

Identity And APIs
Techniques to Mature Platform Security

Nordic APIs

© 2020 Nordic APIs

Contents

Foreword . i

Preface . iii

PartOne:Basic IdentityConcepts
1

Introducing The API Security Maturity Model 2

The Difference Between HTTP Auth, API Keys, and OAuth 12

API Keys ≠ Security: Why API Keys Are Not Enough 22

Why Can’t I Just Send JWTsWithout OAuth? 29

How To Control User Identity Within Microservices . . . 37

PartTwo:OAuthFlowsandDeep
Dives . 47

8 Types of OAuth Flows And Powers 48

Exploring OAuth.tools, The World’s First OAuth Play-
ground . 57

Strategies for integrating OAuth with API Gateways . . . 62

CONTENTS

Assisted Token Flow: The Answer to OAuth Integration
in Single Page Applications 71

Using OAuth Device Flow For UI-Incapable Devices . . . 78

SCIM: Building the Identity Layer for the Internet 85

Part Three: The Role of Identity 93

OAuth 2.0 – Why It’s Vital to IoT Security 94

Is OAuth Enough for Financial-Grade API Security? . . . 103

The Role of Identity in API Security 109

Nordic APIs Resources . 114

Foreword
by Travis Spencer

The other day, I rewatched the recording of my first-ever pre-
sentation at Nordic APIs’ inaugural event in 2013. In that, I dis-
cussed digital identity and its bearing on APIs. I pointed out
that a new stack of security standards had emerged with the
advent ofOAuth, OpenIDConnect, andSCIM. I ran through some
flows and specs that I believed would shape API security for the
coming decade, and advised listeners to abandon antiquated
predecessors. From my first contribution to this community, I
have sought to explain how important it is to know who is on
the other end of the wire communicating with our APIs.

The next day, Bill Doerrfeld emailed me a manuscript of this
ebook. The serendipitous timing struck me in two ways. First,
this central, important intersection of digital identity and APIs
continues to be paramount to all practitioners in the space. It
is not surprising that 5 out of 10 of the most popular videos on
theNordic APIs YouTube channel are related to API security. This
aspect of APIs is really challenging, and almost all deployments
must overcome it. Secondly, we have come very far as a commu-
nity. From that short 20 minute presentation to this and other
ebooks, blog posts, presentations, and workshops flowing out
of this community, we’ve made tremendous progress that has
lifted not only this group but, I dare say, IT in general.

On behalf of myself and Curity, we are very pleased to be a
part of Nordic APIs and contribute to this critical discussion. I
believe that digital identity vis-a-vis APIs will continue to be a
central theme in the API space for the coming decade. I think the
nuances will change slightly, and that the standards will evolve.

https://www.youtube.com/watch?v=E6o3IKcQABY
https://www.youtube.com/watch?v=E6o3IKcQABY
https://curity.io/

Foreword ii

However, what we have today – the info covered in this book –
will remain the underpinnings and requisite know-how. Digging
into this ebook and the topics it addresseswill bewell worth the
effort and rewarded for years to come.

I hope you enjoy reading the work of Bill and his team, and that
this ebook deepens your understanding of this key intersection
of identity and APIs!

– Travis Spencer

CEO, Curity
Co-Founder, Nordic APIs

https:/curity.io/

Preface
by Bill Doerrfeld

If you’re into building with APIs, you’re probably introducing
new software architecture to bring scalability and efficiency
advancements. But are you introducing new vulnerabilities as
well?

Developersoftendon’t traditionallybuild fromanexternal-facing
viewpoint. But, in today’s cloud-native world of Bring Your Own
Device and remote access, security is a more paramount issue
than ever, even for internal systems. “If we don’t take these
concerns early on, they will cause catastrophic problems later
on,” warned Keith Casey in a recent Nordic APIs webinar.

Continual exploitsdemonstratea lackof securitymaturityacross
the cloud industry, underscoring the need for more security
forethought. To combat these prevalent issues, many cyberse-
curity experts now turn to identity. At Nordic APIs events, we’ve
repeatedly witnessed speakers stress the importance of identity
handling tomature API platforms at scale. As digital ecosystems
evolve, so must access management strategies.

Authorization and authentication systems have changed signif-
icantly for microservices over the past few years. From HTTP
Basic Auth, to API Keys, to OAuth 2.0. Now, experts view OAuth
Scopes and Claims as the most mature form of API security.
Centralized trust using Claims is “the place you want to get to in
order tomature your API Securitymodel,” says Jacob Ideskog of
Curity.With this approach, authorization is uniformand reliable,
and attack vectors (or room for honest mistakes) are signifi-
cantly reduced.

Preface iv

In short, to plug security gaps, software architects must con-
sider identity alongside an API strategy. So, to torchlight the
identity fires, we’ve assembled the top relevant Nordic APIs
articles on APIs and Identity.

We’ve organized APIs and Identity, into three parts:

• Part One introduces basic concepts related to API security
and identity. Familiarize yourself and see where you sit on
the API Security Maturity Model.

• Part Two dives deeper into OAuth flows, giving you the
tools to see which is best for your scenario. See how other
open identity standards like SCIMmake this all possible.

• Part Three looks at high-risk sectors where API security
needs the most focus, arguing why an identity emphasis
is so important in these areas.

We’ve also linked to the original source for each article, so you
can review the deeper conversations thatmany of these articles
inspired.

So, please enjoy APIs and Identity, and let us know how we can
improve. If you haven’t yet, consider following Nordic APIs and
signing up to our newsletter for bi-monthly blog updates and
event announcements. We also accept blog contributions from
the community - if interested, please visit our Create With Us
page to submit an article.

Thank you for reading!

– Bill Doerrfeld, Editor in Chief, Nordic APIs

https://twitter.com/nordicapis
http://nordicapis.com/newsletter/
http://nordicapis.com/event-calendar/
http://nordicapis.com/create-with-us/
http://nordicapis.com/create-with-us/

Part One: Basic Identity
Concepts

Introducing The API Security
Maturity Model
by Kristopher Sandoval
Originally Published Here

Identity ranks high atop the API Security Maturity Model

When a user utilizes a service, they must first attest that they
are who they say they are. In most use cases, they must then
attest that they candowhat they’re trying to do. Formanyusers,
this is an opaque process that happens magically behind the
scenes. The reality of implementing this system, however, has
resulted in an ever-evolving security landscape that requires
specific modes of authentication and authorization.

Thus, the question becomes apparent: how canwe encapsulate
information about the user, their rights, and their origin, in a
useful way? Wouldn’t it be great if an API could know who you

https://nordicapis.com/introducing-the-api-security-maturity-model/

Introducing The API Security Maturity Model 3

are, whether to trust you, and whether you can do what you
claim to do? That’s the idea behind the API Security Maturity
Model. Today, we’re going to dive into this model and look at
the fundamental approach to security that if offers.

Review: Richardson Maturity Model

The API SecurityMaturityModelwas invented by Jacob Ideskog,
Solution Architect & Identity Specialist at Curity. The idea arose
as a corollary to the Richardson Maturity Model. As such, before
we dive into the API Security Maturity Model, let’s first examine
its inspiration.

Leonard Richardson created the Richardson Maturity Model to
reflect the reality of the RESTful API space. In essence, it’s pos-
sible for an API to be REST-like while not being truly RESTful.
Accordingly, REST compliance is not a duality, but rather a series
of levels of increasing compliance.

• Level 0: The Richardson Model has four levels, though the
first level is considered “level zero,” as it reflects absolutely
no REST compliance. This level of maturity represents an
API that doesn’t make use of hypermedia URIs, often has a
single URI andmethod for calling that URI.

• Level 1: As we get more complicated, we enter Level one,
where we start to see the use of multiple URIs with simple
interactions. Key to remember here is that these multiple
URIs still have simple verbiage usage.

• Level 2: Level Two is a significant evolution in that it boasts
both multiple URIs and multiple ways of interacting with
that data. This level sees far more complex APIs than the
previous levels due to the nature of the verbiage used –
specifically, CRUD (Create, Read, Update, and Delete) is

https://curity.io/

Introducing The API Security Maturity Model 4

usable on exposing resources, allowing complex manipu-
lation.

• Level 3: The highest level of maturity, APIs in this stage
are truly “RESTful” in that they employ Hypermedia as the
Engine of Application State (HATEOAS). This results in a
highly complex and powerful API, both boasting multiple
URIs and the verbiage to interact with them as well as the
power behind hypermedia.

The Richardson Maturity Model, predecessor to The API Security Maturity
Model

The API Security Maturity Model

The interesting thing about the Richardson Maturity Model is
that it’s not simply different states of compliance. It represents
cumulative upgrades from level to level, with each new step
including previous gains and leveraging new additions.

Similarly, the API Security Maturity Model describes API security
as ever-increasing levels of security, complexity, and efficiency.

Introducing The API Security Maturity Model 5

The API Security Maturity Model model, like the Richardson
Model, moves from the lowest-maturity to the highest and can
be considered akin to a playbook for how to progress into a
secure platform deployment.

With this inmind, let’s take a look at the specific levels of the API
Security Maturity Model, starting with the lowest maturity level
andmoving towards the highest.

Level 0 - API Keys and Basic Authentication

Level 0 is really just the starting point for most security, and as
a result, predictably, it’s quite basic in nature – everything in
the rest of this model quite literally builds on top of the basic
authentication systems and the API keys that interact with them
here. Authentication at this level is based upon the notion that
whoever has the key must have it because it’s their key, and
thus, their activity is valid. This “authentication” is then carried

Introducing The API Security Maturity Model 6

forward to other endpoints and APIs in a trusted network, with
the key data being carried along that path.

In essence, this type of security is based upon an arguably fun-
damentally insecuremethod. All an API key does is confirm that
whoever is holding that key can do what that key allows – it
does nothing to ensure the person who has the key is meant
to have it, is using it in the proper way, or even that they key
was legitimately authorized and is still valid. There are also
additional concerns in that the user isn’t bound to the requested
resource – the key could come from almost anywhere as long as
it’s trusted, and that chain of authentication could, in theory, go
anywhere within the network of trust.

There’s an evenmore serious problemwith this level ofmaturity
– it only provides authentication. Authentication just says that
you are who you say you are (or, at the very least, you have
something that says you are who you claim to be). What it
does not do, however, is prove that you have the right to make
that claim, to access resources that person has rights to access,
etc. This is authorization, which is fundamentally different from
authentication. In order to have authorization, we need a more
complex system.

Level 1 - Token-Based Authentication

Token-Based authentication is a more complex system and rep-
resents a different level of security maturity. Tokens are used
in this case to establish that whoever holds that token is who
they say they are. In the wild, this is often constructed into a
sort of quasi-authorization system, as the holding of a token
can be seen as an authentication of both who the person is,
and what their intent in holding that token is. Tokens can be
thought of like an identification card. It may not necessarily say
you can do something, but due to the fact that you hold that
card, some infer that you are thus trustworthy enough – after

Introducing The API Security Maturity Model 7

all, you have identified yourself through a securemeans, so you
must be trustworthy!

A good practical way of thinking about this level of maturity
is to frame it in terms of a realistic transport workflow. Let’s
say you’re a news publisher. You have an inside organization
of writers, editors, etc. who write articles, work on reports, etc.
These authors login to theirworkstations and start pushing their
content to an application, which then presents the content for-
ward to the external viewership.

In this case, you have several tokens working in concert. The
authors are using their tokens to push content forward and
attribute that content to themselves. The readers likewise have
their own tokens, which allow them to access the application
and leave comments, which are, in turn, attributed to their pro-
file. If they are premium subscribers, they might even have spe-
cial, different tokens that allow them different access patterns
through a quasi-authentication scheme.

This level has its own problems, of course. Authentication To-
kens, even though they are often used as a sort of authorization
scheme in thewild, aremeantonly tobeused forauthentication.
Because of that, the quasi-authentication comes from both a
suppositionof intent (wow, this personhas this token, theymust
be trustworthy enough to do this thing!) and a complex mix of
conditional statements and fuzzy logic.

It should also be noted that using authentication tokens as a
form of authorization is often highly insecure due to the nature
of how tokens get distributed. Machines can get tokens very
easily – and if a machine can do it, any malicious actor can do
it. When tokens are easy to get, then your authorization scheme
depends almost entirely on a system that is spoofable, corrupt-
ible, and frankly being used for the exact opposite purpose that
was intended.

Introducing The API Security Maturity Model 8

Level 2 - Token-Based Authorization

Token-Based Authorization is a bit like our previous level, but
the focus is shifted to authorization. At this level, we’re no longer
answering the question of “who are you?” but rather “what can
you do?”.

Oneway to think of this is to imagine a great castle with secured
gates. In order to enter the castle, you can provide your identity
– in other words, you can authenticate that you are who you
say you are. While that might get you into the gates, how does
anyone know you have a right to sell goods? To sell goods, you
might need a seal from the king that says you are allowed to
engage in commerce – in other words; you’d need authorization
that states youare allowed todo something. Your first token said
who you are, and your second token said what you can do.

To take our example of authors and readers to another level, we
can look at the ability to consume and the ability to publish.
While authentication tokens allowed us to attribute content to
a specific user, we’d also need a mechanism to ensure that
only authors can publish content. This is where authorization
comes in – when authors push their content to the application
for consumption, the system needs to be able to ensure that the
content came from a trusted source, and has been authored by
someone who has the right to upload the content.

This access can be controlled quite granularly using a solu-
tion like OAuth – implementing scopes can govern permissions
across a token’s lifespan and purpose, expiry can be set to en-
sure that tokens can “age out” of use, etc. In this way, while au-
thentication is verymuch a “yes or no” proposition (specifically,
you either are who you say you are or you’re not), authorization
can be a much more variable sliding scale of applicability. Au-
thorization isn’t just “you either can or you can’t,” it can be “you
can as long as your token is not expired and it is valid for all the
sub-steps within this process.”

Introducing The API Security Maturity Model 9

While this might seem like a perfect fix for our security concerns
in previous levels, there are a few significant reasons that this
is still not enough. First and foremost, we must ask ourselves
one question – who do we trust? These systems are designed
to be authoritative, and as such, the token systems that come
from them must be impervious and trustworthy in order for us
to consider their tokens as evidentiary.

Additionally, we must ask ourselves about how data gets han-
dled in transit. These tokens get passed forward, and as they
do, they collect more and more data. Accordingly, we must ask
whatdata isbeingadded, andbywhom. Ifwecan’t know for sure
that the data we’re handling is, in fact, the same as when it was
issued, we lose a significant amount of trust in the data as a core
value.

Level 3 - Centralized Trust Using Claims

Claims are a significant missing piece throughout all of our se-
curity layers, principally because we are trying to add security
at the wrong place. It’s one thing for a user to claim to be who
they are, or to claim to have certain rights – howdowe trust that
what they are saying is true? More importantly, how do we trust
those who gave the evidence that they are using?

That’s the fundamental question here – who do we trust? Do we
trust the caller? Do we trust the API Gateway? How about the
token issuer? Trust secures us, but it alsoopensusup topossible
attacks. What can we do to fix this?

Claims are the fix because they don’t simply tell you something
about the subject; they give you context and the ability to verify
that information. There are two core types of attributes that a
claim can reference – Context Attributes tell us about the situa-
tion when a token is issued, and Subject Attributes tell us about
the thing that received the token. In order to verify this is true,

Introducing The API Security Maturity Model 10

we trust an Asserting Party. For example, let’s say we wanted to
get a token, proving that Nordic APIs has published a post. We
can look to the attributes:

1 Attribute:

2 publisher: Nordic_APIs_Author1

3 publish_Date: 12/1/2019

In order to instill better security, we can express this information
in a claims token as such:

1 Claim:

2 Nordic APIs say:

3 The publisher is Nordic_APIs_Author1.

Using claims, we not only say the information we need to say,
but we also specify who is attesting that the information is, in
fact, true. In a practical format, the workflow relies quite heavily
on signing and verification. When a Requesting Party requests
a token from the Issuing Authority, that Authority returns the
information requested. This information is signed using a Pri-
vate Key – when the Requesting Party wants to verify this infor-
mation, it can simply using the Public Key to ensure that it was
signed before it was handed off.

More to the point, encoding and encapsulating data in this way
also allows us to add each layer’s functionality into a singu-
lar source with contextualized information. While the token is
granted significant trust due to its signed nature, the meta con-
textual information (and the attestations from the Issuing Au-
thority) allows us to know who has requested the information,
and what they are allowed to see.

