
API Security
A Collection of Articles

Published by Curity AB in association with Nordic APIs AB

Copyright © Curity AB and Nordic APIs AB

Contact: info@curity.io and info@nordicapis.com

mailto:info@curity.io
mailto:info@nordicapis.com

Table of Contents
The API Security Maturity Model 2

API Security: Deep Dive into OAuth and OpenID Connect 8

Using OAuth Within Microservices 17

Coarse Grained Authorization Using Scopes 23

Claims Based Authorization Using OAuth 28

Securing APIs in a Cloud Native Environment 33

Standardized User Management with SCIM 38

More on API Security 44

API Security for the Modern Enterprise
APIs have in recent years grown to be essential to the digital strategy of a modern
organization. To ensure that digital assets are securely distributed, and that privacy is
maintained at all times, proper access management needs to be in place. Keeping APIs,
and the data provided through them, safe and only available to the intended user is a must.
And with users who are used to moving through digital systems friction-free, an efficient
identification and authorization process has never been more important. By embedding
identity information in tokens, you can simplify the access control decisions that will be made
in many different places throughout your architecture.

This booklet gathers a selection of articles that cover the most important aspects of securing
APIs and microservices. It gives an introduction to related issues, such as how to utilize well-
established standards, like OAuth 2, OpenID Connect and SCIM, and how to connect these to
your applications, systems and user identities.

We hope you find this useful, and that it helps you secure your current and upcoming APIs.

Happy reading from the Curity and Nordic APIs teams!

2 The API Security Maturity Model

The API Security Maturity Model
API security has become a forefront issue for modern enterprises. However, there is a
spectrum of API security implementations, and not all of them are effective. Too often,
APIs only adopt HTTP Basic Authentication, API keys, or token-based authentication,
overlooking a major concern: identity. To prevent vulnerabilities and reap efficiency benefits, a
comprehensive identity focus is critical for fully evolved APIs.

This is why we’ve created the API Security Maturity Model. Inspired by the Richardson Maturity
Model, which outlines increasing degrees of web service development maturity, the API
Security Maturity Model reframes the model within the context of security. Within this model,
security and trust are improved the higher up you go.

• Level 0: API Keys and Basic Authentication

• Level 1: Token-Based Authentication

• Level 2: Token-Based Authorization

• Level 3: Centralized Trust Using Claims

The more evolved API security is, the more
identity emphasis it tends to have. So, how do
we encapsulate identity with APIs and make
it useful? APIs that utilize OAuth and OpenID
Connect can take advantage of Claims, an
advanced form of trust. Tokens such as JWTs
utilizing Subject and Context Attributes can
delegate platform-wide trust.

More on the specifics of that below. But first, let’s expand on each maturity stage within the
model to understand its benefits and drawbacks.

3The API Security Maturity Model

Level 0: API Keys and Basic Authentication
APIs at Level 0 use Basic Authentication or API keys to verify API calls. These are inserted
within the header or body of the URL of the API request. This is the level of security that most
APIs adopt. Most APIs established this authentication years ago, and unfortunately never
evolved from there.

For example, consider an eCommerce store. It makes API calls to a payment API based on
user purchases. It sends authentication in the form of an API Key or Basic Authentication
in the header to the app and passes it to APIs. The user ID is placed in the Body or URL.
In the example below, there are two APIs: BILLING and INVENTORY. Since HTTP Basic
Authentication or API keys only authenticate the STORE_WEB, the store must pass on user
data.

USERID
AGE
SHIRT_SIZE
ADDRESS

STORE_WEB

/INVENTORY

/BILLING

Authorization: Basic ABCDEF
{ “userId”: “john” }

BUY

The Problems with Level 0:
You may be thinking: aren’t API keys sufficient? Well, this method is actually very basic,
wrought with vulnerabilities. Not only are keys constantly compromised, but API key
verification relies on machine-machine verification, not bound to the identity of the user at all.
Lastly, this method only provides authentication, the act of proving an assertion, and does not
cover authorization at all.

4 The API Security Maturity Model

Level 1: Token-based Authentication
APIs at Level 1 utilize Access Tokens for authentication within a token-based architecture.
Such Access Tokens delineate the type of user (machine, app, user, etc.). As this enables
privileged access, it helps in environments where the separation of internal and external users
is required. Level 1 provides better auditing since user identity is part of the request.

For example, consider token-based authentication at the eCommerce store. When we
introduce a back office, the same problem occurs. Custom logic is needed to know if the
request is a back-office request with elevated privileges or if it comes from the store web.

USERID
AGE
SHIRT_SIZE
ADDRESS

STORE_WEB

/INVENTORY

/BILLING

Authorization: Bearer eyABCD

ADD_PRODUCT
BACK OFFICE

MANAGE

BUY
Authorization: Bearer eyEFGH

The Problems with Level 1:
At Level 1, anyone with a token can modify the API, meaning privileged access can be hacked.
Furthermore, Level 1 only covers authentication, not authorization. In other words, this
strategy doesn’t ask what are you allowed to do? When only using tokens for authentication, all
authorization becomes custom code. Thus, custom mechanisms like if statements must be
coded. This is negated in Levels 2 and 3, where you can utilize token data for authorization,
thus generalizing authorization logic.

5The API Security Maturity Model

Level 2: Token-based Authorization
APIs at Level 2 are more evolved, using token-based architecture for authorization.
Authorization delineates privileges for the requesting party, asking what are you allowed to do?
APIs in Level 2 adopt OAuth, a widely adopted authorization standard in which client requests
require an OAuth server for authorization. Maintained by IETF, OAuth 2.0 defines varying flows
to obtain tokens, enabling the ability to grant access to resources without the need for a
password.

One great benefit of OAuth is Scopes. Scopes can be utilized as “named permissions” within
a token. These Scopes can specify user privileges. OpenID Connect defines [standard scopes]
that can be used to generate standard identity arguments. Or, you can create [custom scopes]
for your API. Scopes have more useful data and are better than building ‘if’ statements into a
system.

Let’s consider our eCommerce store again. Now, we introduce Scopes, so that the public web
store and back-office can have different privileges. However, some operations overlap. The
Scope LIST is used to list invoices in the billing API. The ID to list for is in the URL or passed
as a request parameter. Thus, it’s possible to manipulate the call to list invoices for another
user. Thus, the Scope is not sufficient. Scopes also lock down what the client application is
allowed to do; they don’t help with the particular user since they are only “names” and not
“values.” Instead, Claims should be used so that the parameter is baked into the token. Then
it’s easy to separate back office privileges from store_web privileges.

USERID=ID_123
AGE
SHIRT_SIZE
ADDRESS

STORE_WEB

/INVENTORY

/BILLING

/BILLING/ID_123/ALLVIEW
INVOICES
ID_123

Authorization: Bearer eyABCD

BACK OFFICE

MANAGE

Authoriz
atio

n: B
earer e

yEFGH

SCOPE: LIST

SCOPE: LIST

https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://curity.io/resources/architect/claims/scopes-and-how-they-relate-to-claims/

6 The API Security Maturity Model

The Problems with Level 2:
One problem in Level 2 is that the system faces the threat of being decompiled. When
identity is built directly into the API, logic errors may be discovered and exploited. Level 2
also introduces a higher degree of system complexity, as some API request parameters may
rely on other API responses or other conditions. What happens when one API calls another
API that fails? Or, what if the data request is full of errors? You can’t always assume the data
passed from one API to the next is always correct. These realities cause cascading issues of
trust, easily becoming an intertangled mess. We call this a “spaghetti of trust.”

Level 3: Centralized Trust Using Claims
The final tier, Level 3, is the most evolved API security platform. This practice involves
centralized trust with Claims and possibly signed JSON Web Tokens (JWTs). In doing so, we
solve all the problems outlined above.

What are JWTs? Well, to clarify common misconceptions, a JWT is NOT a protocol. It’s a
signed piece of data. OAuth flows utilize JWTs to verify transactions. JWTs can be used to
share Scopes.

And Claims? Claims are essentially assertions. For example, consider a written statement:
“Jacob is an identity specialist, says Travis.” This claim has a Subject (Jacob), an Attribute
(that he is an identity specialist), and an Asserting Party (Travis). If you trust Travis, then you
trust the Claim. Many Attributes can make up identity. There are Subject attributes, like name,
age, height, weight, etc. For these attributes, the Asserting Party would be the police or tax
authorities. There are also Context Attributes, such as the situation, timing, location, weather,
etc.

Instead of trusting the attributes themselves, it’s far better to trust claims made by common
parties. Identity systems use Claims with similar anatomy for verification. If you trust
the OAuth Server that issues keys, then you trust the claim being made. To verify a claim
(simplified):

• Requesting Party calls the Issuer

• Issuer returns data, signed with a private key

• Requesting Party sends to another party

• Replying Party verifies the signature with a public key

This method solves the issue of trust, by trusting the issuer of tokens rather than the claims
themselves.

7The API Security Maturity Model

JWTs Require OAuth & OpenID Connect
In cybersecurity, it’s rarely encouraged to invent your own traffic rules. For centralized trust
to function, authorization systems require the use of stable protocols. Just as street traffic
follows common protocols, identity systems require their own shared open standards. These
protocols are OAuth and OpenID Connect. Utilizing these standards, an app can share secure,
asserted data within JWTs for verification.

