
Data Classes in Python 3.7
Brian Stempin | Yiu Ming Huynh

Goals

● 1. Discuss what dataclasses are

2. Compare/contrast uses of dataclasses

3. Compare/contrast performance of dataclasses

They're classes that are wrapped with the `dataclass` decorator:

from dataclasses import dataclass

@dataclass
class MyExampleClass(object):

x: int
y: int = 20

What are Dataclasses?

● The dunder methods: implements __eq__, __repr__, __ne__, __gt__, __lt__,
__le__, __ge__

● enables the following properties:
○ Order
○ Frozen
○ Unsafe_hash

● Has post_init functions

Dataclass Features

Feature Comparison

We want to compare and contrast the features of
dataclasses with other solutions so that we know

which tool to choose for a given situation.

Pros of Dataclasses vs
tuples/namedtuples

@dataclass
class CartesianPoints:

x: float
y: float

@dataclass
class PolarPoints:

r: float
theta: float

c = CartesianPoints(1, 2)
p = PolarPoints(1, 2)
>>> print(c == p)
False

Dataclasses as a class have their own names,
whereas tuples are always tuples

c = (1, 2)
p = (1, 2)
>>> print(c == p)
True

Dataclasses as a class have their own names,
whereas tuples are always tuples

CartesianPoint = namedtuple('CartesianPoint', field_names=['x',
'y'])
c = CartesianPoint(x=1, y=2)
p = (1, 2)
>>> print(c == p)
True

Namedtuples kinda solve the problem,
but then you run into this:

>>> s = (1, 2, 3)
>>> s[0] = 1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Tuples are always immutable...

@dataclass
class MutatingMing:

super_powers: List[str]

@dataclass(frozen=True)
class ForeverMing:

super_powers: List[str]

m1 = MutatingMing(super_powers=["shapeshifting master"])
m1.super_powers = ["levitation"]

m2 = ForeverMing(super_powers=["stops time"])
m2.super_powers = ["super human strength"]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<string>", line 3, in __setattr__
dataclasses.FrozenInstanceError: cannot assign to field 'super_powers'

... but dataclasses have options

@dataclass
class Product:

name: str

@dataclass
class DigitalProduct(Product):

download_link: URL

@dataclass
class Ebook(DigitalProduct):

isbn: str

Dataclasses can inherit from other classes...

Product = namedtuple(‘Product’, field_names=[‘name’])

DigitalProduct = namedtuple(‘DigitalProduct’, field_names=[‘name’,
‘download_link`])

Ebook = namedtuple(‘Ebook’, field_names=[‘name’, ‘download_link’,
‘isbn’])

But try doing that with a tuple

@dataclass
class CartesianPoint:

x: float
y: float

def calculate_distance(self, other):
...

Dataclasses have class methods...

c1 = Tuple(1,2)

def calculate_distance(c1: Tuple[float, float], c2:
Tuple[float, float]):

...

vs tuples...

Cons of Dataclasses vs tuples

t = "hey look", 1, True, "a tuple just like that"

Vs

@dataclass
class ARandomBundleOfAttributes:

opener: str
random_number: int
random_bool: bool
closing_statement: str

ARandomBundleOfAttributes("but look!", 7, False, "i'm a dataclass!")

Tuples have even less boiler plate to create than dataclasses

● [spoiler text] (not really) Tuples have better performance... Coming up soon

● Tuples are naturally immutable, so they make a good data structure for

multithreading

Misc that I don't wanna do a code demo of

Pros of Dataclasses vs Dict

@dataclass
class TemperaturePoint:

x: float
y: float
temperature: float

def create_heatmap(temp_points: List[TemperaturePoint]):
...

Dataclasses have well structured, specified attributes

temperature_points = [
{"x": 1.2, "y": 4.5, "temperature": 20.0},
{"x": 5.4, "temperature": 24.0}]

def create_heatmap(point_temps: List[MutableMapping]):
...

Whereas if you just had dictionaries...

species = {
"name": "mountain toucan"

}

pet = {
"species": species,
"name": "billy"

}

I'm not gonna try anymore...

Dictionaries cannot inherit from other dictionaries

Cons of Dataclasses vs attrs

phones_to_addresses = {
"+13125004000": {"name": "Billy the Toucan"},
"+13125004001": {"name": "Polly the Parrot"},
...

}

Dicts are super flexible, and syntatically
they are easy to construct

@dataclass
class PhoneNumberToAddress:

you can't even have a string that starts with a symbol
or

number as an attribute
pass

I gave up before I even tried.

