ASX ANNOUNCEMENT

NICKEL-COPPER-COBALT ANOMALIES NORTH-EAST SOIL SAMPLE PROGRAM

Directors

Non-Executive Chairman Mark Chadwick

Managing Director Shane Volk

Technical Director Tim Hronsky

Company Secretary Shane Volk

Issued Capital (ASX: DUN and DUNO)

Ordinary Shares:	60,180,216
ASX Quoted:	36,613,652
Escrow:	23,566,564
Listed Options:	30,090,138
Unlisted Options:	14,000,000

Highlights

- Anomalous nickel-copper-cobalt results from North-East prospect area soil sampling program
- o Coincidental with gravity and magnetic features
- o Additional exploration warranted

Dundas Minerals Limited (ASX: DUN) ("Dundas Minerals" or "the Company") is actively exploring for nickel, copper and gold in the prospective Albany-Fraser Orogen, Western Australia.

Anomalous nickel-copper-cobalt trend

Analysis of recently received assay results from the Company's North-East Prospect Area surface soil sampling program has identified two areas of anomalous nickel-copper-cobalt values in the northwest section of the sample program grid (Figure 1).

The soil sampling program was undertaken by Dundas Minerals during December 2021 and January 2022 (refer ASX announcement of 22 December 2021). 278 samples were collected from the B-C horizon of the soil profile (sieve 60mesh: 250um / 0.25mm), on a 250m x 250m spaced grid. Samples were assayed by Intertek Genalysis in Perth, Western Australia.

Encouragingly, two roughly parallel and anomalous Ni-Cu-Co values trends have emerged from analysis of program assay results. The trends are coincidental to subtle ground gravity and airborne magnetic features (Figure 2 and Figure 3).

The absolute parts per million (ppm) values of Ni, Cu and Co returned from the soil sample assays are moderate (Appendix A). However, the 95th percentile values (Figure 4 & Table 1) for these elements each predominantly cluster in the area of gravity and magnetic geophysical survey features, and this supports the conduct of further exploration work in the area.

As the anomalous zones are in the northwest corner of the soil sample grid, a follow-up soil sample program to extend the grid in all directions to test for additional anomalism is envisaged. Also, a tightening of the sample grid to 50m x 50m or 75m x 75m, would provide improved delineation of anomalous areas.

in https://www.linkedin.com/company/dundas-minerals

https://twitter.com/DundasMinerals

https://www.facebook.com/Dundas-Minerals-100594365764204

Suite 13, 100 Railway Road Subiaco, WA 6008

admin@dundasminerals.com www.dundasminerals.com Commenting on the soil sample anomalies, Dundas Minerals managing director Shane Volk said *"although it is early days for our North-East prospect exploration activities, the results from this first-ever soil sampling program across the area are indeed encouraging.*

As we have previously reported, outcrops of mafic / ultramafic pyroxenite rocks of have been observed at various locations in the North-East prospect area, which is encouraging for nickel and copper mineralisation. In addition to soil sampling, we continue to work at finalising plans and obtain approvals for the commencement of maiden drilling programs for the both the Central exploration target and the Matilda South prospect. The Central target is also located in the North-East Prospect Area, approximately 6km to the southwest of these zones of soil sample anomalism."

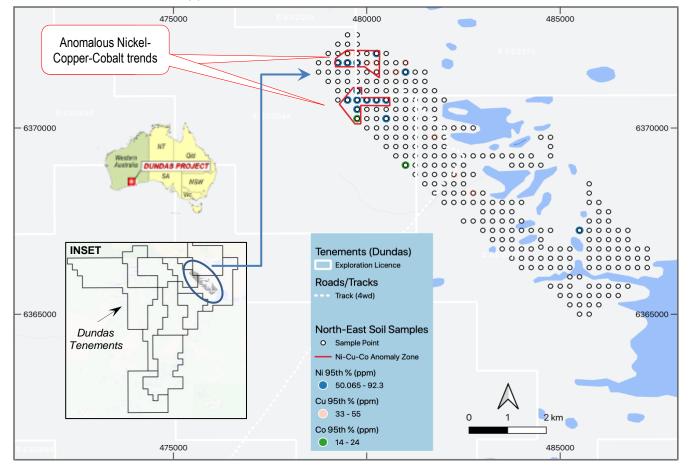


Figure 1: Location of North-East prospect area soil sampling program. The zones of nickel-copper-cobalt anomalism are outlined in red.

in https://www.linkedin.com/company/dundas-minerals

https://twitter.com/DundasMinerals

https://www.facebook.com/Dundas-Minerals-100594365764204

Suite 13, 100 Railway Road Subiaco, WA 6008

admin@dundasminerals.com www.dundasminerals.com

Figure 2: Zones of nickel-copper-cobalt anomalism (outlined in red) relative to aerial magnetic survey image (TMI)