Claims: Highly-evolved Identity-based API Security
Trust is a subjective thing. In designing a secure API-based system, should we trust keys,
tokens, passwords, machines, or users themselves? The answer is more complex than most
API designers think, and maybe pivotal to safeguarding your platform as a whole.

As the API Security Maturity Model displays, highly mature APIs place trust in very few
sources. Especially, these evolved APIs place trust in the issuer of tokens. This does not
guarantee the truth but is the closest representation to validating the identity of requesting
parties. Furthermore, standardizing this process with centralized trust removes spaghetti
code and wasted effort on custom code.

Essentially, the pinnacle of API security is to trust claims, not attributes. When building an
identity-based API security system based on claims, remember some best practices:

• Organize sensitive data only to be reachable by OIDC server

• Include identity data in token, not context attributes

• Opaque tokens for the public, JWTs internally

• Limit data exposure only to when the client needs it

• Avoid app-specific rules

Without more advanced security, APIs could easily be made vulnerable with a rogue key
left in a GitHub repository. Thus, API providers must make smarter security decisions that
safeguard the integrity of the entire platform.

8 API Security: Deep Dive into OAuth and OpenID Connect

API Security: Deep Dive
into OAuth and OpenID Connect
OAuth 2 and OpenID Connect are fundamental to securing your APIs. To protect the data that
your services expose, you must use them. They are complicated though, so we wanted to go
into some depth about these standards to help you deploy them correctly.

OAuth and OpenID Connect in Context
Always be aware that OAuth and OpenID Connect
are part of a larger information security problem.
You need to take additional measures to protect
your servers and the mobiles that run your apps in
addition to the steps taken to secure your API.

Without a holistic approach, your API may be incredibly secure, your OAuth server locked
down, and your OpenID Connect Provider tucked away in a safe enclave. Your firewalls,
network, cloud infrastructure, or the mobile platform may open you up to attack if you don’t
also strive to make them as secure as your API.

To account for all three of these security concerns, you have to know who someone is and
what they are allowed to do. To authenticate and authorize someone on your servers, mobile
devices, and in your API, you need a complete Identity Management System. At the head of
API security, enterprise security and mobile security is identity!

Only after you know who someone (or something) is can you determine if they should be
allowed to access your data. We won’t go into the other two concerns, but don’t forget these
as we delve deeper into API security.

Start with a Secure Foundation
To address the need for Identity Management in your API, you have to build on a solid base.
You need to establish your API security infrastructure on protocols and standards that have
been peer-reviewed and are seeing market adoption. For a long time, lack of such standards
has been the main impediment for large organizations wanting to adopt RESTful APIs in
earnest. This is no longer the case since the advent of the Neo-security Stack:

as well, which is ideal for sensitive data like credentials or other personal

Filtered Search, Querying Resources
and one of the most complex, is the ability to send filtered

/Users?filter=username eq “teddy", or in English: show me all

9API Security: Deep Dive into OAuth and OpenID Connect

Neo-security Stack

Authentication

Provisioning

Identities

Federation

Delegated Access

Authorization

FIDO

SCIM

JSON Identity Suite

OpenID Connect

OAuth 2

This protocol suite gives us all the capabilities we need to build a secure API platform. The
base of this, OAuth and OpenID Connect, is what we want to go into in this article.

Overview of OAuth
OAuth is a sort of “protocol of protocols” or “meta protocol,” meaning that it provides a useful
starting point for other protocols (e.g., OpenID Connect, NAPS, and UMA). This is similar to
the way WS-Trust was used as the basis for WS-Federation, WS-Secure, etc., if you have that
frame of reference.

Beginning with OAuth is important because it solves a number of important needs that most
API providers have, including:

• Delegated access

• Reduction of password sharing between users and third parties (the so called
“password anti-pattern”)

• Revocation of access

When the password anti-pattern is followed and users share their credentials with a third-
party app, the only way to revoke access to that app is for the user to change their password.
Consequently, all other delegated access is revoked as well. With OAuth, users can revoke
access to specific applications without breaking other apps that should be allowed to
continue to act on their behalf.

10 API Security: Deep Dive into OAuth and OpenID Connect

Actors in OAuth
There are four primary actors in OAuth:

1. Resource Owner (RO): The entity that is in
control of the data exposed by the API,
typically an end user

2. Client: The mobile app, web site, etc. that
wants toaccess data on behalf of the
Resource Owner Service (STS) or, colloquially,
the OAuth server that issues tokens

3. Authorization Server (AS): The Security Token
Service (STS) or, colloquially, the OAuth server
that issues tokens

4. Resource Server (RS): The service that
exposes the data, i.e., the API

Scopes
OAuth defines something called “Scopes.” These are like permissions or delegated rights that
the Resource Owner wishes the client to be able to do on their behalf. The client may request
certain rights, but the user may only grant some of them or allow others that aren’t even
requested. The rights that the client is requesting are often shown in some sort of UI screen.
Such a page may not be presented to the user, however. If the user has already granted the
client such rights (e.g., in the EULA, employment contract, etc.), this page will be skipped.

What is in the scopes, how you use them, how they are displayed or not displayed, and pretty
much everything else to do with scopes are not defined by the OAuth spec. OpenID Connect
does define a few, but we’ll get to that in a bit.

Kinds of Tokens and Token Purpose
In OAuth, there are two kinds of tokens, or put in other words, tokens with different purposes:

1. Access Tokens: These are tokens that are presented to the API

2. Refresh Tokens: These are used by the client to get a new access token from the AS

(Another kind of token that OpenID Connect defines is the ID token. We’ll get to that in a bit.)

AS

11API Security: Deep Dive into OAuth and OpenID Connect

Think of access tokens like a session that is created for you when you login into a website.
As long as that session is valid, you can continue to interact with the website without having
to login again. Once that session is expired, you can get a new one by logging in again
with your password. Refresh tokens are like passwords in this comparison. Also, just like
passwords, the client needs to keep refresh tokens safe. It should persist these in a secure
credential store. Loss of these tokens will require the revocation of all consents that users
have performed.

NOTE: The Authorization Server may or may not issue a refresh token to a particular client. Issuing
such a token is ultimately a trust decision. If you have doubts about a client’s ability to keep these
privileged tokens safe, don’t issue one!

Passing Tokens
As you start implementing OAuth, you’ll find that
you have more tokens than you ever knew what to
do with! How you pass these around your system
will certainly affect your overall security. There are
two distinct ways in which they are passed:

1. By value

2. By reference

These are analogous to the way programming language pass data identified by variables.
The run-time will either copy the data onto the stack as it invokes the function being called
(by value) or it will push a pointer to the data (by reference). In a similar way, tokens will either
contain all the identity data in them as they are passed around or they will be a reference to
that data.

Profiles of Tokens: Token Types
There are different profiles of tokens as well, in the spec this is loosely referred to as the
token type.

The two that you need to be aware of are these:

1. Bearer tokens

2. Holder of Key (HoK) tokens

You can think of bearer tokens like cash. If you find a dollar bill on the ground and present it
at a shop, the merchant will happily accept it. She looks at the issuer of the bill and trusts that
authority. The salesperson doesn’t care that you found it somewhere. Bearer tokens are the
same. The API gets the bearer token and accepts the contents of the token because it trusts
the issuer (the OAuth server). The API does not know if the client presenting the token really

By Value

By Reference

 resource type, and share a set of common attributes.
You’re probably already familiar with these sets of attributes, since they are common in pretty much all
identity management systems. All SCIM types are identified by the schema in the payload, like the User

– Identifies the source of the data. This could be an ID from your database or a
 Twitter handle – wherever you got the user or resource from originally

– Common metadata, such as a timestamp for when the resource was created and
, as well as where you can find it, or the location (URL) of the given resource.

12 API Security: Deep Dive into OAuth and OpenID Connect

is the one who originally obtained it. This may or may not be a bad thing. Bearer tokens are
helpful in some cases, but risky in others. Where some sort of proof that the client is the one
to who the token was issued for, HoK tokens should be used.

HoK tokens are like a credit card. If you find a credit card on the street and try to use it at a
shop, the merchant will (hopefully) ask for some form of ID or a PIN that unlocks the card.
This extra credential assures the merchant that the one presenting the credit card is the one
to whom it was issued. If your API requires this sort of proof, you will need HoK key tokens.
This profile is still a draft, but you should follow this before doing your own thing.

NOTE: You may have heard of MAC tokens from an early OAuth 2 draft. This proposal was never
finalized, and this profile of tokens are never used in practice. Avoid this unless you have a very
good reason. Vet that rational on the OAuth mailing list before investing time going down this
rabbit trail.

Token Format
We also have different formats of tokens. The OAuth specification doesn’t stipulate any
particular format of tokens. This was originally seen by many as a negative thing. In practice,
however, it’s turned out to be a very good thing. It gives immense flexibility. Granted, this
comes with reduced interoperability, but a uniform token format isn’t one area where interop
has been an issue. Quite the contrary! In practice, you’ll often find tokens of various formats
and being able to switch them around enables interop. Example types include:

• WS-Security tokens, especially SAML tokens

• JWT tokens (which I’ll get to next)

• Legacy tokens (e.g., those issued by a Web
Access Management system)

• Custom tokens

Custom tokens are the most prevalent when passing them around by reference. In this case,
they are randomly generated strings. When passing by val, you’ll typically be using JWTs.