Claims also solve the concern of data being added in transit. Be-
cause the information encoded is signed and controlled by the

Introducing The API Security Maturity Model 11

Issuing Authority, nothing is added in transit unless the Issuing
Authority is involved – in this way, the source of information can
be directly controlled.

Conclusion

Security is not a “one size fits all” equation, but the fundamental
requirements of the system are nonetheless quite universal.
The need to prove that people are who they say they are, and
the need to control access, are fundamental concerns for the
modernweband the systems that drive it. Accordingly, choosing
the correct approach for your given security flow is paramount
to successful communication.

The Difference Between
HTTP Auth, API Keys, and
OAuth
by Daniel Lindau
Originally Published Here

OAuth goes beyond basic authentication measures

When designing systems that enable secure authentication and
authorization for API access, you must consider how your ap-
plications and users should authenticate themselves. In this
article, we’ll compare three different ways to achieve this: API
Keys, HTTP Basic Auth, and OAuth. We’ll also highlight what the
benefits and drawbacks are for eachmethod.

https://nordicapis.com/the-difference-between-http-auth-api-keys-and-oauth/

The Difference Between HTTP Auth, API Keys, and OAuth 13

API Keys

Using API keys is a way to authenticate an application accessing
theAPI,without referencinganactual user. Theappadds thekey
to each API request, and the API can use the key to identify the
application and authorize the request. The key can then be used
toperformthings like rate limiting, statistics, andsimilar actions.

How the key is sent differs between APIs. Some APIs use query
parameters, some use the Authorize header, some use the body
parameters, and so on. For instance, Google Cloud accepts the
API key with a query parameter like this:

1 curl -X POST https://language.googleapis.com/v1/documents\

2 :analyzeEntities?key=API_KEY

Cloudflare requires the API key to be sent in a custom header:

1 curl https://api.cloudflare.com/client/v4/zones/cd7d0123e\

2 301230df9514d \

3 -H "Content-Type:application/json" \

4 -H "X-Auth-Key:1234567893feefc5f0q5000bfo0c38d90bbeb\

5 " \

6 -H "X-Auth-Email:example@example.com"

API Keys Benefits

It’s relatively easy for clients to use API keys. Even though most
providers use differentmethods, adding a key to the API request
is quite simple.

API Keys Drawbacks

The API key only identifies the application, not the user of the
application.

The Difference Between HTTP Auth, API Keys, and OAuth 14

It’s often difficult to keep the key a secret. For server-to-server
communication, it’s possible to hide the key using TLS and re-
strict the access to only be used in backend scenarios. However,
sincemanyother types of clientswill consume the APIs, the keys
are likely to leak.

Request URLs can end up in logs. JavaScript applications have
more or less everything out in the open. Mobile apps are easy
to decompile, and so on. Thus, developers shouldn’t rely on API
keys formore than identifying the client for statistical purposes.
Furthermore, API keys are also not standardized,meaning every
API has a unique implementation.

HTTP Basic Auth

HTTP Basic Auth is a simple method that creates a username
and password style authentication for HTTP requests. This tech-
niqueusesaheader calledAuthorization,withabase64encoded
representation of the username and password. Depending on
the use case, HTTP Basic Auth can authenticate the user of the
application, or the app itself.

A request using basic authentication for the user danielwith the
password password looks like this:

1 GET / HTTP/1.1

2 Host: example.com

3 Authorization: Basic ZGFuaWVsOnBhc3N3b3Jk

Whenusingbasicauthentication foranAPI, thisheader isusually
sent in every request. The credentials become more or less an
API key when used as authentication for the application. Even
if it represents a username and password, it’s still just a static
string.

The Difference Between HTTP Auth, API Keys, and OAuth 15

In theory, the password could be changed once in a while, but
that’s usually not the case. As with the API keys, these creden-
tials could leak to third parties. Granted, since credentials are
sent in aheader, they are less likely to endup ina log somewhere
than using a query or path parameter, as the API key might do.

Using basic authentication for authenticating users is usually
not recommended since sending the user credentials for every
request would be considered bad practice. If HTTP Basic Auth is
only used for a single request, it still requires the application to
collect user credentials. The user has nomeans of knowingwhat
the app will use them for, and the only way to revoke the access
is to change the password.

HTTP Basic Auth Benefits

HTTP Basic Auth is a standardized way to send credentials. The
header always looks the same, and the components are easy to
implement. It’s easy touseandmightbeadecentauthentication
for applications in server-to-server environments.

HTTP Basic Auth Drawbacks

When a user is authenticated, the application is required to
collect thepassword. Fromtheuserperspective, it’s notpossible
to know what the app does with the password. The application
will gain full access to the account, and there’s no other way
for the user to revoke the access than to change the password.
Passwords are long-lived tokens, and if an attacker would get a
hold of a password, it will likely go unnoticed. When used to au-
thenticate the user, multi-factor authentication is not possible.

The Difference Between HTTP Auth, API Keys, and OAuth 16

Token-based Authentication Using OAuth
2.0

A token-based architecture relies on the fact that all services
receivea tokenasproof that theapplication is allowed to call the
service. The token is issued by a third party that can be trusted
by both the application and service. Currently, themost popular
protocol for obtaining these tokens isOAuth 2.0, specified in RFC
6749.

OAuth specifies mechanisms where an application can ask a
user for access to services on behalf of the user, and receive a
token as proof that the user agreed. To demonstrate howOAuth
works, let’s consider the following use case.

A user Alice has an account with a service where she can report
the current indoor temperature of her home. Alice also wants
to give a third-party application access to read the temperature
data, to be able to plot the temperatures on a graph, and cross-
reference with data from other services.

The temperature service exposes an API with the temperature
data, so the third party app should be able to access the data
quite easily. But how do we make only Alice’s data available to
the application?

Collecting the Credentials

Using Basic authentication, the application can collect Alice’s
username and password for the temperature service and use
those to request the service’s data. The temperature service
can then verify the username and password, and return the
requested data.

The Difference Between HTTP Auth, API Keys, and OAuth 17

However, as we noted about, there are a few problems with this
approach:

• The user has to trust the application with the credentials.
Theuserhasnomeansof knowingwhat thecredentials are
used for.

• The only way for the user to revoke the access is to change
the password.

• The application is not authenticated
• The scope of access can not be controlled. The user has
given away full access to the account.

• Two-factor authentication cannot be used

Historically, thishascreatedaneed for services todevelop“application-
specific passwords,” i.e., additional passwords for your account
to be used by applications. This removes the need to give away
theactual password, but it usuallymeans giving away full access
to the account. On the service provider side, you could build
logic around combining application-specific passwordswith API
keys,which could limit access aswell, but theywouldbe entirely
custom implementations.

The Difference Between HTTP Auth, API Keys, and OAuth 18

The OAuthWay

Let’s look at how we could solve this problem using an OAuth
2.0 strategy. To enable better authentication, the temperature
service must publish an Authorization Server (AS) in charge of
issuing the tokens. This AS allows third party applications to
register, and receive credentials for their application to be able
to request access on behalf of users.
To request access, the application can then point the user’s
browser to the AS with parameters like:

1 https://as.temperatures.com/authorize?client_id=third_par\

2 ty_graphs&scope=read_temperatures&…

This request will take the user to the AS of the temperature ser-
vice, where the AS can authenticate Alicewithwhatevermethod
is available. Since this happens in the browser, multiple-factors
arepossible, and theonly one seeing thedata is the temperature
service and the owner of the account.
Once Alice has authenticated, the AS can ask if it’s ok to allow
access for the third party. In this case, the read_temperature
scope was asked for, so the AS can prompt a specific question.

1 <bild consent>

When Alice accepts, the client can authenticate itself. A token is
issued as proof that Alice accepted the delegated access, and it
is sent back to the third party application.

Now, the third party application can call the API using the re-
ceived token. The token is sent alongwith the request by adding
it to the Authorization header with the Bearer keyword as fol-
lows:

The Difference Between HTTP Auth, API Keys, and OAuth 19

1 GET /temperature HTTP/1.1

2 Host api.temperatures.com

3 Authorization: Bearer <token>

Upon receiving the request, the service can validate the token,
and see that Alice allowed the application to read the tem-
perature listings from her account, and return the data to the
application.

Token Validation

The issued token can be returned in two ways, either by return-
ing a reference to the token data or returning the value of the
token directly. For the reference token, the service will have to
send a request to the AS to validate the token and return the
data associated with it. This process is called introspection, and
a sample response looks like this:

The Difference Between HTTP Auth, API Keys, and OAuth 20

1 {

2 "active": true,

3 "sub": “alice”,

4 "client_id": "third_party_graphs",

5 "scope": "read_temperatures"

6 …

7 }

In this response, we can see that the user alice has granted the
application third_party_graphs access to her account, with the
scope of read_temperatures.

Based on this information, the service can decide if it should
allow or deny the request. The client_id can also be used for
statistics and rate-limiting of the application. Note that we only
got theusernameof the account in the example, but since theAS
does the authentication, it can also return additional claims in
this response (things like account type, address, shoe-size, etc.)
Claims can be anything that can allow the service tomake awell
informed authorization decision.

For returning the value, a token format like JSON Web Token
(JWT) is usually used. This token can be signed or encrypted so
that the service can verify the token by simply using the public
key of the trusted AS. Tip: Read this resource for recommenda-
tions on token types.

We can see a clear difference here:

• Alice only gave her credentials to the trusted site.
• Multi-factor authentication can be used.
• Alice can revoke access for the app, by asking the temper-
ature site to withdraw her consent, without changing her
password

• Alice can allow the third-party app to access only certain
information from her account.

https://curity.io/resources/architect/api-security/phantom-token-pattern/

The Difference Between HTTP Auth, API Keys, and OAuth 21

• Claims about the user can be delivered to the service di-
rectly through the request.Noadditional lookups required.

• The flow is entirely standardized.

Summary

Since OAuth 2.0 was developed in the time of a growing API
market, most of the use cases for API keys and Basic Authen-
tication have already been considered within the protocol. It’s
safe to say that it beats the competition on all accounts. For
small, specific use cases, it might be ok to use API keys or Basic
Authentication, but anyone building systems that plan to grow
should be looking into a token-based architecture such as the
Neo Security Architecture.

In the use case above, I only described the user flow, but OAuth,
of course, specifiesalternate flows forobtaining tokens in server-
to-server environments. You can read more on those in my ear-
lier post that explores eight types of OAuth flows and powers.

https://curity.io/resources/architect/neo-security/what-is-neosecurity/
https://nordicapis.com/8-types-of-oauth-flows-and-powers/

API Keys ≠ Security: Why API
Keys Are Not Enough
by Kristopher Sandoval
Originally Published Here

Who holds the key? APIs need robust identity control and access
management.

We’re all accustomed to using usernames and passwords for
hundreds of online accounts — but if not managed correctly,
using passwords can become a significant distraction and a po-
tential security vulnerability. The same is true in the API space.
There’s nothing inherently wrong with usernames — you need
those. But if you use them without also having credentials that
allow the service to verify the caller’s identity, you are certainly
doing it wrong.

Unfortunately, many API providers make a dangerous mistake

https://nordicapis.com/why-api-keys-are-not-enough/

API Keys ≠ Security: Why API Keys Are Not Enough 23

that exposes a large amount of data andmakes an entire ecosys-
tem insecure. In plain English — if you’re only using API keys,
youmay be doing it wrong!

What is an API Key?

An API Key is a code assigned to a specific program, developer
or user that is used whenever that entity calls an API. This Key is
typically a long string of generated characters which follow a set
of generation rules specified by the authority that creates them:

1 IP84UTvzJKds1Jomx8gIbTXcEEJSUilGqpxCcmnx

Upon account creation or app registration, many API providers
assign API keys to their developers, allowing them to function in
a way similar to an account username and password. API keys
are unique. Because of this, many providers have opted to use
these keys as a type of security layer, barring entry and further
rights to anyone unable to provide the key for the service being
requested.

Despite the alluring simplicity and ease of utilizing API Keys
in this method, the shifting of security responsibility, lack of
granular control, andmisunderstanding of the purpose and use
amongstmostdevelopersmakesolely relyingonAPIKeysapoor
decision.More than justprotectingAPI keys,weneed toprogram
robust identity control andaccessmanagement features to safe-
guard the entire API platform.

Shifting of Responsibility

In most common implementations of the API Key process, the
security of the system as awhole depends entirely on the ability

API Keys ≠ Security: Why API Keys Are Not Enough 24

of the developer consumer to protect their API keys and main-
tain security. However, this isn’t always stable. Take Andrew
Hoffman’s $2375 Amazon EC2 Mistake that involved a fluke API
key push to GitHub. As developers rely on cloud-based develop-
ment tools, the accidental or malicious public exposure of API
keys can be a real concern.

From the moment a key is generated, it is passed through the
network to the user over a connection with limited encryption
and security options. Once the user receives the key, which in
many common implementations is provided in plain text, the
user must then save the key using a password manager, write
it down, or save it to a file on the desktop. Another common
method for API Key storage is device storage, which takes the
generated key and saves it to the device on which it was re-
quested.

When a key is used, the API provider must rely on the developer
to encrypt their traffic, secure their network, and uphold the
security bargain’s side. There are many vulnerabilities at stake
here: applications that contain keys can be decompiled to ex-
tract keys, or deobfuscated from on-device storage, plaintext
files can be stolen for unapproved use, and passwordmanagers
are susceptible to security risks as with any application.

Due to its relative simplicity, most common implementations of
the API Keymethodprovide a false sense of security. Developers
embed the keys in Github pushes, utilize them in third-party
API calls, or even share them between various services, each
with their own security caveats. In such a vulnerable situation,
security is a huge issue, but it’s one that isn’t really brought up
with API Keys because “they’re so simple—and the userwill keep
them secure!”

This is a reckless viewpoint. API Keys are only secure when used
with SSL, which isn’t even a requirement in the basic imple-
mentation of the methodology. Other systems, such as OAuth

http://www.programmableweb.com/news/why-exposed-api-keys-and-sensitive-data-are-growing-cause-concern/analysis/2015/01/05
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://oauth.net/

API Keys ≠ Security: Why API Keys Are Not Enough 25

2, Amazon Auth, and more, require the use of SSL for this very
reason. Shifting the responsibility from the service provider to
the developer consumer is also a negligent decision from a UX
perspective.

Lack of Granular Control

Some people forgive the lack of security. After all, it’s on the
developer to make sure solutions like SSL are implemented.
However, even if you assure security, your issues don’t stop
there — API Keys by design lacks granular control.

Somewhat ironically, before API keys were used with RESTful
services, we had WS-Security tokens for SOAP services that let
us perform many things with more fine-grained control. While
other solutions can be scoped, audienced, controlled, andman-
aged down to the smallest ofminutia, API Keys,more often than
not, only provide access until revoked. They can’t be dynami-
cally controlled.

That’s not to say API Keys lack any control — relatively useful
read/write/readwrite control is definitely possible in an API Key
application. However, the needs of the average API developer
often warrant more full-fledged options.

This is not a localized issue either. Asmore andmore devices are
integrated into the Internet of Things, this control will become
more important than ever before, magnifying the choices made
in the early stages of development to gargantuan proportions
later on in the API Lifecycle.

http://oauth.net/
http://oauth.net/
http://nordicapis.com/7-api-design-lessons-world-tour-roundup/
http://nordicapis.com/7-api-design-lessons-world-tour-roundup/
http://nordicapis.com/the-state-of-iot-information-design-why-every-iot-device-needs-an-api/
http://nordicapis.com/envisioning-the-entire-api-lifecycle/

API Keys ≠ Security: Why API Keys Are Not Enough 26

Square Peg in a Round Hole

All of this comes down to a single fact: API Keys were never
meant to beused as a security feature. Most developers utilize
API Keys as amethod of authentication or authorization, but the
API Key was only ever meant to serve as identification.

API Keys are best for two things: identification and analyt-
ics. While analytic tracking can make or break a system, other
solutions implement this feature in a more feature-rich way.
Likewise, while API Keys do a great job identifying a user, other
alternatives, such as public key encryption, HoK Tokens, etc. do
a much better job of it while providing more security.

The Pros of API Keys

There are definitely some valid reasons for using API Keys. First
and foremost, API Keys are simple. The use of a single identifier
is simple, and for someusecases, thebest solution. For instance,
if an API is limited specifically in functionality where “read” is
the only possible command, an API Key can be an adequate
solution. Without the need to edit, modify, or delete, security is
a lower concern.