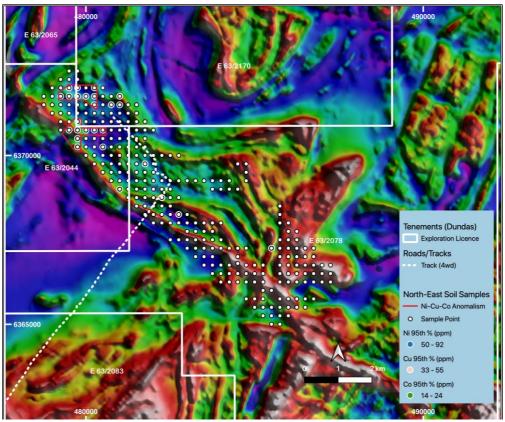
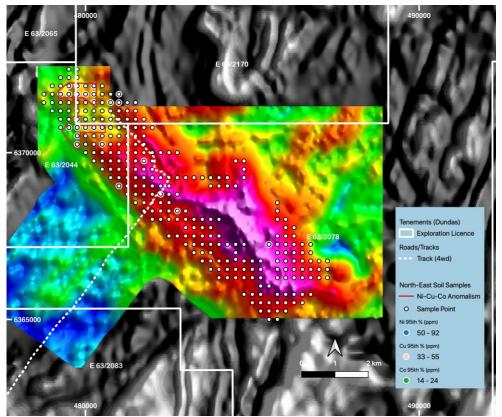
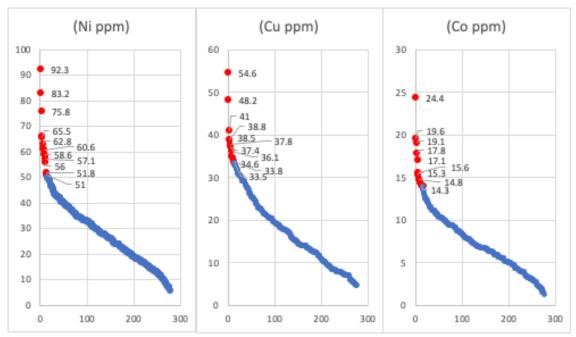



Figure 3: Zones of nickel-copper-cobalt anomalism (outlined in red) relative to detailed gravity survey image (background magnetic image)

in https://www.linkedin.com/company/dundas-minerals


https://twitter.com/DundasMinerals

.

https://www.facebook.com/Dundas-Minerals-100594365764204

Suite 13, 100 Railway Road Subiaco, WA 6008

admin@dundasminerals.com www.dundasminerals.com Figure 4: Plots of Ni, Cu and Co assay results for all North-East prospect area soil samples (Y axis: ppm (4 acid digest); X axis: sample count). 95th percentile values – red dots.

Table 1: North-East soil samples: 95% percentile assay values (ppm), by sample number for nickel, copper and cobalt

Sample ID	Ni (ppm)	Sample ID	Cu(ppm)	Sample ID	Co(ppm)
DUNS0140	92.3	DUNS0043	54.6	DUNS0220	24.4
DUNS0139	83.2	DUNS0127	48.2	DUNS0139	19.6
DUNS0141	75.8	DUNS0119	41.0	DUNS0129	19.1
DUNS0110	65.9	DUNS0115	38.8	DUNS0043	17.8
DUNS0129	65.5	DUNS0162	38.5	DUNS0140	17.1
DUNS0220	62.8	DUNS0122	37.8	DUNS0147	15.6
DUNS0120	61.0	DUNS0118	37.4	DUNS0143	15.3
DUNS0134	60.6	DUNS0017	36.1	DUNS0138	14.9
DUNS0142	58.9	DUNS0129	35.0	DUNS0134	14.8
DUNS0121	58.6	DUNS0085	34.7	DUNS0072	14.7
DUNS0143	57.1	DUNS0083	34.6	DUNS0141	14.5
DUNS0138	56.0	DUNS0083	34.6	DUNS0082	14.4
DUNS0082	51.8	DUNS0121	33.8	DUNS0110	14.3
DUNS0151	51.0	DUNS0141	33.5		