JSON Web Tokens
JSON Web Tokens or JWTs (pronounced like the English word “jot”) are a type of token that is
a JSON data structure that contains information, including:

• The issuer

• The subject or authenticated user (typically the Resource Owner)

• How the user authenticated and when

• Who the token is intended for (i.e., the audience)

Sending a Post request to the user’s endpoint creates a new resource

13API Security: Deep Dive into OAuth and OpenID Connect

These tokens are very flexible, allowing you to add your own claims (i.e., attributes or name/
value pairs) that represent the subject. JWTs were designed to be lightweight and to be
snuggly passed around in HTTP headers and query strings. To this end, the JSON is split into
different parts (header, body, signature) and base-64 encoded.

If it helps, you can compare JWTs to SAML tokens. They are less expressive, however, and
you cannot do everything that you can do with SAML tokens. Also, unlike SAML they do not
use XML, XML name spaces, or XML Schema. This is a good thing as JSON imposes a much
lower technical barrier on the processors of these types of tokens.

JWTs are part of the JSON Identity Suite, a critical layer in the Neo-security Stack. Other
things in this suite include JWA for expressing algorithms, JWK for representing keys, JWE
for encryption, JWS for signatures, etc. These together with JWT are used by both OAuth
(typically) and OpenID Connect. How exactly is specified in the core OpenID Connect spec
and various ancillary specs. In the case of OAuth, this is including the Bearer Token spec.

OAuth Flow
OAuth base specification defines different “flows” or message exchange patterns. These
interaction types include:

• The code flow (or web server flow)

• Client credential flow

• Resource owner credential flow

• Implicit flow

The code flow is by far the most common; it’s probably what you are most familiar with
if you’ve looked into OAuth much. It’s where the client is (typically) a web server, and that
website wants to access an API on behalf of a user. You’ve probably used it as a Resource
Owner many times, for example, when you log in to a site using certain social network
identities. Even when the social network isn’t using OAuth 2 per se, the user experience is the
same.

14 API Security: Deep Dive into OAuth and OpenID Connect

Improper and Proper Uses of OAuth
After all this, your head may be spinning. Mine was when I first learned these things. It’s
normal. To help you orient yourself, I want to stress one really important high-level point:

• OAuth is not used for authorization. You might think it’s from its name, but it’s not.

• OAuth is also not for authentication. If you use it for this, expect a breach if your data is
of any value.

• OAuth is also not for federation.

So what is it for? It’s for delegation, and delegation only!

This is your plumb line. As you architect your OAuth
deployment, ask yourself: In this scenario, am I using OAuth for
anything other than delegation? If so, go back to the drawing
board.

Consent vs. Authorization
How can it not be for authorization, you may be wondering. The “authorization” of the client
by the Resource Owner is really consent. This consent may be enough for the user, but not
enough for the API. The API is the one that’s actually authorizing the request. It probably
takes into account the rights granted to the client by the Resource Owner, but that consent, in
and of itself, is not authorization.

To see how this nuance makes a very big difference, imagine you’re a business owner.
Suppose you hire an assistant to help you manage the finances. You consent to this assistant
withdrawing money from the business’ bank account. Imagine further that the assistant
goes down to the bank to use these newly delegated rights to extract some of the company’s
capital. The banker would refuse the transaction because the assistant is not authorized —
certain paperwork hasn’t been filed, for example. So, your act of delegating your rights to
the assistant doesn’t mean squat. It’s up to the banker to decide if the assistant gets to pull
money out or not. In case it’s not clear, in this analogy, the business owner is the Resource
Owner, the assistant is the client, and the banker is the API.

Building OpenID Connect atop OAuth
As I mentioned above, OpenID Connect builds on OAuth. Using everything we just talked
about, OpenID Connect constrains the protocol, turning many of the specification’s SHOULDs
to MUSTs. This profile also adds new endpoints, flows, kinds of tokens, scopes, and more.
OpenID Connect (which is often abbreviated OIDC) was made with mobile in mind. For the
new kind of tokens that it defines, the spec says that they must be JWTs, which were also
designed for low-bandwidth scenarios. By building on OAuth, you will gain both delegated
access and federation capabilities with (typically) one product. This means fewer moving
parts and reduced complexity.

OAuth is for
delegated access

ONLY!

 • API identity control now maps your access tiers, enabling easy enforcement for freemium

 • Constructing scopes into API design rather than third party authentication means freedom of any
 authentication method without bothering the APIs with all the details;
 • Can help in separating private, public, partner APIs — complementing platform strategy and

 • As marketing departments have high demand on smooth customer journeys, this provides a
 quicker time to market when it comes to authentication.

one and only one pattern is needed for microservices design

15API Security: Deep Dive into OAuth and OpenID Connect

OpenID Connect is a modern federation specification. It’s a passive profile, meaning it’s
bound to a passive user agent that does not take an active part in the message exchange
(though the client does). This exchange flows over HTTP and is analogous to the SAML
artifact flow (if that helps). OpenID Connect is a replacement for SAML and WS-Federation.
While it’s still relatively new, you should prefer it over those unless you have good reason not
to (e.g., regulatory constraints).

As I’ve mentioned a few times, OpenID Connect defines a new kind of token: ID tokens. These
are intended for the client. Unlike access tokens and refresh tokens that are opaque to the
client, ID tokens allow the client to know, among other things:

• How the user authenticated (i.e., what type of credential was used)

• When the user authenticated

• Various properties about the authenticated user (e.g., first name, last name, shoe size,
etc.)

This is useful when your client needs a bit of info to customize the user experience. Many
times I’ve seen people use by value access tokens that contain this info, and they let the
client take the values out of the API’s token. This means they’re stuck if the API needs to
change the contents of the access token or switch to using by ref for security reasons. If your
client needs data about the user, give it an ID token and avoid the trouble down the road.

The User Info Endpoint and OpenID Connect Scopes
Another important innovation of OpenID Connect is what’s called the “User Info Endpoint.”
It’s kind of a mouthful, but it’s an extremely useful addition. The spec defines a few specific
scopes that the client can pass to the OpenID Connect Provider or OP (which is another name
for an AS that supports OIDC):

• openid (required)

• profile

• email

• address

• phone

You can also (and usually will) define others. The first is required and switches the OAuth
server into OpenID Connect mode. The others are used to inform the user about what type of
data the OP will release to the client. If the user authorizes the client to access these scopes,
the OpenID Connect provider will release the respective data (e.g., email) to the client when
the client calls the user info endpoint. This endpoint is protected by the access token that the
client obtains using the code flow discussed above.

NOTE: An OAuth client that supports OpenID Connect is also called a Relying Party (RP). It gets this
name from the fact that it relies on the OpenID Connect Provider to assert the user’s identity.

16 API Security: Deep Dive into OAuth and OpenID Connect

Not Backward Compatible with v. 2
It’s important to be aware that OpenID Connect is not backward compatible with OpenID 2
(or 1 for that matter). OpenID Connect is effectively version 3 of the OpenID specification. As
a major update, it’s not interoperable with previous versions. Updating from v. 2 to Connect
will require a bit of work. If you’ve properly architected your API infrastructure to separate the
concerns of federation with token issuance and authentication, this change will probably not
disrupt much. If that’s not the case however, you may need to update each and every app that
used OpenID 2.

Conclusion
In this post, I dove into the fundamentals of OAuth and OpenID Connect and pointed out their
place in the Neo-security Stack. I said it would be in depth, but honestly, I’ve only skimmed
the surface. Anyone providing an API that is protected by OAuth 2 (which should be all of
them that need secure data access), this basic knowledge is a prerequisite for pretty much
everyone on your dev team. Others, including product management, ops, and even project
management should know some of the basics described above.

This article was originally published on nordicapis.com

17Using OAuth Within Microservices

Using OAuth Within Microservices
Everyone’s excited about microservices, but actual implementation is sparse. Perhaps the
reason is that people are unclear on how these services talk to one another; especially tricky
is properly maintaining identity and access management throughout a sea of independent
services.

Unlike a traditional monolithic structure that may have a single security portal, microservices
pose many problems. Should each service have its own independent security firewall? How
should identity be distributed between microservices and throughout my entire system? What
is the most efficient method for the exchange of user data?

There are smart techniques that leverage common technologies to not only authorize but
perform delegation across your entire system. In this article we’ll identify how to implement
OAuth and OpenID Connect flows using JSON Web Tokens to achieve the end goal of creating
a distributed authentication mechanism for microservices — a process of managing identity
where everything is self-contained, standardized, secure, and best of all — easy to replicate.

What Are Microservices, Again?
For those readers not well-versed in the web discussion trends
of late, the microservice design approach is a way to architect
web service suites into independent specialized components.
These components are made to satisfy a very targeted function,
and are fully independent, deployed as separate environments.
The ability to recompile individual units means that
development and scaling can be vastly easier within a system
using microservices.

This architecture is opposed to the traditional monolithic
approach that consolidates all web components into a
single system. The downside of a monolithic design is that
version control cycles are arduous, and scalability is slow.
The entire system must be continuously deployed since it’s
packaged together.

