation plus mutation costs



Performance Tidbits: dataclasses

e Immutability is practically free

e Generally speaking, dataclasses use less memory than attrs despite missing
slot support (<4% difference over all values of ac)

e Almost always a smaller memory foot-print than dictionaries (<25% difference
for ac <= 125, 40% difference for ac=625)

e Much slower than dict, tupe, and namedtuples when dealing with a large

number of attributes



Performance Tidbits: attrs

e Very similar performance characteristics to dataclasses

e Slots save almost nothing for mutable objects, but they save > 10% on
memory for immutable objects

e Slotting does not create a noticeable time difference for classes with a small
number of attributes

e Mutating classes that use slots is as fast as classes that aren't slotted



Performance Tidbits: dict

e Becomes a memory-hog several hundred elements (twice as much as tuples,
50% more than dataclasses), but they are on-par for attribute counts < 100

e They are faster to mutate and create than dataclasses and attrs, even at small
numbers (uses 33% of the time at ac=5, 21% of the time at ac=25)

e Faster to create than named tuples until ac=125



Performance Tidbits: named tuples

e Save around 10% on memory vs dataclasses and attrs

e Use almost the same amount of memory as dicts at small sizes, but have
savings > 10% at ac=25

e Saves a significant amount of time vs dataclasses and attrs (64% difference
at ac=5 and getts better as ac grows)

e Creation time is slower than dicts until ac=25, then they become faster



Performance Tidbits: tuples

e Fastest over-all creation time
e Smallest over-all memory footprint (just barely smaller than namedtuples)
e Uses between 50% and 80% of the creation time as a named tuple

e Saves ~10% on memory compared to attrs and dataclasses



CPU Time

attrs AttrsSuite time_create_immutable_uses_slots_True
attrs AttrsSuite time_create_immutable_uses_slots_False
attrs AttrsSuite time_create_mutable_uses_slots_True
attrs AttrsSuite.time_create_mutable_uses_slots_False
attrs AttrsSuite.time_create_mutate_uses_slots_True
attrs AttrsSuite time_create_mutate_uses_slots_False
dc.DataClassesSuite time_create_immutable
dc.DataClassesSuite time_create_mutable
dc.DataClassesSuite time_create_mutate

dict DictionarySuite time_create_mutable

dict DictionarySuite time_create_mutate

named_tuples NamedTupleSuite time_create_immutable
tuples TuplesSuite time_create_immutable




Memory Usage

— attrs.AttrsSuite peakmem_create_immutable_uses_slots_True
attrs AttrsSuite. peakmem_create_immutable_uses_slots_False

~— attrs.AttrsSuite peakmem_create_mutable_uses_slots_True

— attrs.AttrsSuite.peakmem_create_mutable_uses_slots_False
attrs.AttrsSuite peakmem_create_mutate_uses_slots_True

| = attrs.AttrsSuite. peakmem_create_mutate_uses_slots_False

dc.DataClassesSuite.peakmem_create_immutable
dc.DataClassesSuite.peakmem_create_mutable
dc.DataClassesSuite.peakmem_create_mutate
dict.DictionarySuite peakmem_create_mutable

—— dict DictionarySuite peakmem_create_mutate
named_tuples.NamedTupleSuite.peakmem_create_immutable

— tuples.TuplesSuite.peakmem_create_immutable




Key Takeaways

1. Dataclasses are slower than most of the other options

2. Dataclasses are reasonable when it comes to memory
usage

3. Dataclasses have no “killer features’



Questions?
Comments?
Complaints?



Thank you