Authorised by: Shane Volk (Managing Director and Company Secretary)

https://www.linkedin.com/company/dundas-minerals

https://twitter.com/DundasMinerals

f

https://www.facebook.com/Dundas-Minerals-100594365764204

Suite 13, 100 Railway Road Subiaco, WA 6008

admin@dundasminerals.com www.dundasminerals.com

About Dundas:	Dundas Minerals Limited (ASX: DUN) is a battery-minerals and gold focussed exploration company exploring in the highly prospective southern Albany-Fraser Orogen, Western Australia. Dundas Minerals holds 12 contiguous exploration licences (either granted or under application) covering an area of 1,201km ² . All licences are 100% owned by Dundas and are located within unallocated Crown Land. The Albany-Fraser Orogen hosts the world-class Tropicana gold mine (AngloGold Ashanti ASX: AGG / Regis Resources ASX: RRL) and the Nova nickel mine (Independence Group ASX: IGO). The Dundas tenements are located ~120km south west of Nova, have not been subject to modern exploration and are deemed prospective for battery materials (nickel, copper and rare earths), and gold. Dundas Minerals listed on the ASX on 10 November 2021.
Capital Structure:	Ordinary shares on issue (DUN): 60,180,216; ASX Listed Options (DUNO): 30,090,138 (Ex: \$0.30, Exp 25-02-2024) Unlisted Options: 3,000,000 (Exp. 2-11-24 Ex. \$0.30); 4,000,000 (Exp. 1-7-24 Ex. \$0.25 & \$0.30); 5,000,000 (Exp. 1-7-26 Ex. \$0.25 & \$0.30); 2,000,000 (Exp. 10-11-26 Ex. \$0.25 & \$0.30)

COMPETENT PERSONS STATEMENT

The information in this report relating to Exploration Results is based on information compiled by the Company's Technical Director, Mr Tim Hronsky, a competent person, and Member of the Australian Institute of Mining and Metallurgy (AusIMM). Mr Hronsky has sufficient experience relevant to the style of mineralisation and to the type of activity described to qualify as a competent person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves." Mr Hronsky is a shareholder in the Company and a Director. Mr Hronsky consents to the inclusion in this announcement of the matters based on his information in the form and content in which it appears.

DISCLAIMERS AND FORWARD-LOOKING STATEMENTS

This announcement contains forward looking statements. Forward looking statements are often, but not always, identified by the use of words such as "seek", "target", "anticipate", "forecast", "believe", "plan", "estimate", "expect" and "intend" and statements that an event or result "may", "will", "should", "could" or "might" occur or be achieved and other similar expressions.

The forward-looking statements in this announcement are based on current expectations, estimates, forecasts and projections about Dundas and the industry in which it operates. They do, however, relate to future matters and are subject to various inherent risks and uncertainties. Actual events or results may differ materially from the events or results expressed or implied by any forward-looking statements. The past performance of Dundas is no guarantee of future performance.

None of Dundas's directors, officers, employees, agents or contractors makes any representation or warranty (either express or implied) as to the accuracy or likelihood of fulfilment of any forward-looking statement, or any events or results expressed or implied in any forward-looking statement, except to the extent required by law. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as at the date of this announcement.

in https://www.linkedin.com/company/dundas-minerals

https://twitter.com/DundasMinerals

https://www.facebook.com/Dundas-Minerals-100594365764204

Suite 13, 100 Railway Road Subiaco, WA 6008

admin@dundasminerals.com www.dundasminerals.com

Appendix 1: Nickel, Copper and Cobalt assay values (ppm) for all North-East prospect area soil samples