The move toward microservices could have dramatic repercussions across the industry,
allowing SaaS organizations to deploy many small services no longer dependent on large
system overhauls, easing development, and on the user-facing side allowing easy pick-and-
choose portals for users to personalize services to their individual needs.

 to see if the username is in fact a customer.
 6. In this case it does find the username among the customer files, and thus grants the client an

articles_regular_read and articles_premium_read scopes

what scopes it returned, since these were different from
must under no

 circumstances dissect the actual token — it’s only meant for the API to consume.

 7. The ArticleReader
 point we now know many more things than simply the

18 Using OAuth Within Microservices

Great, so What’s the Problem?
The problem we’re faced with is that microservices don’t
lend themselves to the traditional mode of identity control.
In a monolithic system security works simply as follows:

1. Figure out who the caller is

2. Pass on credentials to other components when called

3. Store user information in a data repository

Since components are conjoined within this structure, they
may share a single security firewall. They share the state of the user as they receive it and
may also share access to the same user data repository.

If the same technique were to be applied to individual microservices, it would be grossly
inefficient. Having an independent security barrier — or request handler — for each service to
authenticate identity is unnecessary. This would involve calling an Authentication Service to
populate the object to handle the request and respond in every single instance.

The Solution: OAuth as a Delegation Protocol
There is a method that allows one to combine the
benefits of isolated deployment with the ease of a
federated identity. To accomplish this OAuth should
be interpreted not as Authentication, and not as
Authorization, but as Delegation.

In the real world, delegation is where you delegate
someone to do something for you. In the web realm, the
underlying message is there, yet it also means having
the ability to offer, accept, or deny the exchange of data.
Considering OAuth as a Delegation protocol can assist
in the creation of scalable microservices or APIs.

To understand this process, we’ll first lay out a standard
OAuth flow for a simple use case. Assume we need
to access a user’s email account for a simple app
that organizes a user’s email — perhaps to send SMS
messages as notifications. OAuth has the following four
main actors as described in the previous article:

• Resource Owner (RO): the user

• Client: the web or mobile app

• Authorization Server (AS): OAuth 2.0 server

• Resource Server (RS): where the actual service is stored

Token is valid.
 (API) then sends the data to the Client app.

Using this flow, the API becomes much more knowledgeable. By returning different scopes in step 6, we
give the client the ability to custom tailor the UI, and enable or disable certain functions. Even better is that
since the power of the scope told it that sufficient strength was used during authentication, the API now
doesn’t even care which authentication was originally made. Empowered with data on the client, the user,

16

Simplified
Monolithic
Flow

User repository

8

User repository

The problem with
microservice securityDecouple User Identity from API Design to Build

19Using OAuth Within Microservices

A Simplified Example of an OAuth 2 Flow
In our situation, the app (the Client), needs to access the email account (the Resource Server)
to collect emails before it can organize them to create the notification system. In a simplified
OAuth flow, an approval process would be as follows:

1. The Client requests access to the Resource Server by calling the Authorization Server.

2. The Authorization Server redirects to allow the user to authenticate, which is usually
performed within a browser. This is essentially signing into an authorization server, not
the app.

3. The Authorization Server then validates the user credentials and provides an Access
Token to the client, which can be used to call the Resource Server.

4. The Client then sends the Token to the Resource Server.

5. The Resource Server asks the Authorization Server if the token is valid.

6. The Authorization Server validates the Token, returning relevant information to the
Resource Server i.e. time until token expiration, who the token belongs to.

7. The Resource Server then provides data to the Client. In our case, the requested emails
are unbarred and delivered to the Client.

An important factor to note within this flow is that the Client — our email notification app
— knows nothing about the user at this stage. The token that was sent to the client was
completely opaque — only a string of random characters. Though this is a secure exchange,
the token data is itself useless to the client. The exchange thus supplies access for the
client, but not user information. What if our app needed to customize the User Experience
(UX) based on which membership level the user belonged to, a group they were a member
of, where they were located, their preferred language, etc.? Many apps provide this type of
experience and for that they require additional user information.

The OpenID Connect Flow
Let’s assume that we’re enhancing the email service client so that it not only organizes your
emails, but also stores them and translates them into another language. In this case, the
client will want to retrieve additional user data and store it in its own user sessions.

To give the client something other than the opaque token provided in the OAuth flow, use an
alternative flow defined in OpenID Connect. In this process, the Authorization Server, which
is also called an OpenID Connect Provider (OP), returns an ID Token along with the Access
Token to the client. The flow is as follows:

1. The Client requests access to the Resource Server by calling the Open ID Connect
enabled Authorization Server.

2. The Authorization Server redirects to allow the user to authenticate.

3. The Authorization Server then validates the user credentials and provides an Access
Token AND an ID Token to the client.

20 Using OAuth Within Microservices

4. The Client uses this ID Token to enhance the UX and typically stores the user data in its
own session.

5. The Client then sends the Access Token to the Resource Server

6. The Resource Server responds, delivering the data (the emails) to the Client.

Sessions Can Be Created (SSO)

7. The Resource Server verifies with the OAuth
 Server that the Token is valid.
8. The Resource Server (API) then sends the
 data to the Client app.

Describing Login Information
Considering these three important actors Resource Server (the API), Authorization Server (OAuth),
Authentication Server (Login), we need to know who is requesting access, which type of application
requesting access, and the privileges that user has. Accounting for the login process is important as it
completes the picture of these flows.

Resource Server (RS)

Resource Server (RS)
Client

Sessions

ID Token

Access Token

The ID token contains information about the user, such as how they authenticated, the name,
email, and any number of custom data points on a user. This ID token takes the form of a
JSON Web Token (JWT), which is a coded and signed compilation of JSON documents.
The document includes a header, body, and a signature appended to the message. Data +
Signature = JWT.

Using a JWT, you can access the public part of a certificate, validate the signature, and
understand that this authentication session was issued — verifying that the user has been
authenticated. An important facet of this approach is that ID tokens establish trust between
the Authorization Server/Open ID Connect Provider and the Client.

21Using OAuth Within Microservices

Using JWT for OAuth Access Tokens
Even if we don’t use OpenID Connect, JWTs can be used for many things. A system can
standardize by using JWTs to pass user data among individual services. Let’s revisit the
formats for OAuth access tokens to see how to smartly implement secure identity control
within microservice architecture.

By Reference: Standard Access Token

This type of token contains no information outside
of the network, simply pointing to a space where
information is located. This opaque string means
nothing to a user, and as it’s randomized cannot
easily be decrypted. This is the standard form of an
access token — without extraneous content, simply
used for a client to gain access to data.

By Value: JSON Web Token

This type may contain necessary user information that the client requires. The data is
compiled and inserted into the message as an access token. This is an efficient method
because it erases the need to call again for additional information. If exposed over the web,
a downside is that this public user information can be easily read, exposing the data to an
unnecessary risk of decryption attempts to crack codes.

The Workaround: External vs. Internal
To limit this risk of exposure, Ideskog recommends splitting the way the tokens are used.
What is usually done is as follows:

1. The Reference Token is issued by the Authorization Server. The client sends back when
it’s time to call the API.

2. In the middle: The Authorization Server validates the token and responds with a JWT.

3. The JWT is then passed further along in the network.

In the middle we essentially create a firewall, an Authorization Server that acts as a token
translation point for the API. The Authorization Server will translate the token, either for a
simple Reverse Proxy, or a full-scale API Firewall. The Authorization Server shouldn’t be in the
“traffic path” however — the reverse proxy finds the token and calls the Authorization server to
translate it.

22 Using OAuth Within Microservices

Let All Microservices Consume JWT
So, to refresh, with microservice security we have two problems:

• We need to identify the user multiple times: We’ve shown how to leave authentication
to OAuth and the OpenID Connect server, so that microservices successfully provide
access given someone has the right to use the data.

• We have to create and store user sessions: JWTs contain the necessary information
to help in storing user sessions. If each service can understand a JSON web token,
then you have distributed your identity mechanism, allowing you to transport identity
throughout your system.

Token Translation

By Reference By Value

Outside the network Inside the network

API Firewall/ Reverse
Proxy API

In microservice architecture, an access token should not be treated as a request object, but
rather as an identity object. As the process outlined above requires translation, JWTs should
be translated by a front-facing stateless proxy, used to take a reference token and convert it
into a value token to then be distributed throughout the network.

Why Do This?
By using OAuth with OpenID Connect, and by creating a standards-based architecture that
universally accepts JWTs, the end result is a distributed identity mechanism that is self-
contained and easy to replicate. Constructing a library that understands JWT is a very simple
task. In this environment, access as well as user data is secured. Creating microservices that
communicate well and securely access user information can greatly increase agility of the
whole system, as well as increase the quality of the end user experience.

23Coarse Grained Authorization Using Scopes

Coarse Grained Authorization Using Scopes
How does one go about securing APIs,
microservices, and websites? One way to do this is
by focusing on the authorization – knowing what
the caller is allowed to do with your data. Too often,
though, providers rely too heavily on user identity,
pairing it way too closely with the design of their
APIs.

As OAuth doesn’t authenticate by itself, the way these flows are structured means that API
access often ultimately relies on user social logins, which is an unfavorable dependency
that actually decreases API security and scalability. APIs are far better secured with a proxy
in-between the API and authentication mechanism, utilizing scopes that delineate the type of
access that the API grants.