Secondly, API Keys can help reduce the entropy-related issues
within an authenticated service. Entropy — the amount of en-
ergy or potential within a system constantly expended during
its use — dictates that there are a limited amount of authenti-
cation pairs. Suppose entropy dictates that you can only have
6.5 million unique pairs when limited within a certain charac-
ter set and style. In that case, you can only have 6.5 million
devices, users, or accounts before you run into an issue with
naming. Conversely, establishing an API Keywith a high number

https://www.pingidentity.com/en/blog/2015/01/20/new_standards_emerging_for_hok_tokens.html

API Keys ≠ Security: Why API Keys Are Not Enough 27

of acceptable variables largely solves this, increasing theoretical
entropy to a much higher level.

Finally, autonomy within an API Key system is extremely high.
Because an API Key is independent of a naming server and
master credentials, it can be autonomously created. While this
comes with the caveat of possible Denial of Service attacks, the
autonomy created is wonderful for systems that are designed to
harness it.

When developing an API, a principle of least privilege should
be adhered to — allow only those who require resources to
access those specific resources. This principle hinges on the
concept of CIA in system security — Confidentiality, Integrity,
and Availability. If your API does not deal with confidential infor-
mation (for instance, an API that serves stock exchange tickers),
does not serve private or mission-critical information (such as
a news/RSS API), or does not demand constant availability (in
other words, can function intermittently), then API Keys may be
sufficient.

Additionally, API Keys are a good choice for developer-specific
API uses. When developers are configuring API clients at oper-
ation time, and use changing keys for different services, this is
acceptable.

Back to Reality

The benefits of using API Keys outlined above are still tenuous
in the general use-case scenario. While API keys are simple, the
limitation of “read-only” is hampering rather than liberating.
Even though they provide higher levels of entropy, this solution
is not limited to API Keys and is inherent in other authenti-
cation/authorization solutions. Likewise, autonomy can be put
in place through innovative server management and modern

API Keys ≠ Security: Why API Keys Are Not Enough 28

delegation systems.

Conclusion: API Keys Are Not a Complete
Solution

The huge problems with API Keys come when end users, not
developers, start making API calls with these Keys, which more
often than not expose your API to security and management
risks. It comes down to that API Keys are, by nature, not a
complete solution. While they may be perfectly fine for read-
only purposes, they are too weak a solution to match the com-
plexity of a high-use API system. Whenever you start integrating
other functionality such as writing, modification, deletion, and
more, you necessarily enter the realm of Identification, Authen-
tication, and Authorization.

Basic API Key implementation doesn’t support authentication
without additional code or services. It doesn’t support authen-
tication without a matching third-party system or secondary
application. It doesn’t support authorization without some se-
rious “hacks” to extend use beyond what they were originally
intended for.

While an argument could be made for expanding out the API
Keys method to better support these solutions, that argument
would advocate re-inventing the wheel. There are already so
many improved solutions available that adding functionality to
anAPIKey systemdoesn’tmakesense. Even if youdidaddsome-
thing like authentication, especially federated authentication,
to the system using Shibboleth, OpenID, etc., there are a ton of
systems out there that already have support for this.

http://nordicapis.com/api-security-the-4-defenses-of-the-api-stronghold/
http://nordicapis.com/api-security-the-4-defenses-of-the-api-stronghold/
http://nordicapis.com/api-security-oauth-openid-connect-depth/

Why Can’t I Just Send JWTs
Without OAuth?
by Kristopher Sandoval
Originally Published Here

JWTs are only part of the greater API security puzzle

AJSONWebTokenor JWT is anextremelypowerful standard. It’s
a signed JSON object; a compact token format often exchanged
in HTTP headers to encrypt web communications.

Because of its power, JWTs can be found driving some of the
largest modern API implementations. For many, the JWT repre-
sents a great solution that balances weight with efficiency, and
as such, it’s often a very attractive standard to adopt for API
security.

However, a JWT should not be viewed as a complete solution.
Unfortunately, it seems that there are some significant misun-

https://nordicapis.com/why-cant-i-just-send-jwts-without-oauth/

Why Can’t I Just Send JWTs Without OAuth? 30

derstandings as to what a JWT is, and how exactly it functions.
In many situations, depending on JWTs alone can be extremely
dangerous.

One of the most common questions about using JWTs is: Why
can’t I send JWTs without OAuth? In this chapter, we answer
that very question. We’ll define what a JWT actually is, how it
functions, and why adopting it in isolation is dangerous.

What is a JWT?

Beforewe addresswhy utilizing JWTs alone is insecure, wemust
define what a JWT actually is. JWTs are often conflated with the
additional protocols and systems surrounding them, meaning
that the JWT design concept has been bolstered beyond the
actual definition of the object itself.

JWT is an open standard defined by RFC 7519. The JWT is con-
sidered by its authors to be a “compact and self-contained way
for securely transmitting informationbetweenparties as a JSON
object.” The JWT itself is composed of a Header, a Payload,
and a signature that proves the integrity of the message to the
receiving server.

https://tools.ietf.org/html/rfc7519

Why Can’t I Just Send JWTs Without OAuth? 31

Content encoded inside a JWT is digitally signed, either using
a secret utilizing the HMAC algorithm or leveraging the Public
Key Infrastructure (PKI) model with a private/public RSA con-
figuration. While this does lend a certain amount of integrity
protection, it does not specifically guarantee security — we will
discuss this at greater length in just a moment, but it should
be understood that a JWT is an encoding format and only an
encoding format.

JWTs are loved because they are small, and lend themselves to
efficient transport as part of a URL, as part of the POST parame-
ter, or even within the HTTP header. More lightweight transport

Why Can’t I Just Send JWTs Without OAuth? 32

options exist, and further extensions of the concept exist; CWT
is a great example, utilizing CBOR, or Concise Binary Object
Representation, to even further reduce the size of the package
and improve efficiency.

Themain benefit (and perhaps themain drawback from a secu-
rity standpoint) of the JWT standard is that the encoded pack-
age is self-contained. The JWT package contains everything the
systemwould need to know about the user, and as such, can be
delivered as a singular object.

The Dangers of a Lone Solution

JWTs are powerful — there’s simply no denying that. Unfortu-
nately,manydevelopers seemto think that theJWT ismore than
an encoding methodology, but a complete and secure imple-
mentation. This is often because JWTs are typically paired with
a proper protocol and encryption standard in thewild—but this
is a conscious choice, not the result of an automatic security due
to the structure of the JWT itself.

A JWT is only secure when it’s used in tandem with encryption
and transport security methodologies. JWT is a great encoding
methodology, but it’s not a holistic security measure. Without
additional protocols backing it up, a JWT is nothing more than
an admittedly lightweight and slightly more secure API key.

For an example of this insecurity, let’s look at a common use
case. A web API serves as the backend to a web application, and
when the user generates a JWT, it is stored as an HTML5 data
storage element. This is done so as to aid in the utilization of the
API over multiple gateways and functions.

In this common situation, the issue is that the JWT is essentially
exposed for common use. The JWT is digitally signed, which
assures a certain amount of guaranteed integrity. The server

Why Can’t I Just Send JWTs Without OAuth? 33

itself is also set to reject any JWT with a manipulated Header,
Payload, or Signature component, and as such, can reject a
modified JWT token. That being said, the token doesn’t need to
be modified in order to breach security. In theory, an attacker
could take that token and use it in a sort of replay attack, getting
resources that they do not have the authorization to have.

While this type of attack can be somewhat mitigated through
the use of expiration dates, this does nothing for man-in-the-
middle attacks. In the MITM attack scheme, the expiration does
not matter, as the attack is initiated live as a middleman.

These issues all arise from the simple fact that JWTs are amech-
anism for transferring data — not for securing it.

Securing JWTs

JWTsare self-containedsolutionscontainingeverything theserver
needs to know about who the user is, what they need, andwhat
they’re authorized to do. Accordingly, they’re great for stateless
authentication and work well with such methods geared for
stateless environments.

While there are anumber of thirdparty solutions and implemen-
tations of stateless authentication, the fact is that what you’d
essentially be creating is a bearer tokenor, alternately, an access
token.

That’s ok, and in fact,whatwewant todo,but this raisesa simple
question — if we are indeed creating such a bearer token, why
not use the built-in functionality of the OAuth schema designed
specifically to work with JWTs? There’s already a great deal of
built-in security functionality in the OAuth specification that’s
specifically engineered to support the JWT, so using external
solutions— often the second question after why can’t I just sent
JWTs without OAuth — is somewhat nonsensical.

Why Can’t I Just Send JWTs Without OAuth? 34

If we utilize the OAuth 2.0 Bearer Token Usage standard un-
der RFC 6750, which incorporates authorization headers, we
can essentially create JWTs that would be recognized and spe-
cially treated by a wide variety of devices, from HTTP proxies
to servers. We would thereby reduce data leakage, unintended
storage of requests (as displayed above), and enable transport
over something as simple as HTTPS.

Proper JWT Utilization

While it’s important to secure your JWTs, it’s also important
to state what the proper utilization of a JWT within the OAuth
schema would look like. While a JWT can serve many functions,
let’s take a look at a common use case in the form of the access
token. Both OAuth 2.0 and OpenID Connect are vague on the
type of access_token, allowing for a wide range of functions and
formats. That being said, the utilization of a JWT as that token is
quite ubiquitous, for the benefits in efficiency and size already
noted.

An access token is, in simple terms, is a token that is used by
the API to make requests on behalf of the user who requested
the token. It is part of the fundamental authorization mecha-
nismwithinOAuth, and as such, confidentiality and integrity are
extremely important. In order to generate an access token, an
authorization code is required. All of the elements of this code
are also extremely important to keep confidential and secure.

Accordingly, a JWT fits this role almost perfectly. Because of
the aforementioned standards that allow for transmission over
HTTPS, the JWT can contain all of the information needed to
generate the access token. Once the token is generated, it can
likewise be kept in JWT form as what is called a self-encoded
access token.

Why Can’t I Just Send JWTs Without OAuth? 35

The key benefit of handling the encoding of the access token in
this way in the OAuth 2.0 schema is that applications don’t have
tounderstandyouraccess tokenschema—all of the information
is encodedwithin the token itself, meaning that the schema can
change fundamentallywithout requiring the clients tobeaware,
or even affected, by such changes.

Additionally, the JWT is great for this application because of the
wide rangeof libraries that offer functionality suchas expiration.
A good example of this would be the Firebase PHP-JWT library,
which offers such expiration functionality.

Caveats

Ofcourse, aswithanysecurity implementation, therearecaveats
to consider. In the case of the JWT as a self-encoded authoriza-
tion solution, replay attacks should be considered. While adopt-
ing proper encryption methodologies should negate many of
those issues, the fact is that the issue is still fundamental to
the concept as a whole, and should probably be addressed as
a possibility rather than an impossible threat.

Accordingly, caching the authorization code for the lifetime of
the code is the suggested solution from OAuth itself. By doing
this, code can be verified against the known cached code for
validity and integrity, and once the expiration date is reached,
automatically rejected for date reasons.

It should also be noted that, due to the nature of the JWT, once
an authorization code is issued, the JWT is self-contained — as
such, it cannot technically be invalidated, at least in its most
basic configuration. The JWT is designed to not hit the database
for every verification, andwhen using a global secret, the JWT is
valid until expiration.

There are a fewwaysaround this, suchas addinga counter in the

Why Can’t I Just Send JWTs Without OAuth? 36

JWT that increments upon certain events (such as role change,
userdatachange, etc.). This, of course, results indatabasepolling
for each request, but the amount of data being checked is mi-
nuscule enough to make any processing increase somewhat
negligible.

Additionally, at least in theory, you could use sections for spe-
cific functions, domains, and scopes, and change that secret
when a breach is discovered. While this would affect more users
than admins would like, it does have the effect of instituting
revocation.

That being said, proper utilization of the JWT should make this
largely a non-issue, as the user still has to provide a certain
amount of secret information over an encrypted channel, and
as such, should already be “vetted” or controlled.

Don’t Leave JWT All Alone

The simple fact is that JWTs are a great solution, especially
whenused in tandemwith something likeOAuth. Thosebenefits
quickly disappear when used alone, and in many cases, can
result in worse overall security.

That being said, adopting the proper solutions can mitigate
many of these threats, resulting in a more secure, efficient sys-
tem. The first step to securing your JWT is to understand what
it’s not — a JWT is an encoding method, not an encryption
or transport security method, and as such, is only part of the
puzzle.

How To Control User Identity
Within Microservices
by Bill Doerrfeld
Originally Published Here

OAuth is necessary to delegate identity throughout a platform

Many developers are well along in their microservices journeys.

https://nordicapis.com/how-to-control-user-identity-within-microservices/

How To Control User Identity Within Microservices 38

Yet, as the number of services increases, so do operational is-
sues. One especially tricky feat is maintaining identity and ac-
cess management throughout a sea of independent services.

Unlike a traditional monolithic structure with a single security
portal, microservices posemany problems. Should each service
have its own independent security firewall? How should identity
bedistributedbetweenmicroservices and throughoutmy entire
system? What is the most efficient method for the exchange of
user data?

Smart techniques leverage standardized technologies to not
only authorize but perform Delegation across your entire sys-
tem. This chapter will identify how to implement OAuth and
OpenID Connect flows using JSON Web Tokens. We’ll explain
how to create a distributed authentication mechanism for mi-
croservices — a process of managing identity where everything
is self-contained, standardized, secure, and, best of all — easy to
replicate.

What Are Microservices, Again?

Microservices
architecture

The microservice design pattern is a way to
architect web service suites into independent
specialized components. These components
are made to satisfy a very targeted function
and are fully independent, deployed as sep-
arate environments. The ability to recompile
individual units means that development and

scaling are vastly easier within a microservices system.

Microservices architecture is opposed to the traditional mono-
lithic approach that consolidates all web components into a sin-
gle system. The downside of a monolithic design is that version

How To Control User Identity Within Microservices 39

control cycles arearduous, andscalability is slow.Theentire sys-
temmust be deployed as one unit since it’s packaged together.

Monolithic de-
sign

The move toward microservices has had dra-
matic repercussions across the tech industry,
allowing SaaS organizations to deploy many
small services no longer dependent on exten-
sive system overhauls. Microservices arguably
easedevelopment, andon theuser-facing side,
allow accessible pick-and-choose portals to

personalize services to individual needs.

Great, So What’s The Problem?

We’re facedwith theproblemthatmicroservicesdon’t lend them-
selves to the traditionalmodeof identity control. In amonolithic
system, security works simply as follows:

1. Figure out who the caller is
2. Pass on credentials to other components when called
3. Store user information in a data repository

Since components are conjoinedwithin this structure, theymay
share a single security firewall. They also share the user’s state
as they receive it and may share access to the same user data
repository.

If the same techniquewere to be applied to individualmicroser-
vices, it would be grossly inefficient. Having an independent
security barrier — or request handler — for each service to au-
thenticate identity is unnecessary. This would involve calling
an Authentication Service to populate the object to handle the
request and respond in every single instance.

How To Control User Identity Within Microservices 40

The Solution: OAuth As A Delegation
Protocol

There is a method that allows one to combine isolated deploy-
ment benefits with the ease of federated identity. Jacob Ideskog
of Curity believes that to accomplish this, OAuth should be inter-
preted not as Authentication, and not as Authorization, but as
Delegation.

In the real world, Delegation is where you delegate someone to
do something for you. In theweb realm, the underlyingmessage
is there, yet it also means having the ability to offer, accept, or
deny data exchange. Treating OAuth as a Delegation protocol
can assist in the creation of scalable microservices or APIs.

To understand this process, we’ll first layout a standard OAuth
flow for a simple use case. Assume we need to access a user’s
email account for a simple app that organizes a user’s email —
perhaps to send SMS messages as notifications. OAuth has the
following four main actors:

• Resource Owner (RO): the user
• Client: the web or mobile app
• Authorization Service (AS): OAuth 2.0 server
• Resource Server (RS): where the actual service is stored

A Simplified Example of an OAuth 2.0
Flow

In our situation, the app (the Client), needs to access the email
account (the Resource Server) to collect emails before organiz-
ing them to create the notification system. In a simplified OAuth
flow, an approval process would be as follows:

How To Control User Identity Within Microservices 41

1. The Client requests access to the Resource Server by call-
ing the Authorization Server.

2. The Authorization Server redirects to allow the user to
authenticate,which is usually performedwithin a browser.
This is essentially signing into an authorization server, not
the app.

3. The Authorization Server then validates the user creden-
tials and provides an Access Token to Client, which can be
used to call the Resource Server.