Try doing this with a dataclass

s = {"+13125000000": "123 Auto Mechanics Inc"}
dumped_string = json.dumps(s)
print(dumped_string)

'{"+13125000000": "123 Auto Mechanics Inc"}'

Dicts are json-serializable by default

@dataclass
class PhoneEntry:

number: str
business_name: str

d = dataclasses.asdict(PhoneEntry('+13125000000', 'Paul and Angela's Bistro'))
json.dumps(d)
print(d)
'{"number": "+13125000000", "business_name": "Paul and Angela's Bistro"}'

You need to do some massaging with dataclasses

Pros of Dataclasses vs attrs

Pros of Dataclasses vs attrs

Dataclasses come with the standard library; you have to install attrs as a library.

requirements.txt

attrs==17.10.0

Cons of Dataclasses vs attrs

● Attrs can validate the attributes via validators

● Attrs can also convert attributes

● Attrs also has slots, whereas in dataclasses you have to explicitly state the

attributes you want to slot (Note: the attrs slots class is actually a totally

different class)

Cons of Dataclasses vs attrs

@attr.s(slots=True)
class YellowPageEntry:

phone_number: PhoneNumber =
attr.ib(convert=phonenumbers.parse)

business_name: str = attr.ib(validator=instance_of(str))

So many more features!

Cons of Dataclasses vs attrs

Performance in Detail

● dataclasses and attrs are so close in performance that it shouldn't be a factor

in choosing one over the other

● dataclasses and attrs come at a very noticeable cost

● tuples (plain and named, in that order) are the all-time performance king

● dicts are far more performant that I expected them to be

Performance: Bottom Line Up Front

● How much of the dataclasses/attrs slow down has to do with the type

checking and validation?

● How much of the dataclasses/attrs slow down has to do with how the data is

being stored?

Open Performance Questions

● ASV (Airspeed Velocity) was a life saver and was used to measure CPU time
and memory usage

● Every benchmark starts with an attribute count ("ac" for the rest of this
presentation)

● A list of N random names, types, and values to fit those types are generated
and stored. E.g.: `[['a', 'b', 'c'], [int, str, int], [4, '3vdna9s', 9482]]`

● We test creation time by instantiation the data container under test 10,000
with the previously mentioned randoom data

● ASV does this several times to generate averages
● For places where applicable, we test how long an instantition plus mutation

costs

Benchmarking Process

● We test creation time by instantiation the data container under test 10,000

times with the previously mentioned random data

● ASV does this several times to generate averages

● Where applicable, we test instantiation plus mutation costs

Benchmarking Process

● Immutability is practically free

● Generally speaking, dataclasses use less memory than attrs despite missing

slot support (<4% difference over all values of ac)

● Almost always a smaller memory foot-print than dictionaries (<25% difference

for ac <= 125, 40% difference for ac=625)

● Much slower than dict, tupe, and namedtuples when dealing with a large

number of attributes

Performance Tidbits: dataclasses

● Very similar performance characteristics to dataclasses

● Slots save almost nothing for mutable objects, but they save > 10% on

memory for immutable objects

● Slotting does not create a noticeable time difference for classes with a small

number of attributes

● Mutating classes that use slots is as fast as classes that aren't slotted

Performance Tidbits: attrs

● Becomes a memory-hog several hundred elements (twice as much as tuples,

50% more than dataclasses), but they are on-par for attribute counts < 100

● They are faster to mutate and create than dataclasses and attrs, even at small

numbers (uses 33% of the time at ac=5, 21% of the time at ac=25)

● Faster to create than named tuples until ac=125

Performance Tidbits: dict

● Save around 10% on memory vs dataclasses and attrs

● Use almost the same amount of memory as dicts at small sizes, but have

savings > 10% at ac=25

● Saves a significant amount of time vs dataclasses and attrs (64% difference

at ac=5 and getts better as ac grows)

● Creation time is slower than dicts until ac=25, then they become faster

Performance Tidbits: named tuples

● Fastest over-all creation time

● Smallest over-all memory footprint (just barely smaller than namedtuples)

● Uses between 50% and 80% of the creation time as a named tuple

● Saves ~10% on memory compared to attrs and dataclasses

Performance Tidbits: tuples

CPU Time

Memory Usage

Key Takeaways

● 1. Dataclasses are slower than most of the other options
●
● 2. Dataclasses are reasonable when it comes to memory

usage
●
● 3. Dataclasses have no "killer features"

Questions?
Comments?
Complaints?

Thank you