Authorization needs to be done on different levels. We now focus on the coarse-grained level,
where we can decide if we should at all consider the request. The next article will discuss the
fine-grained setup where we can make decisions on a per user/request level.

In this article we’ll see why APIs and microservices should decouple user identity from
their designs, and how to go about this implementation. We’ll review some sample flows,
and briefly walk through how OAuth scopes can be used to create a more valuable,
knowledgeable API. Following these cues, the end result will emboss state of the art Identity
and Access Management (IAM) practices within actual API design, in effect utilizing identity
data to secure the entire API lifecycle.

AAA
When an API call is made, we must know who made the request, and if they are allowed to
read and access the requested data. Identity and Access Management is also described as
AAA; an important initialism made up of:

• Authentication: Validation that the user is who they say they are.

• Authorization: Validation of the user, their application, and privileges.

• Auditing: Accounting for user behavior, logging metadata like what is accessed, when
it’s accessed, with what device, and more.

Caching user logs is great, but it doesn’t prevent malformed requests to the server from the
onset. We don’t want to waste resources, so verifying requests must be processed as early as
possible in the code pipeline. So, typically you block this with a proxy. BUT how do you make
sure that the proxy knows what to do? How do we instruct the proxy to decipher what user or
application is accessing the data, and what data they are allowed to access?

The Solution: OAuth as a Delegation Protocol
There is a method that allows one to combine the benefits of isolated
deployment with the ease of a federated identity. Jacob Ideskog of
Curity believes that to accomplish this OAuth should be interpreted not
as Authentication, and not as Authorization, but as Delegation.

is where you delegate someone to do something for you. In the web realm, the

User repository

24 Coarse Grained Authorization Using Scopes

Overview of the OAuth Flow
You may be thinking, just use OAuth, problem solved. Yes, OAuth is a necessary protocol
within the security workflow — but OAuth cannot authenticate — a separate server must
tell OAuth who the user is. To understand where we’re heading, here’s a quick overview of a
simple OAuth flow. To review, the actors are:

• Resource Owner (RO): The user

• Client: The application, mobile device, server, or website requesting data from the API

• Authentication Server: The login service that authenticates users

• OAuth Server (AS): Also called the Authorization Server

• Resource Server (RS): The API providing data

Let’s assume that we have created a mail server with an API that provides information so that
a third party app client can sort emails in an improved way. In our walkthrough we’ll assume
that the app uses Google as an authentication service. There are variants of these flows, but
a simple OAuth flow for this scenario would be:

1. The Client first requests accesses the OAuth Server.

2. The OAuth Server next delegates
authentication responsibility to a third-party
Authentication Server.

3. The User enters credentials with the
Authentication Server to authenticate.

4. The Authentication Server tells the OAuth
Server the authentication was successful.

5. The OAuth Server sends the Token to the
Client.

6. The Client uses the Token to access resources
from the Resource Server.

7. The Resource Server verifies with the OAuth
Server that the Token is valid.

8. The Resource Server (API) then sends the
data to the Client app.

Resource Server by calling the Open ID Connect enabled

 redirects to allow the user to authenticate.
 then validates the user credentials and provides an Access Token AND an

 to enhance the UX and typically stores the user data in its own

 to the Resource Server
 responds, delivering the data (the emails) to the Client.

.

 the

Authentication Server

OAuth Server

Resource Server (RS)

Resource Owner (RO)

25Coarse Grained Authorization Using Scopes

Designing an API with Scopes from the Bottom Up
Located within the OAuth token, scope is an interesting data point that you’ve likely used
before. Scope specifies the extent of tokens and are akin to the permissions listed on a
consent UI. They are extremely useful, as scopes can be used to delineate API access
tiers. Furthermore, OAuth doesn’t specify that you have to give the same scopes that you
are requesting — if the scope changes you must simply notify the client/user. For access
management designers, this grants us a lot of power and flexibility in how we handle scopes
and identity. We’ll see that building an API with scopes hardwired into the design can be
extremely helpful.

Scopes are tied to the client which is where this becomes useful from a coarse-grained
perspective. Consider an Invoicing API, the API can create and list invoices. Customers using
the company app should only be able to view the invoices, while the internal Finance systems
should be able to create invoices. It doesn’t matter if a super admin, or a regular customer
logs in with the customer app, they will only ever be able to list invoices. In the next article
we’ll discuss which invoices they will be able to list.

Let’s build a sample API to see what we’re talking about. We could in example design an
Invoice API that taps into an e-commerce platform. The API provides access to customers,
who are listing the invoices, as well as to employees, who are writing the invoices.

On the other end, ECommerceApp is an application that consumes the Invoices API. You can
think of ECommerceApp as the client in our OAuth flow. As it’s a customer client, it will be
limited in scope without editing capability.

So how do we create permissions? To do so means we define the scopes in the API. The
beautiful magic here is that we assign these scopes with different strengths as follows:

Let OAuth Filter These Scopes
Next we let the OAuth server filter API access based on these scopes. Since we can change
our scopes

SCOPE STRENGTH BEHAVIOUR

No Scope Weak User does not have to be a registered customer

invoice_read Medium User must be a registered customer

invoice_write Strong The application must be internal and the user needs
to login using internal credentials on the corporate
network.

26 Coarse Grained Authorization Using Scopes

throughout the process, when ECommerceApp sends a request with an invoice_read
scope, a new flow would look like this:

1. The ECommerceApp Client makes a request to the OAuth Server sending a basic read
scope.

2. The OAuth Server next delegates authentication responsibility to a third party
Authentication Server.

3. The User enters credentials with Google, the Authentication Server, to authenticate.

4. The Authentication Server tells the OAuth Server the authentication was successful,
and sends an OAuth Token. Within the token is information that will affect the scopes,
namely the ACR (which in this case is social) and the subject (the username).

5. The OAuth Server checks its Customer Database to see if the username is in fact a
customer.

6. In this case it does find the username among the customer files, and thus grants the
client an Access Token with the invoice_read scope.

7. The ECommerceApp Client then sends the Access Token to the Invoice API Resource
Server.

8.

This architecture is opposed to the traditional monolithic approach that consolidates
all web components into a single system. The downside of a monolithic design is that
version control cycles are arduous, and scalability is slow. The entire system must be
continuously deployed since it’s packaged together.

The move toward microservices could have dramatic repercussions across the industry, allowing SaaS
organizations to deploy many small services no longer dependent on large system overhauls, easing
development, and on the user-facing side allowing easy pick-and-choose portals for users to personalize
services to their individual needs.

Great, so What’s the Problem?
The problem we’re faced with is that microservices don’t lend themselves to the traditional mode of identity
control. In a monolithic system security works simply as follows:

 1. Figure out who the caller is
 2. Pass on credentials to other components when called

The Resource Server verifies with the OAuth Server that the Token is valid.

9. The Resource Server (API) then sends the data to the Client app.

Using this flow, the API becomes much more knowledgeable. By returning different scopes
in step 6, we give the client the ability to tailor the UI and enable or disable certain functions.
Even better is that since the power of the scope told it that sufficient strength was used
during authentication, the API now doesn’t even care which authentication was originally
made or if the user was a customer or not. Empowered with data on the client, the user, and
the access granted by the scopes, it can effectively filter data to the proper channels using an
improved provisioning schematic.

27Coarse Grained Authorization Using Scopes

The Proxy Accepts Only Valid Requests
The last step in decoupling authentication from API design is constructing a proxy to
separate our API from the authentication mechanism. The final result is a proxy that only
allows access to the Invoice API when the following criteria are met:

• The token exists

• The token is valid

• The token contains one or more scopes. For the Invoice API, that would be one or more
of the following:

invoice_read

invoice_write

Now we have a more secure, strict API front end that only allows access once these three
rules are met, blocking unregistered users in the proxy.

Conclusion: Separate the API from Authentication and
Client Permissions
In order to build a scalable API infrastructure that is ideal for microservices, you must design
your APIs in a way that separates them from authentication. Using scopes to map the
permissions, and defining them in your API, can create a robust platform that better protects
and informs you as an API provider.

Benefits of this approach also include:

• Overall API security is improved with abstraction;

• API identity control now maps your access tiers, enabling easy enforcement for
freemium business models;

• This pattern is simple to grasp and implement;

• Constructing scopes into API design rather than third party authentication means
freedom of any authentication method without bothering the APIs with all the details;

• Can help in separating private, public, partner APIs — complementing platform strategy
and adding business potential;

• Could be used to inform usage analytics;

• As marketing departments have high demand on smooth customer journeys, this
provides a quicker time to market when it comes to authentication.

But perhaps the most critical point is that one and only one pattern is needed for microservices
design. This increases the ability to not only build APIs, but easily share identity knowledge
across an organization, increasing the service maintainability over time. Authentication is a
moving target, whereas APIs may not be.

28 Claims Based Authorization Using OAuth

Claims Based Authorization Using OAuth
In the previous article we discussed how to use OAuth Scopes to perform coarse-grained
authorization. This helps with the separation of access for different applications. The next
step is to continue and map the exact access that the user needs. Given the example with an
Invoice API, it’s obvious that the coarse-grained scope tells us weather or not the application
is allowed to perform the listing of invoices, but what the API really needs to know is which
invoices the application may list.

This is data tied to the user which can be communicated using claims in the OAuth Access
Token.