4. The Client then sends the Token to the Resource Server.
5. The Resource Server asks the Authorization Server if the

Token is valid.
6. The Authorization Server validates the Token, returning

relevant information to the Resource Server (i.e., time till
token expiration, who the Token belongs too.)

7. The Resource Server then provides data to the Client. In
our case, the requested emails are unbarred and delivered
to the Client.

A vital factor tonotewithin this flow is that theClient—ouremail
notification app — knows nothing about the user at this stage.
The Token that was sent to the Client was completely opaque
— only a string of random characters. Though this is a secure
exchange, the token data is itself useless to the Client. The ex-
change thus supplies access for the Client, but no user informa-
tion. What if our app needed to customize the User Experience
(UX) based on the user type? For example: which membership
level the user belonged to, a group they were a member of,
where theywere located, or their preferred language.Manyapps
provide this type of experience, but to enable this customiza-
tion, we will require additional user information.

How To Control User Identity Within Microservices 42

The OpenID Connect Flow

Let’s assume that we’re enhancing the email service client so
that it not only organizes your emails but also stores them and
translates them into another language. In this case, the Client
will want to retrieve additional user data and store it in its own
user sessions.

To give the Client something other than the opaque Token pro-
vided in theOAuth flow,useanalternative flowdefined inOpenID
Connect. In this process, the Authorization Server, which is also
called an OpenID Connect Provider (OP), returns an ID Token
along with the Access Token to the Client. The flow is as follows:

1. The Client requests access to the Resource Server by call-
ing the Open ID Connect enabled Authorization Server.

2. The Authorization Server redirects to allow the user to
authenticate.

3. The Authorization Server then validates the user creden-
tials and provides an Access Token AND an ID Token to the
Client.

4. The Client uses this ID Token to enhance the UX and typi-
cally stores the user data in its own session.

5. The Client then sends the Access Token to the Resource
Server.

6. The Resource Server responds, delivering the data (the
emails) to the Client.

How To Control User Identity Within Microservices 43

The ID token can contain information about the user, such as au-
thentication details, name, email, or any number of customuser
data points. This ID token takes the form of a JSON Web Token
(JWT), a coded and signed compilation of JSONdocuments. The
document includes aheader, body, anda signature appended to
the message. Data + Signature = JWT.

Using a JWT, you can access the public part of a certificate,
validate the signature, and understand that this authentication
session was issued — verifying that the user has been authenti-
cated. An important facet of this approach is that ID tokens es-
tablish trust between the Authorization Server/Open ID Connect
Provider and the Client.

Using JWT For OAuth Access Tokens

Even ifwedon’t useOpenIDConnect, JWTscanbeused formany
things. A system can standardize by using JWTs to pass user
data among individual services. Let’s review the types of OAuth
access tokens to see how to implement secure identity control
within microservice architecture smartly.

How To Control User Identity Within Microservices 44

By Reference: Standard Access Token

A Standard Access Token contains no information outside of
the network, merely pointing to a space where information is
located. This opaque string means nothing to the user, and as
it is randomized cannot easily be decrypted. Standard Access
Tokens are the standard format — without extraneous content,
simply used for a client to gain access to data.

By Value: JSONWeb Token

A JSON Web Token (JWT) may contain necessary user infor-
mation that the Client requires. The data is compiled and in-
serted into themessage as anaccess token. JWTs are an efficient
method because they erase the need to call again for additional
information. If exposed over the web, a downside is that this
public user information can be read easily read, exposing the
data to an unnecessary risk of decryption attempts to crack
codes.

TheWorkaround: External vs. Internal

To limit this risk of exposure, Ideskog recommends splitting the
way the tokens are used. What is usually done is as follows:

1. The Reference Token is issued by the Authorization Server.
The Client sends back when it’s time to call the API.

2. In themiddle: TheAuthorizationServer validates the token
and responds with a JWT.

3. The JWT is then passed further along in the network.

In the middle, we essentially create a firewall, an Authoriza-
tion Server that acts as a token translation point for the API.

How To Control User Identity Within Microservices 45

The Authorization Server will translate the Token, either for a
simple Reverse Proxy or a full-scale API Firewall. However, the
Authorization Server shouldn’t be in the “traffic path” — the
reverse proxy finds the token and calls the Authorization server
to translate it.

Let All Microservices Consume JWT

So, to refresh,withmicroservice securitywehave twoproblems:

• Weneedto identify theusermultiple times:We’ve shown
how to leave Authentication to OAuth and the OpenID
Connect server so that microservices successfully provide
access given someone has the right to use the data.

• **We have to create and store user sessions: JWTs contain
the necessary information to help in storing user sessions.
If each service can understand a JSON web token, you
have distributed your identitymechanism, allowing you to
transport identity throughout your system.

In a microservice architecture, an Access Token should not be
treated as a request object, but rather as an identity object. As
the process outlined above requires translation, JWTs should
be translated by a front-facing stateless proxy, used to take a
reference token, and convert it into a value token to then be
distributed throughout the network.

How To Control User Identity Within Microservices 46

Why Do This?

ByusingOAuthwithOpenIDConnect, andbycreatingastandards-
based architecture that universally accepts JWTs, the end result
is a distributed identity mechanism that is self-contained and
easy to replicate. Constructing a library that understands JWT
is a very simple task. In this environment, access, as well as user
data, is secured. Creating microservices that communicate well
and securely access user information, can greatly increase the
agility of an entire system, as well as increase the quality of the
end-user experience.

Part Two: OAuth Flows
and Deep Dives

8 Types of OAuth Flows And
Powers
by Daniel Lindau
Originally Published Here

There are multiple OAuth flows catered to various scenarios

The API space requires authorization in order to secure data –
this is a given in themodern era. Accordingly, implementing the
correct authorization system is vitally important, perhaps even
more important than the API it is meant to handle authorization
for.

OAuth is a powerful solution for many providers. However, as
with any tool, t’s only as powerful as it is understood by the user
who chooses it. Understanding what OAuth is and having a gen-
eral overview of each particular flow is extremely important. In
this piece, we’re going to look at OAuth and give a brief rundown

https://nordicapis.com/8-types-of-oauth-flows-and-powers/

8 Types of OAuth Flows And Powers 49

of each flow type. We’ll look at when each flow is appropriate
and what its specific use case is.

What Is OAuth? What Is a Flow?

While itmight gowithout saying, there is somebenefit to stating
upfront exactly what OAuth is. OAuth is an open standard for
delegation and authorization on the internet. The use case for
OAuth is usually a client that needs to access some resource
on behalf of the user. To accomplish this delegation, an Access
Token is issued. The Access Token represents the user’s consent,
allowing the client to access its data on behalf of the user. The
requesting, granting, and life management of this token is often
referred to as a flow, a term that will be used substantially
throughout this article.

While the first version of OAuth was initially created in 2007
as a means to handle authentication on the Twitter API, it has
since become extremely popular in a variety of applications
with scopes ranging from enterprise-level codebases to home
projects. The second version, OAuth 2.0, has become the de
facto standard for securely protecting your APIs.

Flows Differ On Use Case

TheOAuth specification allows for severalways of obtaining and
validating tokens, and not all flows are meant for all types of
clients. The OAuth specification talks about public and private
clients, which roughly translates into the clients’ ability to keep
their credentials safely stored. Private clients are typically ap-
plications with a backend that can keep a secret to use for au-
thenticating. Public clients have no means of securely keeping

8 Types of OAuth Flows And Powers 50

a secret, such as a Single Page Application (SPA) that usually
doesn’t have a backend.

For instance, web applications with a backend are considered
private clients, andSPAsare consideredpublic. Thebackendcan
securely keep the secret, while the SPA has everything out in the
open.

Mobile clients are abit trickier to classify since they are generally
pretty good at keeping a secret, but it’s hard to give them one.
The way the apps are distributed through app stores makes it
harder for clients to authenticate in a way for the OAuth server
to trust that it is the correct application. For this reason, they
are to be considered public. By using other means of getting
credentials, like the Dynamic Client Registration, it can bemade
into a private client. But more on that later.

Obtaining Tokens

There are four base flows for obtaining tokens in OAuth, and
several flows that are defined in sibling specifications. Here, I’ll
describe thebase flowsandothers that I believe tobe important.

1. Authorization Code Grant

The Authorization Code Grant, or Code Flow, is the most widely
used OAuth flow. To obtain a token using code flow, the clients
send an authorization request to the OAuth server by simply
redirecting the browser to the server. The OAuth server makes
sure that the user is authenticated and prompts the user to
approve the delegation. When the user approves, a short-lived
code is issued to the client. This code can be considered a one
time password or a nonce. The client receives this code and can
now use it in an authenticated backend call – outside of the
browser – and exchange it for the token.

8 Types of OAuth Flows And Powers 51

One thing to mention here is that the user only will enter its
credentials to the OAuth server. The user won’t have to give
the credentials to the app; it simply enters them to the server
it already knows and trusts. This is one thing that OAuth set out
to solve.

The other benefit is that the token owner passes the browser,
which makes it harder to steal, and since the call to exchange
the token is authenticated, the server can be sure that it delivers
the token to the correct client.

Usually, the Code Flow will also allow you to receive a Refresh
Token, which allows the client to get new access tokens without
involving theuser, evenafter theAccess Token is expired. Private
clients should only use the Code Flow since the client must
authenticate itself when exchanging the code.

Code Flow: The Client consist of two parts, the browser, and the backend

2. Implicit Flow

The Implicit Flow is a less complicated flow than the Code Flow.
It starts out in the same way as the Code Flow, with the client

8 Types of OAuth Flows And Powers 52

making an authorization request to the OAuth server. The user
authenticates and approves of the delegation, but instead of
issuing a code, theOAuth server respondswith an Access Token.

The downside here is that the token is visible in its entirety, and
since it is in the browser, the client may handle the token in a
way that could make it vulnerable.

The Implicit Flow is designed for public clients that cannot au-
thenticate themselves. So, the trust here instead lies in a pa-
rameter called redirect_uri. The OAuth server needs to have
registered a URL for the client, where the response will be sent.
The responsewill onlybe sent there, so if amaliciousapplication
fools auser into initiatingadelegationprocess, the responsewill
always go back to the real application.

Since this is for public clients, a Refresh Token won’t be issued.
That means that new Access Tokens can only be received by
involving the user.

Implicit Flow: The full flow happens in the browser

8 Types of OAuth Flows And Powers 53

3. Client Credentials Flow

In the Client Credentials Flow, there is no user. It is a flow that
is strictly for server to server communication. In this situation, a
servermust access anAPI as itself. Therefore, there is nobrowser
involved, and a private client is needed. To get an Access Token,
the client simply passes it’s credentials to the OAuth server and
receives the token.

No Refresh Token is issued in this flow, since the client can just
get a new Access Token using it’s credentials anyway.

Client Credentials Flow: A server authenticates itself against the token end-
point. No user involved.

4. Resource Owner Password Credentials Flow

TheResourceOwnerPasswordCredentials (ROPC) Flow is pretty
simple. The client collects the credentials from the user and
passes them together with its own client credentials. The server
responds with an Access Token and optionally a Refresh Token.
Simple right? But there’s a “but.” And it’s a big one.

8 Types of OAuth Flows And Powers 54

ROPC is a flow that defeats one of OAuth’s purposes; that the
user has to give away its credentials to the app and thus has
no control over how the client will use it. The flow is not recom-
mended for use if you can use something else. It’s only specified
in the specification to allow for legacy or migration cases. ROPC
should be used with care. An example could be an enterprise
desktop application that is not easily updated yet needs to ac-
cess the API platform.

We don’t recommend the use of (ROPC). But if you really need
to, ROPC should be used for private clients only, and the client
could get a Refresh Token.

ROPC: The client sends users credentials together with its own credentials.
Only for legacy use cases.

5. Dynamic Client Registration

While not one of the flows in the core OAuth Spec, Dynamic
ClientRegistrationsolvesan importantusecase formobile clients.
Since mobile apps are distributed through app stores, it’s hard
to give themacredential to identify themselves uniquely. There-
fore, mobile clients are usually labeled as public.

8 Types of OAuth Flows And Powers 55

Dynamic Client Registration tries to redeem that by specifying
means for a client to register itself and request a unique cre-
dential upon installation. It works by letting the client send a
registration token to the OAuth server, which generates a set of
credentials and returns themto the client. These credentials can
thenbeused inaCodeFlow, and theclient cannowauthenticate
itself.

The registration token can be obtained in multiple ways: Either
by letting the user authenticate itself in an Implicit Flow or by
using the Client Credentials flow with a pre-distributed secret.

Outside of the mobile case, Dynamic Client Registration can be
very useful for API management platforms that need to be able
to create clients for the OAuth server.

6. Assisted Token Flow

The Assisted Token flow is a draft that is not part of the base
flows, but it is worth mentioning. It is a sibling specification to
OAuth that tries tomake it easier for Single Page Applications to
obtain tokens. It can be hard for those types of applications to
handle Implicit Flow since it relies heavily on redirects. Instead,
Assisted Token Flow defines a similar flow to Implicit, which
instead uses iframes and postMessage to communicate.

Token Management

7. Introspection

Introspection is the way to ask the OAuth Server if a token is
valid. Access Tokens are usually passed around by reference,
meaning that they do not mean anything for anyone but the
OAuth server. The introspection clients are usually an API or an

8 Types of OAuth Flows And Powers 56

API gateway of sorts. Introspection is a simple authenticated
call, where you send in a token, and the response is the data that
belongs to the token, such as the expiration time, subject, etc.

8. Revocation

Revocation is one of the powers of OAuth.Without OAuth, a user
that gave away its credentials to an application has nomeans of
retracting that consent. The onlyway is to change the password,
whichmight have bigger side effects than disallowing the app to
access the user’s account.

With OAuth, the user can decide to recall the consent when-
ever by revoking the token. In OAuth, you have two options for
revocation; you can revoke the Access Token, which could be
seen as ending the current session. If there is a Refresh Token, it
would still be valid. Revoking the Refresh Tokenwouldmake the
Refresh Token invalid, and any active Access Tokens that came
with it.

It is the client that performs the actual revocation with an au-
thenticated call. Even though it’s authenticated, public clients
can be allowed to perform revocation.

Why Distinguishing OAuth Flows Is
Important

It can seem like there are a lot of similar flows in OAuth, but
each flow has its specific use case. By these essential flows, you
should be able to pick the flow(s) that match your application
and scenario.

Exploring OAuth.tools, The
World’s First OAuth
Playground
by Kristopher Sandoval
Originally Published Here

OAuth.tools, created by Curity, is a safe, vendor-agnostic place to
experiment with a wide variety of OAuth flows.

API security is complex, and theunderlying systems that support
it are even more so. Getting a grasp on API security requires
understanding many underlying components. Accordingly, any
tool that can help contextualize these systems is not only an
excellent educational tool, but it’s also a good business tool.

OAuth.tools looks poised to be that solution. Developed by Cu-
rity, OAuth.tools breaks down complex OAuth related topics,

https://nordicapis.com/exploring-oauth-tools-the-worlds-first-oauth-playground/
https://oauth.tools/

Exploring OAuth.tools, The World’s First OAuth Playground 58

like flowsandscopes, intovisuallyunderstandablecomponents.
Each flow is understood in context with other flows by taking
on this approach. So, does OAuth.tools succeed in depicting
such complex topics? We think so. In this chapter, we review
OAuth.tools, and consider why understanding OAuth flows is so
valuable for securing your APIs.

What is OAuth.tools?

OAuth.tools isprincipallyaneducational resource–asafe, vendor-
agnosticplace to learnabout andexperimentwithawidevariety
ofOAuth flows. It’s designed to inform,not toproselytize a single
vendor solution (or in fact, a single solution at all, as it offers a
wide variety of different flows to test). Many flows that can be
tested against a live environment, which allows you not only to
seewhat each flowdesign looks like, butwhat the expected out-
put and the various restrictions, requirements, and functional
components look like from an operational standpoint.

The site currently supports nine flows: Decode JWT, Client Cre-
dentials Flow,CodeFlow,Hybrid Flow, Implicit Flow,ROPCFlow,
Device Flow, Introspection Flow, and Userinfo Flow. This com-
prehensive coverage allows for a wide variety of implementa-
tions to be represented throughout your testing.

When you first enter the site, you are greetedwith the JWT token
page. This page is a great example of how clarity and brevity are
best used to communicate a ton of info at once. The page (and
site in general) is well-designed and simple to understand.