Attributes vs. Claims
To understand what claims are, we need to start with attributes. Attributes are properties of
a user, such as username, name, age, shoesize etc. They can also be attributes about the
session, such as when the user logged in, from what location etc.

For that reason, we typically split attributes in two categories: Subject Attributes and Context
Attributes.

Subject Attributes are true about the user no matter how the user logged in. Depending on
authentication method and orchestration during login, you may receive different Subject
Attributes. I.e. if a user logs in using Google, Google will provide certain attributes, and when
they login using Active Directory other attributes may be present. It’s up to the authentication
service to normalize these attributes and make sure the relevant Subject Attributes are
always present.

Context Attributes on the other hand tell us something about the circumstances under which
the Subject Attributes were established. The time of authentication, the location, what
authentication method was used etc. These are relevant when issuing OAuth tokens, because
certain properties of a token may be considered more sensitive and should perhaps only be
present if we’re fairly confident the user is close to the computer. So, if the authentication
time is further back in time than say 30 minutes, we can drop properties in the token to
weaken its strength.

Now that we understand attributes, we need to look at claims. Attributes are only interesting
if we trust the party that issued them or put in other word: if we trust the party that claim
them to be true.

A claim has the following form: Jacob has a Horse, says Travis:

Jacob – is the subject
“has a horse” – is the claim / attribute
Travis – is the asserting party.
If we trust Travis, then we can trust the claim about the horse.
More formally: Subject + Attribute + Issuer = Claim

29Claims Based Authorization Using OAuth

Claims
Claims are a first-class citizen in OpenID Connect and are easily transferrable to OAuth. The
most common place where you encounter these are in the ID Token which is a Json Web
Token (JWT) but they can be generalized to tokens of any purpose and format:

{

 sub: janedoe@example.com

 name: Jane Doe

 iat: 1546300800

 exp: 1893456000

 iss: https://login.curity.io

 subscriber_id: ABC_123

 phone_number: +46 123 123 123

}

This JWT contains the following claims: “name”, “iat”, “exp”, “subscriber_id”, “phone_number”.

It also has a subject “sub” and an issuer “iss”. The JWT is normally signed by a key that
matches what the issuer has documented or published out of band. A receiver of this token
can verify that the “iss” field is a host it trusts and use a key provided by that host to verify
that the token has indeed been issued by that party. Once that is done, we can rely on the
claims in the token and act on the information.

OpenID Connect describes standard claims for ID Tokens, but the claims infrastructure is not
limited to only those tokens. Access Tokens can use the same structure, even when using
other formats than Json Web Tokens.

This makes claims very powerful when designing systems in need of finer grained
authorization.

Scopes Revisited
In the previous article we discussed the scope’s role in authorizing access for the client. But
scopes play a deeper role in a claims-based system. Without claims, a scope is just a space
separated list of strings with Scope Tokens or Scope Names.

Example: scope = “invoice_read invoice_write openid email”

It’s good to think of the scope parameter as Scope of Access. I.e. this lists the things the client
needs to access.

We give each of these meaning in coarse grained authorization, to see if the client should be
allowed to query the API. But as discussed in the scope article, even if a scope of
invoice_read is present in the token, we don’t know which invoice it should be allowed to read.

mailto:janedoe@example.com
https://login.curity.io/

30 Claims Based Authorization Using OAuth

Group of claims

OpenID Connect defines the scope as a group of claims. So, the “email” scope token is
mapped to the “email” and “email_verfied” claim. The claims have values associated to then
while the scope token is just a name. This means that a scope is simply a bag of claims.
Requesting a scope will result in zero or more claims to be issued and present in the tokens.

PROFILE

Scope Claim names Claim Values

name

family_name

given_name

middle_name

nickname

prefered_username

profile

picture

website

gender

birthday

zone_info

locale

updated_at

Mr. John Q. Doe

Doe

John

Quincy

John boy

J. Quincy Doe

https://example.com/~doe

https://example.com/~jdoe/me.jpg

https://jdoe.example.com

male

1988-01-01

Europe/Stockholm

en-US

1553270968

Each OpenID claim is associated with a scope as shown in the image below.

EMAIL

email

email_verified

name

family_name

given_name

middle_name

nickname

prefered_username

profile

picture

website

gender

birthday

zone_info

locale

updated_at

PROFILE

phone_number

phone_number_verified

PHONE

This can be generalized to arbitrary scopes and claims. When it comes to API access this
becomes very useful.

31Claims Based Authorization Using OAuth

Consider the example of an invoice API. Let’s assume we have the following scopes:

invoice_list

invoice_read

invoice_write

As already discussed, it’s not enough to authorize the particular request based on only
this information. The API needs to know which invoices that it’s allowed to list. Listing the
actual invoice IDs in the token is not very efficient, but let’s assume we have a claim which is
account_id. It’s the financial account that is associated with the user.

We can now map this to the scopes:

SCOPE CLAIM ASSOCIATED WITH SCOPE

invoice_list account_id, role=customer

invoice_read account_id, role=customer

invoice_write account_id=”*”, role=finance

If any of these scopes are requested, the resulting token will contain the claims needed with
an associated value for that user. Now the API can easily know if the requested operation
should be authorized or not.

What we have done now is create a contract. The API knows that if the role=customer
it needs to check the account_id claim to see for which account the invoices should be
provided and if the role=finance, it allows writes.

This mitigates many risks. The API no longer needs to rely on data provided from unreliable
sources, but can safely operate on the account, and scope information when performing the
task. It makes it virtually impossible for a third party to inject a different account_id in the
request and the API doesn’t have to look up additional data about the user.

The example should be considered illustrative but shows the essence of how to use claims.

Describing Login Information
It’s not only the API that will benefit from claims being present in the token. When using
OpenID Connect, the client (application) might also be interested in knowing details about
the user. In many cases it’s interested in knowing details about the context in which the user
authenticated.

As mentioned previously, the Context Attributes provide this information. Using the OpenID
Connect ID Token, the client can determine not only who logged in, but also when and how.
These are part of the standard claims that are associated with the openid scope implicitly.

32 Claims Based Authorization Using OAuth

• sub: who logged in

• auth_time: when the login occurred

• acr: Short for Authentication Context Class Reference, this stipulates how the login
happened.

It’s not unusual for applications to require knowledge if the authentication was fresh or if it
occurred with SSO, i.e. the user didn’t interact. This can be critical when deciding if sensitive
data should be displayed or not.

Knowing how the user logged in can also be important, since it can help in decisions around
what actions a user may be allowed to take. A user that logged in with a strong authentication
could be allowed to change its account details, while a user that didn’t may perhaps only view
the same data.

Conclusion
Claims are the contents of a token. They are asserted by the issuer, which in this case is the
OAuth or OpenID Connect server. They provide a powerful mechanism to help both the API
and the Client make qualified authorization decisions.

Claims are based out of the OpenID Connect standard and provide a mechanism to help the
API being more fine-grained in the authorization of the requests.

33Securing APIs in a Cloud Native Environment

Securing APIs in a Cloud Native Environment
Computer systems built today have very little in common with what we built only a few years
ago. Systems have evolved from classic client-server solutions, into distributed systems
that span over many data centers and geolocations. DevOps teams are now able to build
applications that scale up and down effortlessly, and even build serverless applications that
can spin up a server just to serve a single request. It’s pretty impressive.

However, one requirement has stayed the same over the years. The system still needs to
know who the caller is, or at least know a little something about the caller. Only when the
caller is known can the data be released. Identity is a prerequisite to authorization.

So how do we fulfill this requirement in ever changing environments? One way is to adhere
to the standards that are available. Following standards ensures interoperability, and well-
written standards help with scalability. But which ones to choose? There are hundreds of
standards that could apply to the subject. For identity alone there are ~50 different ones that
could be relevant depending on the use case.

The Power of Identity Standards OAuth and OpenID
Connect
There have been several standard attempts trying to solve these kinds of things, and there will
likely be many more in the future. Protocols such as SAML, WS-* and the likes of them have
been around for many years and are still quite heavily deployed. They do solve a lot of the use
cases, but with the current need for REST-ful access control and identity management, they
are quite hard to use. Simply because they’re not designed for that. Instead two others have
taken over the stage:

OAuth2 and OpenID Connect. This should not come as a surprise to anyone, they have been
around a while now and have become de facto standards for digital identity and delegated
access. Together, these two make up the core of a secure API platform.

https://tools.ietf.org/html/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html

34 Securing APIs in a Cloud Native Environment

A lot of people have glanced at the core OAuth 2.0 spec, and thought to themselves; “I
can implement this”. And that’s probably true, but there is a lot more to it than the core
specifications. OAuth and OpenID Connect is a whole family of specifications, and if we
printed them all we would have close to a bookshelf full of specifications to read. Because of
this, I never recommend implementing the server part by yourself. All those nuances should
be left to be implemented by experts.

So, if I install an OAuth/OpenID server, am I done? No, but you’re well on your way. There are
still some measures to be made, and I’ll give you a few tips on how to avoid some of the
pitfalls when deploying largely scaled platforms.