The page is broken into three sections, representing a common-
sense workflow. On the left, we can see the flows currently
in use. From here, we can create, delete, or switch between
other flows we’ve configured (as well as filter the current batch
of flows by a stated criteria). In the center of the page, the

Exploring OAuth.tools, The World’s First OAuth Playground 59

workspace allows you to paste a JWT and switch between a
handful of token types, including Access Token, Refresh Token,
ID Token, Client Assertion, User Assertion, OpenID Metadata,
and the ambiguously titled “Other.”

Before one can test a flow, an environment needs to be created.
The environment management system here is well-executed,
both intuitive and complete.

One of the big features here is the inclusion of the WebFinger
protocol. The protocol, specified by the IETF, is a mechanism by
which information and metadata can be discovered automati-
cally througha simpleURL.WhileWebFinger is the specifiedpro-
tocol for OpenID Connect, its inclusion here was a smart move
in terms of user experience – it lowers the barrier of entry by
reducing the amount ofwork thatmust be donewhen creating a
test environment, something that is still a bit of a chore in other
solutions.

After the proper URL has been entered,WebFinger can automat-
ically populate the rest of the information in the environments
panel, listing the endpoints, the exposed scopes, any published
keys, the possible mechanisms for authentication, and the ex-
pected response types, not to mention the metadata itself.

Within this system is a clientmanagement panel aswell. A client
will need to be created to act on the environment. This is easily
done by simply entering the desired client ID/name, a secret
phrase, and then selecting what flows to use. Included flows
here are Code Flow, Implicit Flow, Hybrid Flow, Client Creden-
tials Flow, ROPC Flow, Introspect, andDevice Flow. Additionally,
you can choose whether or not the client can be framed at this
point, meaning it can be framed in an HTML element.

Once all of this has been set up, we can start creating flows.
Flows in OAuth are methods of authorization that are often
starkly different from one another, so the inclusion of a great
many flows here is great – the user can familiarize themselves

Exploring OAuth.tools, The World’s First OAuth Playground 60

with some of the more esoteric or single-purpose flows while
having access to general flows as well.

As stated previously, you can select from Decode JWT, Client
Credentials Flow, Code Flow, Hybrid Flow, Implicit Flow, ROPC
Flow, Device Flow, Introspection Flow, or Userinfo Flow to start
testing a flow.

In this case, we’ve used a test JWT as provided by jwt.io. Here,
we can see the fundamental simplicity of this site and the clarity
it gains. To the left, we have all of our flows, and the prompt to
add more. In the center, we have our JWT and a wide variety
of options as to how we define that JWT to this system. On the
left, we have a very clean, efficient way of visualizing what is
happening during this decoding.

While this is by far the simplest of these options, it does ex-
pose a few things. First and foremost, it exposes how a JWT is
composed, and what part of the JWT is responsible for what.
This graphical representation of a data-heavy item is extremely
useful, and when combined with the greater system of flows,
helps toset thebasemoving forward forhowthe restofour flows
look and act.

Education vs. Proselytization

As we discuss OAuth.tools, we should recognize the difference
between education tools versus the proselytization of specific
solutions.When creating test cases, example environments, and
so forth, it’s very easy to fall into the trapof designing formarket-
ing rather than designing for knowledge. While there’s nothing
wrong per se with designing forward-facing materials for mar-
ketinguses (and in fact, is somewhatexpected), these toolsmust
at their core do one thing – educate.

This is something that OAuth.tools does reallywell. Because this

Exploring OAuth.tools, The World’s First OAuth Playground 61

system was designed first and foremost to educate, and given
that it’s free to use and explore, the value of the tool for educa-
tional purposes cannot be overstated. OAuth can, at times, be
quite complex – having the ability to play with it safely for free
is great. Doing this without also being inundated with upsells
is even better, and really suggests a user-experience mindset of
teaching, not preaching.

Conclusion

OAuth.tools is a great offeringandprovides awonderful environ-
ment from which a wide range of testing can be done in a safe,
zero-cost environment. In terms of tools that expose complex
underlying systems, this solution does so in perhaps one of the
more elegant and effective manners.

This tool is greatnotonly for exposing these flows to those trying
to test code or approach against the flows themselves, but for
exposing the common layperson to what these flows look like,
how they work with a variety of pieces of data, and ultimately,
how OAuth in general looks, feels, and functions.

Strategies for integrating
OAuth with API Gateways
byMichal Trojanowski
Originally Published Here

Choose the rightOAuth flow for your specific API gateway scenario

Securing your APIs with OAuth proves that you have adopted
a mature security model for your service. However, setting up
OAuth in front of your API is not a trivial task. There are usually
many architectural questions to be answered, more than the
usual “whichauthorization server to choose”or “howtovalidate
a token.”

Developers often encounter a problemwhen their solution con-
sists of a service mesh hidden behind an API Gateway. Should
the API Gateway be involved in the process? If so, how can it
help?

https://nordicapis.com/strategies-for-integrating-oauth-with-api-gateways/

Strategies for integrating OAuth with API Gateways 63

In this chapter, we’ll demonstrate the different approaches of
integrating OAuth with an API gateway. We’ll also showcase
examples of how these approaches can be used with different
types of API gateways.

Two Strategies for Sharing Tokens

There are twomain strategies for sharing access tokenswith the
outside world:

• You can share the JSON Web Token generated by the Au-
thorization Serverwith any external client. In this scenario,
the same token is used externally and internally by your
APIs.

• You can share externally an opaque token, which is then
exchanged for a JWT. This means that an opaque token is
used externally, but internally, your APIs work with a JWT.

For the best security, the latter option is typically the recom-
mended choice. In this scenario, you don’t share any data em-
bedded in your access token with any external clients. The ac-
cess token contents are meant for your API, but if you share a
JWTwith external clients, anyone can decode the token and use
its content.

ProblemsWith Externalizing a JWT

Exposing a JWT with external clients can lead to privacy and se-
curity issues. Moreover, it can complicate your implementation.
When you share a JWTwith the external clients, developersmay
be able to decode the tokens and start using its contents, even
though the tokens are intended just for your APIs. This could

Strategies for integrating OAuth with API Gateways 64

lead to situations where making any changes in the contents of
the token can break existing implementations. The contents of
a JWT token become a contract between you and the external
developers, and breaking change should be avoided.

In the first approach, the integrationwith the API Gateway is not
that crucial. TheGateway just forwards theJWT to theAPI,which
can then validate it. Though, you can let the Gateway do some
of the validation tasks.

If you decide to implement the recommended approach, proper
integration with a gateway becomes more critical. To validate
the token and read its contents, a JSON representation must
be obtained. The exchange for a JWT can be done by every
microservice which uses the token, but it can unnecessarily
increase the traffic load and complicate the architecture as each
service should be capable of performing the exchange. That’s
why it’s much better to let the API Gateway handle this ex-
change. Now, let’s explore different ways to integrate with API
gateways.

Approaches for IntegrationWith API
Gateways

A few approaches can be used when integrating with an API
gateway. They will depend on the token sharing strategy you
choose.

Strategies for integrating OAuth with API Gateways 65

JWT Validation

If you decide to share JWTs with the outside world, it is good
to have your API Gateway perform a validation of the incoming
token. The Gateway can check the signature and perform some
initial validation of the contents of the token. For example, it
could assess the validity of the time-based claims, the issuer, the
audience, or some required scopes.

Using JWT Validation, an API Gateway can reject requests with
invalid tokens, limitingunnecessary traffic thatwouldotherwise
reach your internal network.

Strategies for integrating OAuth with API Gateways 66

Phantom Token Approach

The Phantom Token Approach is one of the options you can
implement if you want to share opaque tokens externally, but
use JWTs between your internal services. The opaque token is
exchanged for a JWT using the introspection pattern. The API
gateway handles this exchange.

With this approach, all the services behind the Gateway don’t
have toperform the exchange themselves, limiting network traf-
fic. A Phantom Token strategy is easier to maintain than having
all services handle introspection on their own, as there is only
one point fromwhich the Authorization Server is queried.

Strategies for integrating OAuth with API Gateways 67

Split Token Approach

The Split Token Approach is another option in which an opaque
token is exchanged at the API Gateway for a JWT. In this pattern
the Authorization Server splits the generated token into two
parts:

• The signature of the JWT
• Head and body of the JWT

Thesignature isusedas theopaque tokenbyanyexternal clients.
The other part is sent to the API Gateway togetherwith a hashed
signature, where it is cached. Upon a request, the API Gateway
uses the incoming part of the token to look up the rest of it in its
cache and then glues them back together to create a complete
JWT. The resulting JWT is added to the request forwarded to any
services behind the Gateway.

This approach helps you further limit the network traffic needed
to exchange the opaque token for a JWT, as no additional re-
quests to the Authorization Server are required.

Strategies for integrating OAuth with API Gateways 68

Example API Gateway Integrations

Should you decide to integrate your OAuth solution with an API
Gateway, the approach you choose depends on the type of the
API Gateway that you use. There are many different solutions
available on the market, and many companies are even us-
ing their own proprietary gateways. Below, we’ll examine three
commercial API Gateway implementations.

Cloudflare: CDNs as Gateways

Cloudflare CDN provides enough functionality to be used as a
distributed API Gateway. It is a Gateway spread across multiple
data centers and regions with access to a shared key-value store
and capable ofmakingmodifications to requests and responses
through lambda functions.

If you use Cloudflare or your Gateway shares similar traits, the
best approach would be to use the Split Token Approach, es-
pecially if the Authorization Server is deployed in a substantially
lower number of locations. Thanks to the Split Token Approach,
the Gateway does not have to query the Authorization Server on
every request, which would otherwise considerably slow down
the requests, given the servers are in different centers across the
world.

When choosing the Split Token Approach, one thing to consider
is that the Gateway needs access to a shared cache, one that can
beeasilypopulatedby theAuthorizationServer, andaccessedby
all the distributed Gateway instances.

Nginx: On-Premise Gateways

Nginx is an example of an API Gateway that is installed on-
premise. If this is the case for your Gateway solution, you should

https://www.cloudflare.com/cdn/
https://www.nginx.com/

Strategies for integrating OAuth with API Gateways 69

consider implementing the Phantom Token Approach, espe-
cially if the Authorization Server that you use is installed in the
same data centers as the Gateway.

In such a situation, the additional request needed to introspect
the token won’t give much of an overhead to the request. What
is more, in this scenario, you will not necessarily need a shared
cache. Even if you want to cache responses from the Authoriza-
tion Server, this can be done by each of the Gateway instances
on its own.

Google Apigee: A Diverse Solution

The answer to the question of which integration pattern is best
in a particular scenario depends on the Gateway features rather
than the concrete product or vendor. For example, in the case of
Google Apigee, you could either use the cloud version or install
your instance on-premise. Thus, choosing theOAuth integration
approach will depend on the way Apigee is used. In the cloud
environment, it will probably be better to use the Split Token
Approach,whereas,with theon-premise installation, youwould
probably go with the Phantom Token Approach.

Conclusion

You can use a few different approaches to integrate OAuth with
an API Gateway. The solution used should be chosen depending
on the features of your API Gateway. When deciding between
OAuth integration styles, two key points to consider arewhether
the Gateway is distributed or centralized and whether the Gate-
way has reasonable access to a shared cache.

Although sharing JWTs with external clients may seem straight-
forward to implement, remember that it is not a good practice

https://cloud.google.com/apigee/api-management

Strategies for integrating OAuth with API Gateways 70

from a security perspective. You should avoid it, as it lowers
your security and privacy, and may lead to problems with your
integrators.

Assisted Token Flow: The
Answer to OAuth Integration
in Single Page Applications
by Thomas Bush
Originally Published Here

OAuth is an incredibly popular internet standard for granting
apps and web services access to the information available on
otherwebsites. Though the implementation is complex, thepremise
is simple: you tell a website you want to access its data, you log
inwith theuser’s details, andoff yougo—butwithout somekind
of protocol the process would be a whole lot more complicated.

There is one drawback in the current core version of OAuth, and
it’s increasingly evident with the recent trend towards building
single page applications (SPAs). The issue is that designing a

https://nordicapis.com/assisted-token-flow-the-answer-to-oauth-integration-in-single-page-applications/
https://nordicapis.com/api-security-oauth-openid-connect-depth/

Assisted Token Flow: The Answer to OAuth Integration in Single Page
Applications 72

seamless, secureOAuth solution is difficultwithout abackend to
do the heavy lifting, and, by definition, single page applications
don’t have one…

Below, we’ll follow along with Curity solutions architect Daniel
Lindau, ashepresents the solution toOAuthusage in singlepage
applications, following a presentation he gave at The Austin API
Summit in Texas, 2018.

Implicit Flow: The Status Quo for OAuth
in Single Page Applications

The current method of choice for handling OAuth delegation
within single page applications uses the implicit flow — also
known as the client-side flow.

It’s simple, just redirect thebrowser to theauthorizationserver,
where the user directly authenticates and gives the app access,
before returning to the application with an access token em-
bedded in the URL. Then, the service can parse the URL for the
token and immediately start using it.

There’s no doubt that this is a messy approach. Redirects are
inherently counter-intuitive if the goal is to build a single page
application. What’s more, you need to design an architecture
whereby the application can seamlessly resume execution after
you’re done with all the redirects. Then, there’s the question of
storing your precious access token in a secure way.

Daniel says that Curity typically works with developers who
aren’t so familiar with OAuth; they don’t exactly know the best
practices for storing and using these tokens. Therefore, it’s im-
portant to promote a more failproof alternative.

https://nordicapis.com/speakers/daniel-lindau/
https://nordicapis.com/speakers/daniel-lindau/
https://youtu.be/h_wT-58L5ZY

Assisted Token Flow: The Answer to OAuth Integration in Single Page
Applications 73

The iFrame: A Coffin for Your OAuth
Delegation

Anobviousworkaround toall theproblems causedbya redirect-
powered, implicit flow is to hide away your OAuth implementa-
tion inside an iFrame— an inline frame.

Exactly as it sounds, tucking away your OAuth in an iFrame is a
bit like putting it in a coffin. The reason is that an iFrame keeps
yourOAuth flowand the rest of your application separate,which
canmake it pretty difficult to communicate between the two.

Another problemwith using iFrames,which coffins don’t exactly
suffer from, is that they can be accessed from multiple places.
In the interests of secure authorization, you’ll probably need
to design it such that the frame can only be accessed from the
active page.

So what’s the solution?

Assisted Token Flow: iFrame Integration
Done Right

CurityhasbuiltOAuthsolutions to their customers’ varyingneeds
and constraints in a range of ways. While each case was slightly
different, a common denominator was the usage of iFrames —
but with precautions taken to avoid the associated problems.

Creating similarOAuth integrations timeand timeagaingave the
team a brilliant idea: why not standardize the process of OAuth
delegation within an iFrame?

That’s how Assisted Token Flowwas born. It’s a draft specifica-
tion built onto OAuth — which is to say that it uses everything

Assisted Token Flow: The Answer to OAuth Integration in Single Page
Applications 74

that is today OAuth — but adds new flows and endpoints to
facilitate usage on single page applications.

The protocol uses iFrames for communication between the par-
ent page and OAuth server, which prevents the pesky redirects
we commented on earlier, and JavaScript’s postMessage func-
tionality for communication between the frame itself and the
parent page.

Amuch-welcomedadditionofnewendpointsallowed thedevel-
opers to remove unnecessaryOAuth parameters, streamlining
the entire delegation process. This is an important feature, as it
makes page-iFrame interactions much easier to follow.

The result is a flowwhereby only the client_idparameter needs
to be communicated between the iFrame, parent page, and
authorization server — any other parameters are optional.

In the event that other parameters are used, the Assisted Token
Flow protocol also offers parameter validation within the im-
plementation — on the side of the OAuth server — which cuts
down on any excess back-and-forth between the application
and authorization server.

Token Grants with Assisted Token Flow

The beauty of using a standard for OAuth integration is that
every implementation uses the same workflow — in this case,
with a simple but effective design.

Let’s look at how tokens are granted with Assisted Token Flow
when the user is already authenticated versus when the user
hasn’t yet authenticated.

Assisted Token Flow: The Answer to OAuth Integration in Single Page
Applications 75

Assisted Token Flow for an Authenticated User

With Assisted Token Flow, the workflow for an already authenti-
cated user is extremely straightforward:

1. Theapplication requirespermissionatanexternal resource
server.

2. The page opens a hidden iFrame and points it to the re-
source server with just the client_id parameter.

3. The OAuth server serves a near-empty HTML page to the
iFrame, including a postMessage scriptwith the result of the
transaction.