Phantom Token - the Base of a Secure API Platform

{

 ”sub”: ”dlindau”,

 ”name”: ”Daniel Lindau”,

 ”exp”: 1516239022,

 ”iat”: 1516236022,

}

9f3f5786-d9e8-45fd-bbdd-08713188b804

The Phantom Token flow is something that we architectured to fulfill the need of hiding
data from clients, and at the same time share all the data the APIs need for making
their authorization decision. Although it’s not a standard in itself, it ties together several
standards in a nice and comprehensible way. It’s a pattern that we have deployed at all of our
customers, with very good results.

The idea is that you allow your OAuth server to issue an opaque access token, a token that is
merely a reference to the token data. The opaque token is represented by a random string, so
there is no way for a potential attacker to extract any data from it. This also means that the
client receiving the token isn’t able to read any data from it. This is because the token is not
really for the client, it’s for the API. When the client uses the token to call an API, the API will
have to de-reference the data by using the introspection capability of the OAuth server. This
will not scale very well, since all APIs would have to do the same thing for every incoming
request and would more or less force the APIs to create their own cache. So instead, we
introduce the API gateway.

With the API gateway in place, we can allow it to perform the introspection for the API. This
means several things. First, it allows us to move the cache to the API gateway which will
give us control over it. Second, we can have the OAuth server respond with more than just
the document that explains if the token is valid or not. It can also respond with the access
token in the form of a JSON Web Token (JWT). The JWT is a JSON representation of the

35Securing APIs in a Cloud Native Environment

token, signed with the private key of the OAuth server. This JWT is then what’s passed on with
the request to the API. The API can then validate the signature of the token using the public
key of the OAuth server and base its authorization decision on the data from the token. This
makes for a very scalable platform, since all APIs can make their own authorization decision
without asking anyone else. And all we need to distribute to them is the public key.

But now consider this, in a distributed environment, where there are multiple instances of the
API gateway. If you’re unlucky, the API requests might hit new gateways each time, so the
benefits of caching would be lost. To mitigate against this, the OAuth server could be allowed
to warm up the cache for the gateway instances. Depending on the gateway, that could
mean to push the reference/value token pair to the gateway. Or in other cases, push to some
common cache.

Token Validation
When using the Phantom Token flow, the API is able to validate the tokens using the public
key of the OAuth server. To obtain the key, it can use the metadata of the server. The
metadata and where it’s obtained is described in RFC8414 or/and OpenID Connect Discovery
depending on the server. So if your OAuth server supports one of these, it means we can get
the public keys using http requests. The keys are represented in a JWKS, and look something
like this.

{

 “keys”: [{

 “kty”: “RSA”,

 “kid”: “1555934847”,

 “use”: “sig”,

 “alg”: “RS256”,

 “n”: “rCwwj0H1f2Gl3W6...8QlB9R9M_DxcKRQ”,

 “e”: “AQAB”

 }]

}

This document contains one key with id 1555934847. It could contain a full list of keys.

https://tools.ietf.org/html/rfc8414
https://openid.net/specs/openid-connect-discovery-1_0.html
https://tools.ietf.org/html/rfc7517

36 Securing APIs in a Cloud Native Environment

Let’s have a look at a token, and see how to validate it.

eyJraWQiOiIxNTU1OTM0ODQ3IiwieDV0IjoiOWdCOW9zRldSRHRSMkhtNGNmVnJnWTBGcmZ-

RIiwiYWxnIjoiUlMyNTYifQ.eyJhdF9oYXNoIjoiV3RDYWN6N3hrNHBHZDE0Y29PeTM3dy-

IsImRlbGVnYXRpb25faWQiOiJiNWZmYjMyZC0zNDdiLTQyYWQtODQzMS03MGEzM2I0N2U-

wMjIiLCJhY3IiOiJ1cm46c2U6Y3VyaXR5OmF1dGhlbnRpY2F0aW9uOmh0bWwtZm9ybT-

podG1sLXByaW1hcnkiLCJzX2hhc2giOiJraUdtTUN0YmNmUy1rZ2FUSTZXLWNRIiwidXB-

kYXRlZF9hdCI6MTU0MDE5NzU2NSwiYXpwIjoidG9vbHMiLCJhdXRoX3RpbWUiOjE1NT-

c3ODMxMjMsInByZWZlcnJlZF91c2VybmFtZSI6ImphY29iIiwiZ2l2ZW5fbmFtZSI6Ik-

phY29iIiwiZmFtaWx5X25hbWUiOiJJZGVza29nIiwiZXhwIjoxNTU3Nzg2NzMzLCJuYmY-

iOjE1NTc3ODMxMzMsImp0aSI6IjExOGYyMDJkLTcyZjctNGI5Zi05MTk0LTU5MDZiYzA-

wNjQwMiIsImlzcyI6Imh0dHBzOi8vbm9yZGljYXBpcy5jdXJpdHkuaW8vfiIsImF1ZCI-

6InRvb2xzIiwic3ViIjoiamFjb2IiLCJpYXQiOjE1NTc3ODMxMzMsInB1cnBvc2UiOiJpZCJ9.

DnY8tSaT2VoDfVUazp28JnKPnl1o0bOaCZRRx6nR31vebG8xkTQLGGD56piiwp6HroehRECtniOx-

OMuPi91w7NBqVky3jbxDNYRyfmbTMxz6TRk2k1M-Tc2d1UrQposSf-GNeMxchVB47pzArUAcnACM-

58vB83RpCzdsbv3VxdLcP9Bp8hGSU3bGKSLDJIEYlWYV9au2qYrwLA2Avzj-ZCv4qK6WxIlcbQdfHk-

w3hsF_JULTxxvMHFwE6EAzxEXu5DRiNVJqn57P_jc4wW5SLkxS0fhBXFG2LZ2tnSGaoNc3JZ5g6L-

nJ-7IXvg14NWtzLM6yPMv5Dw_KxC5bBIFjFw

This is a JWT. It has a header in pink, body in grey, and the signature in green. The header and
body are encoded JSON documents, and the signature is encoded binary data. The parts are
separated with a period (‘.’) character. If we decode the header, it looks like this

{
 “kid»: “1555934847”,
 “alg”: “RS256”
}

The “kid” (key ID), points to the key in the JWKS that was used to sign this JWT, and the “alg”
(algorithm) describes how it was signed. So to validate the JWT, the API can use the key
from the JWKS and validate that the signature is correct. If the validation passes, the data
of the body can be trusted, and the API can base its authorization decision on it. Mission
accomplished!

That means to validate an incoming token, the API must do the following:

• Get server metadata

• Cache keys locally

• Validate the signature

Important to note here is that if a token comes to the API with a “kid” that is not recognized, it
can mean two things. Either the server rolled its keys, or the token comes from an untrusted
source. To be sure, the API must first update its keys, and if the kid still isn’t found it means
that the source is untrusted. This way, the server can roll its keys at any time without getting
dropped requests by the API.

This works really well in all environments that can keep a state, like traditional web servers,
Docker containers, Kubernetes and so on. But for other things like lambda functions we need
something else.

37Securing APIs in a Cloud Native Environment

Browser Model
For stateless functions, performing token validation the mentioned way gives a lot of
overhead. The function would need to collect the metadata and keys for each request, so
we obviously need something else. For these types we can use the same model that the
browsers use to validate that websites are trusted while using https. Allow the OAuth Server
to create a Certificate Authority (CA) that can issue sub-certificates to use to sign the tokens.
The CA is then distributed with the functions, by compiling in or using some other means of
the current platform.

The OAuth server can now issue JWTs with slight difference from before

{

 “x5c»: “MIICojCCAYoC…xMjExMjJaFw0yNDAxMjcxM”,

 “alg”: “RS256”

}

Instead of the “kid” we had from before, we have a “x5c”. x5c contains the full certificate
that corresponds to the key used to sign the JWT. So to validate the token, the API needs to
extract the certificate, validate that it’s issued by the CA and validate the signature using the
public key of the certificate.

So we have enabled lambda functions to validate JWTs, without the http overhead. And the
server can still roll keys by getting a new signing certificate.

Final Thoughts
By following these patterns in your platform, you allow all the components in the platform
to be distributed or to dynamically scale. But maybe even more important, it allows you to
enforce your access policies in both APIs and gateways. The policy enforcement can be
made without calling out to a third party, since all the data needed is provided in the request.

What enables us to create these patterns is the use of standards. We separate the concern of
every component in the platform, and by tying them together with the use of open standards
we’re not only allowing them to scale separately, but we also allow them to be replaceable.
Since the glue of the components are standard protocols, it makes it easier to replace
components. All of this will make you able to build a truly scalable platform.

38 Standardized User Management with SCIM

Standardized User Management with SCIM
Owner, the assistant is the client, and the banker is the API.

Building OpenID Connect Atop OAuth
As I mentioned above, OpenID Connect builds on OAuth. Using everything we just talked about, OpenID
Connect constrains the protocol, turning many of the specification’s SHOULDs to MUSTs. This profile also
adds new endpoints, flows, kinds of tokens, scopes, and more. OpenID Connect (which is often abbreviated
OIDC) was made with mobile in mind. For the new kind of tokens that it defines, the spec says that they
must be JWTs, which were also designed for low-bandwidth scenarios. By building on OAuth, you will gain
both delegated access and federation capabilities with (typically) one product. This means less moving
parts and reduced complexity.