4. The page is loaded in the iFrame and a postMessage is per-
formed, sending a success message along with the access
token to the parent page.

In comparison to coreOAuth, the primary advantage here is that
Assisted Token Flow doesn’tmandate the inclusion of a scope
parameter (or any other parameter beyond client_id, for the
matter); if the user doesn’t specify a scope, Assisted Token Flow
grants access to all possible scopes.

Assisted Token Flow for an Unknown User

AssistedToken flow for auserwhohasn’t yetbeenauthenticated
is similarly easy, with a few extra steps:

1. Theapplication requirespermissionatanexternal resource
server.

2. The page opens a hidden iFrame and points it to the re-
source server with just the client_id parameter.

3. The OAuth server sends a more detailed HTML page to the
iFrame, including a postMessage script that asks the parent
page asking for the login details

https://nordicapis.com/how-to-control-user-identity-within-microservices/

Assisted Token Flow: The Answer to OAuth Integration in Single Page
Applications 76

4. The iFrame is made visible to the user for authentication
(e.g. as a username/password dialog) and the user logs in.

5. The application then retrieves data as necessary per the
steps for an authenticated user.

Again, Assisted Token Flow shows the benefit of not needing
any extra parameters, while it also shows how simple OAuth
integration can be made when the iFrame aspect is taken care
of.

Security Precautions in Assisted Token
Flow

As we mentioned earlier, there are few security constraints
apparent in using OAuth on single page applications. Two of the
moremajor issues are the security of the iFrame itself, as well as
the storage of access tokens.

Here’s theprecautions thatAssistedTokenFlowhas takenagainst
any such vulnerabilities:

iFrame security

There’s adouble-barreledapproach tokeeping the iFrames safe:
for starters, the client is registered at the OAuth server to a
particular domain (which is enforced with HTTP headers and
content security policies), and, secondly, thedomain is specified
in the postMessage to prevent external access to the token.

Token storage

As for tokenstorage, thereareonly really twooptions:localStorage,
aswritten intoJavaScript, or cookie storage.Curity recommends

https://nordicapis.com/3-common-methods-api-authentication-explained/

Assisted Token Flow: The Answer to OAuth Integration in Single Page
Applications 77

cookie storage, as it allows the access token to be stored with
a domain, path, and expiry time — so all interactions with the
endpoint will send an access token for the OAuth server to act
on.

Conclusion: Assisted Token FlowMakes
OAuth Easy on Single Page Applications

Assisted Token Flow makes OAuth easy, especially for those
who’ve struggled to find a sleek, but secure way to use it within
single page applications.

It takescareof iFramesand tokenstorage, createsanew, lightweight
endpoint with just one mandatory parameter, and even vali-
dates any parameters for you. Best of all, the majority of this is
achieved server side, so the developer doesn’t have to worry
about all the basics in their implementation.

The result is an OAuth protocol which is a heck of a lot easier to
use, but sacrifices no functionality.

And just how easy is it? Here’s an 8-line JQuery implementation
where Curity sets up the origin and client_id, initiates the library,
and off we go:

1 var settings = {

2 clientId: "client-assisted-example",

3 autoPrepareJqueryAjaxForOrigins: ['https://example.com'],

4 };

5

6 var assistant = curity.token.assistant(settings);

7

8 $(document).ready(function () {

9 assistant.loginIfRequired();

10 });

Using OAuth Device Flow For
UI-Incapable Devices
by Kristopher Sandoval
Originally Published Here

As the internet growsandmoredevices become interconnected,
authorization is becomingmore complex.

Early implementations of online services were easy to authorize
against since they were tied to desktops, butmodern authoriza-
tion must consider varying environments, from mobile apps to
IoT scenarios. Many of our new devices, such as smart TVs and
voice-controlled speakers, don’t have traditional UIs like web
browsers.

The growing prevalence of input-constrained devices leads to
a quagmire concerning howproviders should actually authorize

https://nordicapis.com/using-oauth-device-flow-for-ui-incapable-devices/

Using OAuth Device Flow For UI-Incapable Devices 79

these devices. What is a secure way to enter username and
password in UI-incapable systems?

Today, we’re going to look at where this problem comes from
and what we can do to fix it. We’ll cover three unique OAuth
flows to see how they stand up to solve the issue at hand: The
ResourceOwnerPasswordCredentials FloworROPC, theOAuth
Code Flow, and the OAuth Device Flow. We’ll see which is the
safest way to incorporate identity into these new environments
to ensure that even your living room devices maintain a high-
security level.

This chapter follows a presentation given by Jacob Ideskog of
Curity at the Nordic APIs Platform Summit. View the slides here.

Identifying the Problem

To get to the root of the issue, let’s take a hypothetical case.
Let’s assume that we want to stream music onto a TV from a
data source. In this case, from amusic streaming provider, we’ll
callMusicbox. Musicbox requires authorization for all streaming
sessions, and in our hypothetical situation, this applies to our TV
as well.

To get Musicbox to stream on our TV, we have a few options.
We can use an app built for this specific purpose — this is com-
monplace onmanymodern smart televisions and offers what is
essentially awebbrowseroverlay that handles authorization. To
do this, we would use a type of flow called the Resource Owner
Password Credentials (ROPC) Flow.

https://www.youtube.com/embed/Ou_nbvl2SXI
https://nordicapis.com/speakers/jacob-ideskog/
https://curity.io/
https://www.slideshare.net/Curityio/oauth-for-your-living-room-oauth-device-flow-lets-your-bot-say-hello-80891265

Using OAuth Device Flow For UI-Incapable Devices 80

ROPC OAuth Flow

In this approach, the ROPC flow has the resource owner issue a
POST request with a form URL encoded body containing the user
credentials to the OAuth server. This server is at the streaming
service level and utilizes this credential to grant access to the
internal systems. This is done by generating an OAuth token,
which is then handed back to the TV, and passed on to the
streaming service for each request. This is a very traditional
OAuth flow, but it has some significant problems in our use case.

First, there’samajor securityconcern.Most streamingproviders
are not going to want a TV utilizing proprietary codebases and
systems to have the login credentials for all their users who
choose to utilize the app. The issue of trust is especially rel-
evant for client apps built on the streaming service API that
are developed by third parties. Even if the application is an
official one, this creates amajorpoint of failure thatdramatically
expands the attack vector on the API itself and all but invites
sophisticated token attacks.

More seriously, however, there’s the fact that the ROPC flow
simply was never designed for this application. While it seems
a perfect fit, the ROPC flow is designed for legacy systems –
utilizing it for smart TVs is an incorrect application and actually
works against OAuth. As Jacob states:

“The resource flow is not really meant for this… It’s
actually there to just solve legacy problems. If we’re
building a new system, we should never use it. It’s
why it has built-in antipatterns.”

Using OAuth Device Flow For UI-Incapable Devices 81

OAuth Code Flow

The whole purpose of OAuth is to not give passwords to 3rd
parties, which this procedure would do. Consider we ignore
ROPC and go for a more regular OAuth code flow, where the
browser is used to send a GET request and an authorization page
is used as a prompt.

In this case, we still run into a single fact that we can’t avoid
– all of this flow was meant for smart devices more capable
than our constrained TV. The browser would be terribly slow,
and entering a username and password with a remote control
is inefficient. As such, even if these were acceptable solutions,
they would result in bad user experiences.

A Question of User Experience

Even ifwecould ignore the technical issues inherent in this issue,
the fact is that using the solutions often results in frustration be-
cause of the limitations on input and interaction. Utilizing a tiny
remote control to enter in a complicated username/password
pair and deal with any additional prompts that might pop up is
ultimately quite cumbersome.

Things get worse if there’s no controller at all. Imagine that,
insteadof our smart TV,we’reutilizinga speaker suchasanAlexa
intelligent speaker. In this case, we no longer have a screen or
a mode of easy input, and our issue becomes that much more
complex.

What is our solution then? Luckily, there’s a new OAuth flow
being standardized that couldhelp here. Insteadof theResource
Flow or the Code Flow, let’s turn our attention to the OAuth
Device Flow.

https://nordicapis.com/virtual-assistants-harness-third-party-developer-power/
https://nordicapis.com/virtual-assistants-harness-third-party-developer-power/

Using OAuth Device Flow For UI-Incapable Devices 82

OAuth Device Flow

OAuth recognized the issue inherent with authorization using
constrained devices and has drafted a standard known as the
OAuthDeviceFlow.Thestandard, currentlyunderdraft as “draft-
ietf-oauth-device-flow-06”, is specificallydesigned forUI-incapable
devices, such as browserless and input-constrained systems.
It therefore should be a good method for devices like our smart
TV or voice-controlled system.

The flow looks similar to the traditional OAuth solutions but
breaks away quite significantly at a very key stage.

In this solution, we have an API, the OAuth server, and the TV
requesting the content. The TV starts by sending aDevice Autho-
rizationRequest, passingwith it the scopeand theclient IDof the
requesting device. From here, the OAuth server responds with a
device code, a user code, and a verification URI. This also has
an expiration timer and an interval that limits the exploitability
possible in such communication.

From here on out, the OAuth flow breaks into a new form. The
user visits the verification URI, enters in the requested data
(typically the user code), and authorizes the device function.
During this time, the OAuth server is told to wait for the user,
and to expect the user code. A countdown is initiated that will
automatically revoke the validity of the code passed if time is
surpassed, giving the data an expiration time for security’s sake.

During the time the user is entering the code, the device con-
stantly polls the OAuth server on a set interval, and once the
OAuth server receives the credentials, this polling is responded
to with an authorization token. This token is then handed off
from the device to the API to stream content.

https://tools.ietf.org/html/draft-ietf-oauth-device-flow-08
https://tools.ietf.org/html/draft-ietf-oauth-device-flow-08

Using OAuth Device Flow For UI-Incapable Devices 83

How is this Different?

“[This discussion is] about how we can work with
devices that are not as smart as we’re used to… It’s
really about getting identity into a new box that we
haven’t thought about before.”

This flow is different in some pretty significant ways. First and
foremost, there is the obvious fact that authorization of this type
occurs outside of the device band. The device itself, in this case
the TV, is not the flowing credential system that accepts login
information – the user uses an external system, such as their
phone, laptop, computer, etc., to verify the request and gain
access.

This also means that access is not restricted to just physically
entering in the login information – logins can occur using NFC,
Bluetooth, and biometrics, and the code requested can be given
using as many solutions. This is limited, of course, to nearby
methods – OAuth does not allow this to expand outside of the
near field, as allowing access from out of country or out of city
could result in a wide attack vector.

This flow also allows for refresh tokens to seamlessly request a
reauthorization, meaning usersmake a single request, and then
automatically re-apply for this authorization without having to
enter their credentials. This makes the entire authorization and
user process not only technically more secure and effective,
but better in terms of user experience — this, of course, was a
major concern for other code flows, and as such represents a
significant advancement.

https://nordicapis.com/20-emotion-recognition-apis-that-will-leave-you-impressed-and-concerned/

Using OAuth Device Flow For UI-Incapable Devices 84

A Solution of Gaps

Setting up authorization for devices with limited user interfaces
presents an interesting UX challenge. The problem is not going
away. Until every device utilizing a service is either limited by
policy or by reality to support advanced interactions and soft-
ware suites, the issue will only worsen.

We live in a world of smart services, but the devices we use
to interact with them are often quite dumb. Ultimately, using
the OAuth Device Flow is the best current solution we have –
the draft solution is effective and offers a wide range of options
for authorization. As we saw in Jacob’s talk, it’s a standardized
approach on how to login to a non-UX-friendly device.

SCIM: Building the Identity
Layer for the Internet
by Bill Doerrfeld
Originally Published Here

In 2014, aworking group reached a consensus for v2.0 of SCIM—
a simple yet powerful standard thatmore andmore large digital
organizations are beginning to adopt for cross-domain identity
management. Now, the SCIM specifications are standardized,
officially published by the Internet Engineering Task Force as
RFC7643 and RFC7644.

In this chapter,we introduce theSCIMprotocol, track theprogress
of the standard, and identify new resource retrieval standards
documented in the September 2015 RFC. Guided by IETF work-
ing group contributor ErikWahlstrom,we’ll introduce the basics
of SCIM and identify lessons learned from the design of the SCIM
API that have directed further iteration of the project as awhole.

https://nordicapis.com/scim-building-the-identity-layer-for-the-internet/
https://blogs.oracle.com/fusionmiddleware/entry/standards_corner_ietf_scim_working
https://tools.ietf.org/html/rfc7643
https://tools.ietf.org/html/rfc7644
http://www.simplecloud.info/
https://tools.ietf.org/html/rfc7644#section-3.4

SCIM: Building the Identity Layer for the Internet 86

What is SCIM?

Enterprises are extremely distributed — applications and data
are sent and stored all over the place, from cloud servers, parter
systems, to internal servers. Throughout a scattered environ-
ment, it’s easy to lose control of where the data is. But as data
privacy becomes more and more a heated issue, regaining con-
trol of identity is a top priority.

Enter SCIM. SCIM (System for Cross-Domain Identity Manage-
ment) was developed to standardize how companies create,
update, and delete identity data — a standard for the life cycle
management of online identity by allowing a standard method
for exchanging identity to other partners or systems.

SCIM is a lightweight provisioning protocol that specifically de-
fines two things:

• Scheme: the identity profile could be a user, group, ma-
chine, or other resource entity. SCIM defines what those
resources look like and how they are structured.

• Protocol: the method of transport; how do we send user
data to different systems?

Standardized by the Internet Engineering Task Force (IETF), con-
tributors to the project include companies like Nexus, Oracle,
SailPoint, Salesforce,Google, Cisco,Ping Identity, andMicrosoft.
It seems like the SCIM standard is getting the hype and involve-
ment it deserves, indicating a roadmap to future ubiquity.

Use Cases for SCIM

There are two distinct systems involved in using SCIM: a system
that is either creatingor readinguser identity data, and the sys-

http://nordicapis.com/privacy-laws-and-international-data-exchange-comparing-eu-and-us-standards/
http://nordicapis.com/privacy-laws-and-international-data-exchange-comparing-eu-and-us-standards/
https://www.ietf.org/about/

SCIM: Building the Identity Layer for the Internet 87

tem that stores this data. In a world of competing regulations,
you often need varying levels of trust between parties. In Ger-
many, for example, in order to send personal information you
need user consent every time you do it. SCIM doesn’t go down
this rabbit hole, not concerning itself with legal obligations. It
assumes the right to share information is existent between the
two players. Assuming this trust has already been established
between the two entities using other security methodologies,
SCIM can be used to exchange identity information for a variety
of use cases. Here are three examples:

1: Synchronization Across Corporate Systems

What happens when a new employee joins a corporation? An
HR manager will likely add a new user profile to their database.
As it would be tedious to create redundant profiles in all cloud
and internal systems, the company ideally wants to automati-
cally synchronize data across all systems. Standardizing iden-
tity control with SCIM enables a method for creation, and re-
moval of universal identity data.

2: On-Demand Provisioning

For companies using CRMs like Salesforce, you end up paying
a monthly fee per each account. But what happens when em-
ployees leave, sales teamschange, and thus thenumberof users
altered? SCIM could help companies save money by instigating
on-demand provisioning, wherein when a Salesforce account is
created, a SCIM account is created. When a user quits, the ac-
count can easily be removed, andoperational costs decreased.

3: Inter-Clouds Transfer

Have you ever had difficulty switching between accounts in
Google Apps? Even more troublesome is transferring existing

http://www.loc.gov/law/help/online-privacy-law/germany.php
http://nordicapis.com/api-security-oauth-openid-connect-depth/

SCIM: Building the Identity Layer for the Internet 88

company assets between various cloud platforms. Suppose a
company wanted to migrate from Office 365 to Google — there
really isn’t an easy way to do this. If all providers supported
the SCIM standard, however, user information could be moved
about more easily.

Schemas & SPML Comparison

Similarly tohowwebbrowser single sign-on (SSO)canbeachieved
by technologies likeSAMLand/orOpenIDConnect, prior toSCIM,
there have been attempts at standardizing cross-domain iden-
tity control. SPML, developed by OASIS, has been an open pro-
tocol since 2003. However, it is heavy, XML based, and doesn’t
define a schema — meaning that every time data is sent, sys-
temson theother enddon’t really understandwhat the resource
is supposed to look like.

SCIM, on the other hand, allows developers to create their own
schemas, anddefines twooff thebat:userandgroup. Standards
have also beenmade to extend this within the core specification
with the enterprise user schema, to cater to an ITmanager with
uniqueprivileges. SCIMalso has a schema that defines schemas,
enabling systems to speak with one another to find out what
resources they support, andwhat they look like. Ameta schema
helps determine the capabilities of each server: can you create
users? Filter users? This is a big difference between SPML and
SCIM.