OpenID Connect is a modern federation specification. It’s a passive profile, meaning it’s bound to a passive

What is SCIM?
SCIM stands for “System for Cross-domain Identity Management” and is firstly a
standardized way of representing users, groups, and anything related. Secondly, SCIM
helps to standardize methods for acting on this data, such as creating, querying, searching,
updating, and deleting. In other words, it’s an API model.

These two parts of SCIM are split into two standards: a Core Schema (RFC7643) controlling
how the data is modelled, and a Protocol for interacting with the data (RFC7644).

But Why Do Standards, Such as SCIM, Matter?
The image to the right is from the blockbuster movie Jurassic Park (1993). You’re probably
wondering how this is relevant. Well, in this movie the characters are chased by velociraptors
into a room, but they unfortunately can’t lock the doors as they are controlled by a computer
system. Everyone panics, until this girl discovers that the computer system controlling the
doors is a UNIX system, which is a standard she is familiar with. Thanks to this standard she
managed to lock the doors and survive – and that’s why standards are so important! Code
shouldn’t just work well, it should also be easy to maintain, add to and debug. Using open
standards makes code understandable to all developers.

39Standardized User Management with SCIM

The User Info Endpoint and OpenID Connect Scopes
Another important innovation of OpenID Connect is what’s called the “User Info Endpoint.” It’s kind of a
mouthful, but it’s an extremely useful addition. The spec defines a few specific scopes that the client can
pass to the OpenID Connect Provider or OP (which is another name for an AS that supports OIDC):

 • openid (required)
 • profile
 • email
 • address
 • phone

You can also (and usually will) define others. The first is required and switches the OAuth server into OpenID
Connect mode. The others are used to inform the user about what type of data the OP will release to the
client. If the user authorizes the client to access these scopes, the OpenID Connect provider will release the

Standards can still be frightening, complex, over engineered, and/or boring. With SCIM,
however, all data is represented as JSON and the protocol is built on REST. Also, you’re
probably already handling users so there is a pretty good chance that you are familiar with
some aspects of SCIM. By the end of this article, you’ll hopefully be able to look at SCIM and
similarly say “I know this.”

How to Implement SCIM
SCIM is not meant to replace your existing systems for user management, but rather to act
as a standard interface on top of them. These could be anything from SQL databases, LDAP,
NoSQL data stores, SOAP, or REST APIs. SCIM has very few requirements as to what needs to
be implemented. Therefore, it’s recommended to implement the base features and those that
make sense for your company and scale up as the need arises.

A huge plus of using a standard interface is that there is no need to document each system
separately; if you have a unified way for user management, the documentation is in the
specification itself. It’s important to note that the SCIM specification focuses on what is
needed for user management, not security. Therefore, things like how to secure access to a
system and the permissions to access a system are left to other standards like OAuth.

40 Standardized User Management with SCIM

Schema – Also Known as “The Data”
Resource. In SCIM, everything extends from the resource type, and share a set of common
attributes. You’re probably already familiar with these sets of attributes, since they are
common in pretty much all identity management systems. All SCIM types are identified by the
schema in the payload, like the User schema below:

• id: Globally unique identifier

• externalId: Identifies the source of the data. This could be an ID from your database
or a Twitter handle – wherever you got the user or resource from originally

• meta: Common metadata, such as a timestamp for when the resource was created
and lastModified, as well as where you can find it, or the location (URL) of the given
resource.

Here is an example resource as represented in JSON:

Another benefit of SCIM is that you are free to extend these fields with your own schemas or
resource types.

Users – as Found in the /Users Endpoint
Central in all identity management systems is the concept of users, and SCIM is naturally
no exception. The core schema defines a set of attributes that should be common for most
users, as well as some that may not be as common.

So what is a user?

Within almost all systems handling users, we find some common attributes. Amongst these
are:

• Username

• Names (first name, last name, etc.)

• Contact (phone numbers, email addresses)

• Groups

• Locales (time zone, location, etc.)

• Password (never visible in payload, i.e. a “write only” attribute)

Passwords are a bit special in SCIM. It’s an attribute handled in the standard, but you
can never view a password when you request a user resource. You can still query and do
authentication through SCIM, but you can’t get a list of passwords, or a password to a
specific user.

Less common attributes are things like social media or instant messaging handles. For
example, the specification even mentions ICQ!

41Standardized User Management with SCIM

Group – as Found in the /Groups Endpoint
Groups aren’t really needed for user management, but it’s pretty common so we’ll include it in
this article. Groups in SCIM are not much more than a name and a list of members.

SCIM Protocol – Working with Resources
These parts of the SCIM Protocol should be pretty familiar too, since it’s all based on REST:

• GET: Fetches an existing resource, either by ID or by search

• POST: Sending a Post request to the user’s endpoint creates a new resource

• PUT: Replace an existing resource

• PATCH: Updates attributes on an existing resource

• DELETE: Deletes a resource

Endpoints and Search
Each resource type is represented under an endpoint named after the resource type: users
under /Users, groups under /Groups, and so on.

A regular GET request to one of those endpoints lists all resources for that resource type, but
naturally you want to have some limitations on entries, pagination, and the current position.
Browsing is as simple as passing in the “pagination” parameters (and optionally, sorting) in
the request. It’s also possible to show (include/exclude) specific attributes of interest.

1 {

2 “totalResults”: 100,

3 “itemsPerPage”: 10,

4 “startIndex”: 1,

5 “schemas”: [“urn:ietf:params:scim:api:messages:2.0:ListResponse”], “Resource”:

[{

6 …

7 }]

8 }

When using GET to retrieve information it’s often not ideal to show passwords or personal
IDs in the URL. While GET requests are RESTful, it exposes parameters in the URL. Adding
/.search to the URL makes it possible to search by POST as well, which is ideal for
sensitive data like credentials or other personal information.

42 Standardized User Management with SCIM

Filtered Search, Querying Resources
One of the most powerful features of SCIM, and one of the most complex, is the ability to
send filtered queries. For example, you can say /Users?filter=username eq “teddy”, or
in English: show me all users filtered by the username equal to Teddy.

Example GET requests to /Users/.search:

/Users?filter=userName eq “teddy”

/Users?filter=emails.value ew “curity.io” and meta.lastModified lt

“2017-01-01T00:00:00Z”

/Users?filter=name.familyName co “O’Malley”

/Users?filter=title pr

/Users?filter=filter=emails[type eq “work” and value co “@example.com”]

/Groups?filter=displayName eq “Curity” or displayName eq “Twobo”

/?filter=(meta.resourceType eq User) or (meta.resourceType eq Group)

Example POST request:

{

“schemas”: [“urn:ietf:params:scim:api:messages:2.0:SearchRequest”], “filter”:

“userName

eq \”teddy\” and password eq \”F&1!b90t111!\””

}

/ServiceProviderConfig
A sort of meta thing of SCIM is that it also defines what you as a service provider support.
You can choose yourself what you want to support. The /ServiceProviderConfig endpoint is a
way to advertise which features are supported by the service provider.

While features like this certainly add additional functionality within niche contexts, not all
SCIM features make sense for all implementations. For example, advertising specific service
provider features is a great resource for anyone interacting with your SCIM API.

43Standardized User Management with SCIM

This protocol suite gives us all the capabilities we need to build a secure API platform. The base of this,
OAuth and OpenID Connect, is what we want to go into in this blog post.

Overview of OAuth
OAuth is a sort of “protocol of protocols” or “meta protocol,” meaning that it provides a useful starting point
for other protocols (e.g., OpenID Connect, NAPS, and UMA). This is similar to the way WS-Trust was used as
the basis for WS-Federation, WS-SecureConversation, etc., if you have that frame of reference.

Beginning with OAuth is important because it solves a number of important needs that most API providers
have, including:

 • Delegated access
 • Reduction of password sharing between users and third-parties (the so called “password
 anti-pattern”)
 • Revocation of access

When the password anti-pattern is followed and users share their credentials with a third-party app, the only
way to revoke access to that app is for the user to change their password. Consequently, all other delegated

“I Know This”
Hopefully, you’ve found this article valuable and see that SCIM isn’t all that scary — at least
not as scary as being chased by dinosaurs. In the future, the image above likely illustrates
what you’ll say the next time you come across a SCIM system.

This article was originally published on nordicapis.com

More on API Security
If you want more resources and information regarding identity management, OAuth, OpenID
Connect and authentication, then please visit curity.io/resources. You can also sign up
quarterly newsletter to get updates on new articles, whitepapers, webinars and more.

About Curity

OAuth and OpenID Connect done better

Curity is the leading supplier of API-driven identity management, providing unified security for
digital services.

Curity Identity Server is the world’s most powerful OAuth and OpenID Connect Server; it’s
used for logging in and securing millions of users’ access to web and mobile apps over
APIs and microservices. Curity Identity Server is built upon open standards and designed for
development and operations. We enjoy the trust of large organizations in financial services,
telecom, retail, energy and government services with operations across many countries which
have chosen Curity for their enterprise-grade API security needs.

To learn more, visit curity.io or contact us at info@curity.io or +46 8-410 737 70.

mailto:info@curity.io

	The API Security Maturity Model
	API Security: Deep Dive into OAuth and OpenID Connect
	Using OAuth Within Microservices
	Coarse Grained Authorization Using Scopes
	Claims Based Authorization Using OAuth
	Securing APIs in a Cloud Native Environment
	Standardized User Management with SCIM
	More on API Security