The SCIM API

SCIM is handled via a REST-based API for provisioning, change,
andde-provisioning—all ofwhich lie outside the realmofOAuth
and SAML. With the rise of web APIs and microservices, SAML,

http://nordicapis.com/3-unique-authorization-applications-of-openid-connect/
http://nordicapis.com/data-sharing-in-the-iot/
https://www.oasis-open.org/
https://en.wikipedia.org/wiki/Service_Provisioning_Markup_Language
http://nordicapis.com/3-ways-to-build-microservices/

SCIM: Building the Identity Layer for the Internet 89

has been deemed by some as too heavy with it’s verbose XML.
SCIM rather calls for authentication and access tokens in com-
pact JSON, passed via HTTP headers.

TheSCIMAPI canbe tested fromacommand line, is cURL friendly,
and firewall-friendly.Wahlstromnotes that REST-based APIs can
be proxied through a firewall, and can easily implement stan-
dard security using SSL and TLS certifications and data encryp-
tion. SCIM standard doesn’t necessarily define an authentica-
tion method but recommends OAuth2.

The SCIM core schemamentions 5 unique endpoints:

Resource Endpoint Operations Description
User /Users GET, POST,

PUT,
PATCH,
DELETE

Retrieve/Add/Modify
Users

Group /Groups GET, POST,
PUT,
PATCH,
DELETE

Retrieve/Add/Modify
Groups

Service
Provider
Configura-
tion

/ServiceProviderConfigsGET Retrieve
the Service
Provider’s
Configura-
tion

Schema /Schemas GET Retrieve a
Resource’s
Schema

Bulk /Bulk POST Bulk
modify
Resources

Reformatted from SCIM API documentation

For example, posting to the /Users endpoint can be used to cre-
ate a user. In this case, a developer would receive an HTTP 201
successful response that includes an ID — a unique identifier
created for each resource that alsoobtains its ownURL. This acts

http://info.ssl.com/article.aspx?id=10241
http://nordicapis.com/securing-your-datastream-with-p2p-encryption/
http://nordicapis.com/securing-your-datastream-with-p2p-encryption/
http://www.simplecloud.info/specs/draft-scim-api-01.html#api

SCIM: Building the Identity Layer for the Internet 90

as a permalink, allowing a developer to access the same user
information from a GET response where the user info is always
stored, regardless of future edits. Increasing discovery with the
helpof schemas is essential for partner-partner communication.

As user storages can be huge, SCIM specifications include fea-
tures like filtering, paging, and sorting. Next, we’ll explore some
other features and seewhy thesewere standardized by the SCIM
working group.

Features

As Wahlstroem describes, they have gone through many itera-
tions of SCIM. After many decisions and voting (which often in-
volved group humming to reach a consensus), the IETF working
group reached standards for the following feature sets. Take-
aways from these design lessons could definitely apply to other
development scenarios, so take heed.

• Extensibility: In developing a standard, you can’t please
everyone—therewill inevitablybeoutliers that request for
extended features outsideof theproject scope. To this end,
theSCIMteamembraced the80-20 rule, only specifying the
most common 80% of use cases. Focusing on delivering
core cases is essential for designing standards, as 20%
percentile corner cases often take the bulk of your time
and are far harder to implement.

• Versioning of API and Schema: SCIM standards place the
versioning of the API in the URL. This means that a record
of versioning is tracked for each specific resource, pro-
viding a historical record for all identity entries. Though
the team considered versioning of API in the header, they
opted for URL to retain the permalink for permanent pro-
file discoverability in a single fixed location. This makes it

http://nordicapis.com/apis-are-evolving-the-b2b-landscape-2/
http://nordicapis.com/balancing-complexity-and-simplicity-in-api-design/
http://swreflections.blogspot.com/2013/11/applying-8020-rule-in-software.html

SCIM: Building the Identity Layer for the Internet 91

easier to understand for implementers and easy to track
records with /v1/Users/username, /v2/Users/username, and
so forth.

• WeakETags for Versioning ofUser Data: ETags are used a
lot in the web world, like for caching within your browser,
for example. In SCIM, the HTTP function of weak ETags is
used to track the versioning of specific files. Weak ETags
allow systems to hold the same data even across different
formatting options. Such may occur if a new developer
using a variant JSON parser changes the placement of two
different attributes. Weak ETags allow systems to know
that data is the same.

• Error Handling: Defining error codes can be a tedious
process, but it is worth it to increase the satisfaction of
the end developer. Users don’t like staring blankly at a 404
Errormessage—error responsesneed tobemachine read-
able and human readable, which is why the group defines
robust, detailed error codes in the SCIM specification.

• HTTP Method Overloading: Some firewalls and proxies
don’t likeallHTTPverbs—often, servers and client servers
don’t support DELETE or PATCH calls. So, the SCIM standard
solves this by allowing a POST call to be made with an
X-HTTP-Method-Override: DELETE function — an important
key in allowing requests to be made to different services
with varying verb support.

Conclusion: Progressing a Needed
Standard

A huge benefit of SCIM is that customers can own their own
data and identities. Simplified Single Sign On (SSO), is an im-
portant step for the cloud and increasing interoperability across
systems. SCIM is an important step for privacy and, according

https://en.wikipedia.org/wiki/HTTP_ETag
http://nordicapis.com/designing-apis-machines/
http://nordicapis.com/designing-apis-machines/
http://nordicapis.com/designing-apis-humans/
http://nordicapis.com/3-unique-authorization-applications-of-openid-connect/

SCIM: Building the Identity Layer for the Internet 92

to Wahlstroem, a vital step in building an identity layer of the
internet. According to the latest Request for Comments, “SCIM’s
intent is to reduce the cost and complexity of user management
operations by providing a common user schema, an extension
model, and a service protocol defined by this document.”

Stay tuned for further articles, in which we will dive deeper into
using the SCIM standard to create user accounts on a virtual
service.

Other Resources

• SCIM Home Page
• SCIM Request for Comments 7644
• Nexus’s SCIM/RFC Announcement
• IndependentID, Phil Hunt
• SCIM Tutorial, Ping Identity
• Introduction toSCIMPresentationSlides, TwoboTechnolo-
gies

• ManagingUser Identityacrosscloud-basedapplicationwith
SCIM

• SCIM Email Discussion Thread, IETF

https://tools.ietf.org/html/rfc7644
http://www.simplecloud.info/
https://tools.ietf.org/html/rfc7644
https://www.nexusgroup.com/en/security-know-how/blog/the-scim-standards-just-grew-up-to-become-rfcs/
http://www.independentid.com/
https://www.pingidentity.com/en/resources/articles/scim.html
http://www.slideshare.net/2botech/scim-presentation-from-cis-2012
http://www.slideshare.net/2botech/scim-presentation-from-cis-2012
http://www.8kmiles.com/blog/managing-user-identity-across-cloud-based-application-with-scim/
http://www.8kmiles.com/blog/managing-user-identity-across-cloud-based-application-with-scim/
http://www.ietf.org/mail-archive/web/scim/current/maillist.html

Part Three: The Role of
Identity

OAuth 2.0 – Why It’s Vital to
IoT Security
by Kristopher Sandoval
Originally Published Here

OAuth 2.0 is vital to IoT security. The internet is fundamentally
an unsafe place. For every service, every API, some users would
love nothing more than to break through the various layers of
security you’ve erected.

This is no small concern, either — in the US alone, security
breaches cost companies over $445 billion annually. As the In-
ternet of Things (IoT) grows, this number will only climb.

The problem is our considerations concerning security are for
modernweb services andAPIs—we rarely, if ever, talk about the
coming wave of small connected and unconnected IoT devices
that will soonmake this an even greater concern.

https://nordicapis.com/why-oauth-2-0-is-vital-to-iot-security/

OAuth 2.0 – Why It’s Vital to IoT Security 95

From the connected fridge to the smartwatch, the IoT is encom-
passing many new web-enabled devices coming to the market.
As we’re designing new API infrastructures, Jacob Ideskog be-
lieves that the “IoT is going to hit us hard if we’re not doing
anything about it.”

Thankfully, there’s a great solution by the nameofOAuth. OAuth
2.0 is one of the most powerful open authorization solutions
available to API developers today. We’re going to discuss OAuth
2.0, how it functions, and whatmakes it so powerful for protect-
ing the vast Internet of Things.

What is OAuth 2.0?

OAuth 2.0 is a token-based authentication and authorization
open standard for internet communications. The solution,
first proposed in 2007 in draft form by various developers from
Twitter and Ma.gnolia, was codified in the OAuth Core 1.0 final
draft in December of that year. OAuthwas officially published as
RFC 5849 in 2010, and since then, all Twitter applications — as
well as many applications throughout the web — have required
OAuth usage.

OAuth 2.0 is the new framework evolution that was first pub-
lished as RFC 6749 alongside a Bearer Token Usage definition in
RFC 6750.

What Does OAuth Do?

While by definition, OAuth is an open authentication and autho-
rization standard, OAuth by itself does not provide any protocol
for authentication. Instead, it simply provides a framework for
decisions andmechanisms.

https://nordicapis.com/building-with-open-standards-will-result-in-it-longevity/

OAuth 2.0 – Why It’s Vital to IoT Security 96

“OAuth does nothing for authentication. So in order
to solve this for theweb, we need to add some sort of
authentication server into the picture.”

That being said, it does function natively as an authorization
protocol, or to be more precise, as a delegation protocol. Con-
sider OAuth’s four actors to understand how it accomplishes
this:

• Resource Owner (RO): The Resource Owner is the entity
that controls the data being exposed by the API, and is, as
the name suggests, the designated owner.

• AuthorizationServer (AS): TheSecurityTokenService (STS)
that issues, controls, and revokes tokens in the OAuth sys-
tem. Also called the OAuth Server.

• Client: The application, web site, or another system that
requests data on behalf of the resource owner.

• ResourceServer (RS): Theservice thatexposesandstores/sends
the data; the RS is typically the API.

OAuth provides delegated access to resources in the following
way. Below is a fundamental flow inOAuth 2.0 known as implicit
flow:

• The Client requests access to a resource. It does this by
contacting the Authorization Server.

• The Authorization Server responds to this request with a
return request for data, namely the username and pass-
word.

• The Authorization Server passes this data through to an
Authentication solution, which then responds to the Au-
thorization Server with either an approval or denial.

• With approval, the Authorization Server allows the Client
to access the Resource Server.

OAuth 2.0 – Why It’s Vital to IoT Security 97

Of note is that OAuth 2.0 supports a variety of token types. WS-
Security tokens, JWT tokens, legacy tokens, custom tokens, and
more can be configured and implemented across an OAuth 2.0
implementation.

Unique IoT Traits that Affect Security

NowthatweunderstandOAuth2.0 and thebasicworkflow,what
does it mean for securing the Internet of Things (IoT)? Well, the
IoThas a fewunique caveats that need tobe considered. Ideskog
notes that IoT devices are typically:

• Battery-powered: IoT devices are often small and serve
a particular function, unlike server resources, which have
massive calculation-driven platforms and consistent, san-
itized power flow.

• Asynchronous: They are partially or completely offline,
connecting only asynchronously via hub devices or when
required for functionality.

• Lean: Lastly, IoT devices usually have limited calculation
capabilities and depend on central devices and servers for
this processing functionality.

Despite all of these caveats, IoT devices are desirable targets to
attackers due to their known single-use functions and relatively
lax security.

Proof of Possession

Due to all of these caveats, the OAuth workflow is strikingly
different — we are, in fact, using a methodology called Proof
of Possession. Consider a healthcare scenario in which a doctor

OAuth 2.0 – Why It’s Vital to IoT Security 98

must access an EKG IoT device. Since the IoT device cannot
perform the same authentication process as a full client device
can, we need to do a bit of redirection.

The start is normal. The Client sends an access request to the
Authorization Server. From here, the Authorization Server con-
tacts the Authentication Server, which prompts the Client with
Authentication Data. When this is provided, the Authentication
Server authenticates to the Authorization Server, which issues
an authorization code to the Client:

1 authorization_code = XYZ

From here, we deviate from the standard OAuth workflow. The
Authorization code is a one-time use proof that the user is Au-
thenticated, and this code can be used to further contact that
IoT device as an authorized device. The code is not something
that can be used to directly access data as other OAuth tokens
are, it is simply proof that we are who we say we are and that
we’ve been authenticated and authorized.

The Client then generates a key (though this key can also be
generated server-side) to begin the connection process with the
IoT device, sending a packet of data that looks somewhat like
this:

1 Client_id = device123

2 Client_secret = supersecret

3 Scope = read_ekg

4 Audience = ekg_device_ABC

5 authorization _code = XYZ

6 …

7 Key = a_shortlived_key

With the data in hand, the Authorization Server now responds
to this packet by providing an access_token; a reference to data

OAuth 2.0 – Why It’s Vital to IoT Security 99

held in the Authorization Server memory to serve as proof of
possession of both authentication and authorization:

1 Access_token = oddfbmd-dnndjv…

This is the final step — the client is now fully and truly authen-
ticated. With this access_token, the client can start a session on
the IoT device. The IoT device will look at this access_token, and
pass it to the Authorization Server (if it’s a connected device),
asking for verification to trust the device. When the Authoriza-
tionServer accepts the verification, it passes anewkey to the IoT
device, which then returns it to the Client, establishing a trusted
connection.

Disconnected Flow

What happens if a device is unable to ask the Authorization
Server for verificationdue topower or calculation limitations? In
this case,we can use something calledDisconnected Flow. A key
point for Disconnected Flow is unlike other OAuth 2.0 solutions;
this eschews TLS (Transport Layer Security) by nature of the
Resource Server being a disconnected device with intermittent
connectivity and limited communication and processing power.

In this case, we’re actually shifting the parties around some-
what. The EKG machine is now the client, and another IoT de-
vice, a test tube, is the Resource Server. First, the EKG machine
authenticates and authorizes in the same way as before:

OAuth 2.0 – Why It’s Vital to IoT Security 100

1 Client_id = ekg_device_ABC

2 Client_secret = supersecret

3 Scope = read_result

4 Audience = connected_tbie_123

5 Token = original_token

6 ...…

7 Key = a_shortlived_key

Once the Authorization Server receives this, the server replies
not with the access token in the former structure but instead
an access_token in JWT (or JSON Web Token). This token is a
by-value token, meaning it contains the data fed to it and the
response.Whereas our first string referenced amemory location
in the Authorization Server, the JWThas all of the data in a single
key string.

From here, the JWT can be converted into other formats for eas-
ier reading by the test tube. By design, the test tube is crafted to
trust theAuthorizationServer inaprocesscalledPre-provisioning.
Because of this, whenwe send the Client token in JWT (or what-
ever format that’s been chosen), the tube implicitly trusts the
key as long as it originated from the Authorization Server, and
begins a connected session with the Client.

Ideskog notes therewould technically be 2 token types involved
in the flow above: a signed JWT would contain an encrypted
token (JWE), which has a key in it that is later used for the
communication channel. The JWS (commonly called JWT) isn’t
necessarily encrypted and is usually in plain text and signed.

Real-World Authorization Failure

To see exactly why this is all so important, consider some real-
world authorization failures. One of the most visible failures is

OAuth 2.0 – Why It’s Vital to IoT Security 101

knownas “TheSnappening,” a leakof over 90,000privatephotos
and 9,000 private videos from the Snapchat application.

Most of the blame for The Snappening came from users us-
ing unauthorized third-party applications to save Snaps. These
third-party applications did not utilize OAuth solutions, mean-
ing when remote access users attempted to use the undocu-
mented Snapchat URL that the third party application relied
on, they could spoof as authorized users and retrieve content
without proper token assignment.

This a great example of OAuth 2.0 vs. no implementation, as we
have essentially a “control” application (Snapchat secured by
OAuth) and a “test” application (the unauthorized applications
tying into the undocumented API). With improper authorization
integration, the contentwasallowed to leak throughan insecure
system with relative ease. Had the third party application prop-
erly implemented an authorization scheme, this would never
have happened.

This issue is only relevant to non-IoT things, though — it’s just
a photo-sharing application, right? Wrong. Consider now this
same fault of security for something like an IoT button that
triggers replacement business items. Attacking this device can
result in man-in-the-middle attacks to capture addresses of or-
der processing servers and even spoof orders to the tune of
thousands or hundreds of thousands of dollars.

OAuth Embeds Trust into the IoT

Applying OAuth to the IoT makes it truly extensible and cus-
tomizable. Using OAuth, we can build systems based on trust
that use fundamentally secure resources and communications
protocols. OAuth is, by design, all about trust.

This trust is key to securing the IoT. For connected devices, Proof

OAuth 2.0 – Why It’s Vital to IoT Security 102

of Possession can solve most security issues. For constrained
environments by either connectivity or processing calculative
power, devices can be secured using pre-provisioning that is
independent of TLS and does not require the device to be online
at all times.

It should be noted that JWT, JWS, and JWE are all helpful tools,
but all work with JSON. For lower processing environments,
sibling binary tokens such as CWT, CWS, and CWE can be used
as they cater well to building on low power and limited scope
devices.

Conclusion

This isn’t a game—thoughhaving lax security canbeconvenient
for innovation and experimentation when it comes to the IoT,
this is a dangerous approach. IoT devices might be underpow-
ered and single-use, but they, as a network, are powerful.

Remember that a network is only ever as secure as the sum of
its parts and the weakest point of entry to its ecosystem. Failing
to secure one IoT device and adopting a security system based
on inherited security can result in a single IoT device comprising
every device connected to it.

OAuth 2.0 can go a long way towards solving these issues.

Is OAuth Enough for
Financial-Grade API
Security?
by Art Anthony
Originally Published Here

“If you think about where OAuth [and OpenID Connect] started,
it was really about securing comments on blog posts, and now
we’re talking about enterprises, so it’s a whole different class of
security.”

This is how Travis Spencer, CEO at the identity company Curity,
opened his talk at our 2019 Austin API Summit, and it’s an astute
summary of the way many products (particularly in the tech
scene) are tweaked or re-engineered for new things different
from their original purpose.

https://nordicapis.com/is-oauth-enough-for-financial-grade-api-security/

Is OAuth Enough for Financial-Grade API Security? 104

As Spencer clarified in his talk, “when we say banking grade,
we’re not just talking about banks; we’re talking about health-
care, government, and high security.” In other words, financial
grade security is relevant to any data-centric API.

It’s often true that products that begin their life as one thing
struggle to adapt to new tasks because they are not originally
designed for. In this postwe’ll be looking atwhether or not that’s
the case here, i.e. how the likes of OAuth have evolved from
humble beginnings and if they’re truly capable of being used for
financial grade protection.

Can OAuth Make The Grade?

Early in his talk, Spencer provides a summary of some things
you candowith yourOAuth implementation toprovide financial
grade security:

• Mutual TLS constrained tokens
• PKCE (Proof Key for Code Exchange)
• Consent
• Signed request/response objects
• Pairwise Pseudonymous Identifiers (PPIDs)
• Phantom tokens
• Strong authentication
• Prefix scopes
• Dynamic clients

There’s no denying that’s a pretty comprehensive list and sug-
gests that OAuth is more than capable of holding its own when
it comes to security.

In other words, OAuth shouldn’t be seen as insufficient when it
comes to securing data. In fact, Spencer outlines a number of
ways in which it works very well for financial grade protection.

Is OAuth Enough for Financial-Grade API Security? 105

For example, he talks about how PPIDs can be used to prevent
collusion between unrelated apps – while allowing interaction
between, say, sites and their associated mobile apps – and how
phantom tokens (vs., say, a JSONweb token) allow for a smaller
regulated space while preventing clients from accessing any PII
and front-end clients from depending on the content of access
tokens.

Some Tokens Are Unbearer-able

Thewaydevelopers useOAuth isn’t, however, always perfect. Its
two main vulnerabilities of OAuth, as seen by Spencer? Bearer
tokens and the redirect. “Those two things are the primary at-
tack vectors in OAuth.”

He likens the former to bearer bonds; “if you bear the bond,
then…you can get a million dollars for each piece of paper and
have a great life!” That’s particularly problematic here because,
unlike with bearer bonds, there’s no way to lock tokens away in
a physical safe.

“That’s the Achilles heel because, if I can snatch someone else’s
token, I can become them.” So what’s a solution that can get
around this? “The opposite of this is a holder of key token or
proof of possession token, and that’s what mutual TLS con-
straint tokens are.”

Is OAuth Enough for Financial-Grade API Security? 106

In simple terms, the addition of a hash of a certificate to the
token exchange process means that works something like using
a cipher to decode a message; without the proper credentials,
the token won’t function properly when used for an API call.

Unfortunately, that isn’t the end of the story…

AwayWith The PKCEs

When talking about redirects, Spencer refers to the vulnerability
in callbacks that exists if…

• It’s not confidential, i.e., not done over TLS
• There’s no authentication done on the token endpoint
• The callback is not unique per client or per client operator

“In cases where a bad actor can intercept the credentials, they
may be able to sidestep the use of mutual TLS tokens outlined
above entirely.” He also highlights that this is something partic-
ularly prevalent in mobile devices.

Is OAuth Enough for Financial-Grade API Security? 107

The solution? Proof Keys for Code Exchange (PKCE). “We can
add a step 0 into this process…The legitimate application uses
a proof key to prove that it is the actual application that started
this flow, with the OAuth server refusing to finish it unless that
proof is verified.”

Youcould thinkof this asamore robust versionofDennisNedry’s
“ah ah ah, you didn’t say the magic word” in Jurassic Park…

Signed, Sealed, Delivered

Spencer highlights the issue that, in most cases, OAuth flows
go through the user agent. Malware installed in the browser, for
example, can undermine all of themeasures taken above on the
user side.

“Howdowe know that OAuth flows aren’t being tam-
pered with in flight?” Spencer asks. “We sign the re-
quest fromtheclient sent to the server andback…We
can also sign the response that’s sent back to the
client as well so they know nothing was tampered
with on the way back.”

All of this signingandhashing is something that’s alreadyproven
its worth in recent years: read any article about data leaks by big
companies, and you’ll notice, in caseswhere it’s beendone, how
eager they are to talk about hashing passwords.

Although hashing passwords, signing requests, etc. isn’t always
100% secure — there are cases, for example, in which weak
hashing has been cracked— it is, at this point in time, about the
best thing we can do.

Is OAuth Enough for Financial-Grade API Security? 108

What’s Next For Financial Grade API
Security?

It seems likely, for now at least, that the status quowill continue
as the norm in the world of financial and financial grade APIs.

From PayPal and Stripe to Coinbase, and probably Facebook’s
Libra in the not too distant future, there are plenty of financial
services utilizing APIs built around existing frameworks and ser-
vices like OAuth.

Suppose actual financial services are already relyingon these. In
that case, there’s very little incentive for other API developers to
gobeyondwhat already, in effect, constitutes financial gradeAPI
security…barringmassivedata leaksor theexpositionof serious
vulnerabilities.

In the meantime, we would expect to see OAuth continue to
be one of those rare exceptions: a service that was built with
somethingminor, i.e., securing blog comments, inmind that has
effectively expanded to somethingmuchmore robust than that.

The Role of Identity in API
Security
by Bill Doerrfeld
Originally Published Here

What options do APIs and microservices have when it comes to
authentication and authorization? What is the role of identity in
API security? In a recent LiveCast, we sought to discover best
practices for handling identity within API security. We featured
two illuminating lightning talks, one from David Garney of Tyk
and another from Travis Spencer of Curity. This event is a nice
capstone to the API security and identity themes we’ve covered
in this eBook.

https://nordicapis.com/what-is-the-role-of-identity-in-api-security/
https://youtu.be/lD7DcB6UvMw

The Role of Identity in API Security 110

Various Authentication Mechanisms

So, how do we authenticate users for our APIs? Embedded into
third-party applications, APIs require a unique type of access
control, and there are many options for microservices authen-
tication and authorization.

The Benefits of Microservices

As we’ve seen before, microservices are lightweight, offering in-
dividualistic simplicity that monolith applications simply can’t
provide. They are also flexible; services can be deployed to dif-
ferent hosts and with varying technical stacks. They work well
with containerization, CI, and CD. Furthermore, since these ap-
plications are separated, it means the attack exposure is de-
creased, increasing security overall.

Though microservices are unique, they often work in tandem
with one another,meaningwe need them to act cohesively. One
example is having a standard way of knowingwho is consuming
them and their access privileges.

So, howdowe implement a standard authentication and autho-
rization method across all microservices? In his presentation,
Dave Garney of Tyke cites three specific ways to implement this
control:

1. Internally within eachmicroservice
2. Externally by using a gateway
3. Or using a combination of external and internal compo-

nents

The Role of Identity in API Security 111

Internal Approach

In the 100% internal strategy, microservices handle both au-
thentication and authorization. In this architecture, the user tra-
verses through both. Thus, the service has fine-grained control,
but it also means that the service is self-reliant, fitting with the
microservices approach. Cons include extra development effort,
and likelyadditionalmicroservicesmustbebeingconstructed to
handle these functions.

Dave argues that by handling authentication and authorization
separately for each microservice, we’re missing an opportunity
to reduce code bloat. The larger the number of microservices
involved, the more value in externalizing this approach.

External

With an external approach, a gateway handles both authenti-
cation and authorization. Thus, additional microservices do not
need to be created. The pros are that by putting responsibility in
the gateway, you can remove the burden frommicroservices to
focus on your own needs. The cons could be less fine-grained
control if the gateway can’t make decisions on information it
doesn’t have access to. Dave also notes some potential vul-
nerabilities; relying completely on a gateway means you could
attempt to circumnavigate it and access the source directly. Of
course, there are ways to mitigate this.

Combination

In Dave’s combination approach, authentication takes place in
the gateway, as the external approach, thus relieving the bur-

The Role of Identity in API Security 112

den for each microservice to handle authentication. Authoriza-
tion takes place in themicroservice. Microservices thus become
leaner as they don’t’ have to worry about authentication, yet
they can still authorize based on the credentials provided. Cons
could be a little bit more development effort.

Goldilocks Approach?

Dave recommends the external approach, if possible, as allow-
ing a gateway to handle both authorization and authentication
brings time-saving qualities. He notes that, practically,mostwill
use a Goldilocks approach, a middle ground between combina-
tion and external approaches.

“Try to identify complex authorization requirements
and implement them in your microservice.”

Dave defines this way of thinking as Macro-authorization vs.
Micro-authorization.Macro-authorization as in the gateway au-
thorizingaccess toall of yourmicroservicesandMicro-authorization
aseachmicroserviceproviding furtherauthorization themselves.
He recommends complex authorization mechanics catered to
the unique scenarios at hand. Database access, for example, is
best implemented as micro-authorization.

Dave recommends OpenID Connect for authentication, and for
the most part, stresses the importance of gateways for offload-
ing functionality to the gateway:

“What you should end up with is the right balance
of off-loading asmuch authentication and authoriza-
tion effort to the gateway as possible while retaining
the ability to perform complex authorization at the
microservice level.”

The Role of Identity in API Security 113

Moving Forward with OAuth and OpenID
Connect

Next, let’s dig into OAuth and OpenID Connect a bit more. Travis
Spencer, CEO of Curity, is no stranger to strategies for identity
control. He describes Curity as an advanced off-the-shelf OAuth
server, fit for banking, retail, telecom, andmany other use cases.

The 4 Actors of OAuth

Travis defines the basic foundations of OAuthwith these four ac-
tors. This is what the literature and documentation concerning
OAuth will often use. These four actors make up the flows that
we discuss on the blog often.

1. Client: The application; can be mobile apps, web apps,
server applications, andmore.

2. AuthorizationServer (OAuthServer): Sometimescalled iden-
tity provider, or in OpenID Connect, it’s called the OP.

3. Resource Server: These are the APIs themselves.
4. ResourceOwner: Typically, auser, theone that controls the

resource. Could also be anorganization, but is often a user.

So how do these actors typically interact? Well, for more fine-
grained comparisons, reference Part 2 of this eBook for specific
OAuth flows!

Nordic APIs Resources
Related API Security and Identity Sessions

• OAuth Assisted Token Flow for Single Page Applications
• OAuth Claims Ontology: Using Claims in OAuth and How
They Relate to Scopes

• OAuth for Your Living Room
• Jacob Has a Horse, Says Travis – a Tale of Truths In a
Microservice Architecture

• Identity:The Missing Link in API security
• Lessons Learned from the Design of the SCIM API
• LiveCast: The Role Of Identity In API Security

Visit our YoutubeChannel for other full videos of high impact API
and identity-related talks.

More eBooks by Nordic APIs:

Visit our eBook page to download all the following eBooks for
free!

API Strategy for Open Banking: Banking infrastructure is de-
composing into reusable, API-first components. Discover theAPI
side of open banking, with best practices and case studies from
some of the worldâ€™s leading open banking initiatives.

GraphQL or Bust: Everything GraphQL! Explore the benefits of
GraphQL, differences between it and REST, nuanced security
concerns, extending GraphQL with additional tooling, GraphQL-
specific consoles, andmore.

https://youtu.be/h_wT-58L5ZY
https://www.youtube.com/watch?v=k5xvNB4pCV0&ab_channel=NordicAPIs
https://www.youtube.com/watch?v=k5xvNB4pCV0&ab_channel=NordicAPIs
https://www.youtube.com/watch?v=Ou_nbvl2SXI&ab_channel=NordicAPIs
https://www.youtube.com/watch?v=pua07chpYBU&ab_channel=NordicAPIs
https://www.youtube.com/watch?v=pua07chpYBU&ab_channel=NordicAPIs
https://www.youtube.com/watch?v=iFysRYL2EvU&ab_channel=NordicAPIs
https://www.youtube.com/watch?v=GIEWMh964Gs&ab_channel=NordicAPIs
https://youtu.be/lD7DcB6UvMw
https://www.youtube.com/user/nordicapis
https://nordicapis.com/api-ebooks/

Nordic APIs Resources 115

How to Successfully Market an API: The bible for project man-
agers, technical evangelists, or marketing aficionados in the
process of promoting an API program.

The API Economy: APIs have given birth to a variety of unprece-
dented services. Learn how to get the most out of this new
economy.

APIDriven-DevOps:One importantdevelopment in recentyears
has been the emergence of DevOps, a discipline at the cross-
roads between application development and system adminis-
tration.

Securing the API Stronghold: The most comprehensive freely
available deep dive into the core tenants of modern web API
security, identity control, and access management.

Developing The APIMindset: Distinguishes Public, Private, and
Partner API business strategies with use cases from Nordic APIs
events.

Create With Us

At Nordic APIs, we are striving to inspire API practitioners with
thought-provoking content. By sharing compelling stories, we
aim to show that everyone can benefit from using APIs.

Write: Our blog is open for submissions from the community. If
you have an API story to share, please read our guidelines and
pitch a topic here.

Speak: If you would like to speak at a future Nordic APIs event,
please visit our call for speakers page.

https://nordicapis.com/create-with-us/
https://nordicapis.com/create-with-us/
https://nordicapis.com/call-speakers/

Nordic APIs Resources 116

About Nordic APIs

Nordic APIs is an independent blog and this publication has not
been authorized, sponsored, or otherwise approved by any com-
pany mentioned in it. All trademarks, servicemarks, registered
trademarks, and registered servicemarks are the property of their
respective owners.

Nordic APIs AB ©

Facebook | Twitter | Linkedin | YouTube

Blog | Home | Newsletter

http://facebook.com/nordicapis
http://twitter.com/nordicapis
https://www.linkedin.com/company/nordic-apis
https://www.youtube.com/user/nordicapis
http://nordicapis.com/blog/
http://nordicapis.com/
http://nordicapis.com/newsletter/

	Table of Contents
	Foreword
	Preface
	Part One: Basic Identity Concepts
	Introducing The API Security Maturity Model
	The Difference Between HTTP Auth, API Keys, and OAuth
	API Keys ≠ Security: Why API Keys Are Not Enough
	Why Can’t I Just Send JWTs Without OAuth?
	How To Control User Identity Within Microservices

	Part Two: OAuth Flows and Deep Dives
	8 Types of OAuth Flows And Powers
	Exploring OAuth.tools, The World's First OAuth Playground
	Strategies for integrating OAuth with API Gateways
	Assisted Token Flow: The Answer to OAuth Integration in Single Page Applications
	Using OAuth Device Flow For UI-Incapable Devices
	SCIM: Building the Identity Layer for the Internet

	Part Three: The Role of Identity
	OAuth 2.0 – Why It's Vital to IoT Security
	Is OAuth Enough for Financial-Grade API Security?
	The Role of Identity in API Security

	Nordic APIs Resources