Aht	Appendix 1: Nickei, Copper and Cobait assay values (ppm) for all North-East prospect area soil samples														
Sample ID	Nickel (ppm)) Copper (ppm)	Cobalt (ppm)	Sample ID	Nickel (ppm)	Copper (ppm)	Cobalt (ppm)	Sample ID	Nickel (ppm)	Copper (ppm)	Cobalt (ppm)	Sample ID	Nickel (ppm	n) Copper (ppm)Cobalt (ppm)
DUNS0001	10.6	12.6	4	DUNS0071	30.6	28.9	7.7	DUNS0142	58.9	20.8	12.2	DUNS0214	12.1	6.9	3
DUNS0002	30	31.8	9.7	DUNS0072	48.8	25.4	14.7	DUNS0143	57.1	34.6	15.3	DUNS0215	14.6	7.1	3.2
DUNS0003	26.5	19.2	6.7	DUNS0073	34.7	19	9	DUNS0144	33.6	28.9	9.3	DUNS0216	31.9	13.4	6.5
DUNS0004 DUNS0005	20.9 13.9	18.1 14.6	6.9 5.4	DUNS0074 DUNS0075	43.5 31.2	22.6 20.6	12.1 7.2	DUNS0145 DUNS0146	45.7 28	30.2 20.3	11.1 7.7	DUNS0217 DUNS0218	38.7 44	21.2 21.8	8.6 9
DUNS0005	13.9	12.6	5.4 5.4	DUNS0076	30.5	20.0	7.7	DUNS0140	48.5	20.3	15.6	DUNS0219	44.8	21.8	9.6
DUNS0007	16.9	14.2	5.1	DUNS0077	41.9	31.6	11.5	DUNS0148	46.6	20.9	14	DUNS0220	62.8	22.4	24.4
DUNS0008	22.6	30.4	10.6	DUNS0078	33.1	17.3	9.3	DUNS0149	38	21.3	9.8	DUNS0221	32.8	18.7	7.6
DUNS0009	18.1	15.2	6.6	DUNS0079	46.5	26	11.9	DUNS0151	51	24.7	11	DUNS0222	21.9	9.6	4.3
DUNS0010	15.3	13.9	5.4	DUNS0080	35.4	16.2	8.4	DUNS0152	42.1	28.7	10.2	DUNS0223	43.1	22.2	8.7
DUNS0011	18.3	20.3	5.6	DUNS0081	37.4	22.3	9.8	DUNS0153	37.1	13.8	10.3	DUNS0224	34.4	18.1	7.7
DUNS0012 DUNS0013	42.4 32.7	28.1 32.4	10.8 13.5	DUNS0082 DUNS0083	51.8 46	30.6 34.6	14.4 12.4	DUNS0154 DUNS0155	42.7 14.6	20.9 7.6	14 3.8	DUNS0225 DUNS0226	23.3 32.5	12.4 17	4.9 7.8
DUNS0014	38.7	20.3	9.3	DUNS0084	29.8	28.2	8.2	DUNS0156	28.3	21.1	7.7	DUNS0227	31.9	15.5	7.3
DUNS0015	37.5	24.3	12	DUNS0085	39.5	34.7	11.4	DUNS0157	8.6	5.7	2.2	DUNS0228	39.7	24.6	9.3
DUNS0016	26.1	25	8.5	DUNS0086	48.6	26.1	12.6	DUNS0158	26.2	17.1	10.1	DUNS0229	38.8	22.6	9.9
DUNS0017	30	36.1	10.9	DUNS0087	23.7	14.2	6.6	DUNS0159	11.6	6.8	4.1	DUNS0230	7.5	5.6	2
DUNS0018	16	8.1	4.1	DUNS0088	26.6	10.6	6.5	DUNS0160	13.3	7.6	4.2	DUNS0231	20.8	11.6	5.8
DUNS0019	18.2	15.8	5.6	DUNS0089	34.7	25.3	8.6	DUNS0161	12	7.6	4.3	DUNS0232	26.3	17.8	6.5
DUNS0020 DUNS0021	35.8 20.6	33.4 12.1	9.2 5.2	DUNS0090 DUNS0091	40.9 16.5	17 8.8	10.7 3.8	DUNS0162 DUNS0163	34.2 16.6	38.5 17.6	9.3 5	DUNS0233 DUNS0234	49.9 30.6	17.1 13.8	9.5 6.6
DUNS0022	20.0	26.1	8	DUNS0092	36.1	14.1	3.8 8.4	DUNS0164	27.4	15.7	6.4	DUNS0235	27.6	12.7	5.8
DUNS0023	20.3	15.2	6.6	DUNS0093	42	27.9	11.8	DUNS0165	20	15.1	7.1	DUNS0236	29.2	13.9	6.1
DUNS0024	16.8	10.1	4.9	DUNS0094	42.2	20.5	11	DUNS0166	17	14.4	4.8	DUNS0237	40.5	16.4	8.1
DUNS0025	27.9	15.1	6.1	DUNS0095	39	31.2	10	DUNS0167	21.4	14.8	5.4	DUNS0238	17.6	7.7	4.2
DUNS0026	37.1	18.8	8.5	DUNS0096	12.2	7.4	3.6	DUNS0168	18.2	8.6	3.8	DUNS0239	26.6	12.8	6.1
DUNS0027	32.9	17.7	6.9	DUNS0097	43.6	20.3	11	DUNS0169	32.8	12.7	6.6	DUNS0240	15.3	7.6	3.2
DUNS0028 DUNS0029	23.8 19.1	13.1 11.4	6.3 5.9	DUNS0098 DUNS0099	40.5 33.9	19.1 18.9	11.3 10.2	DUNS0170 DUNS0171	14 7.3	8.1 4.4	3.2 1.5	DUNS0241 DUNS0242	7 13.3	4.7 6.9	2 3.3
DUNS0029	19.1	6.8	2.6	DUNS0101	25.4	13.3	6.2	DUNS0171	11.7	4.4 6.6	2.3	DUNS0242 DUNS0243	13.3	7.2	3.3
DUNS0031	20.4	11.3	5.1	DUNS0102	36.3	21.7	9.1	DUNS0173	33.2	19.3	8.5	DUNS0244	9.8	5.3	2.6
DUNS0032	19.7	13.7	5	DUNS0103	34.9	22.2	8.8	DUNS0174	24	12.5	6.8	DUNS0245	39.3	17.6	8.1
DUNS0033	16.1	9.3	3.3	DUNS0104	19.4	9.3	4	DUNS0175	24	13.7	6.7	DUNS0246	28.3	18.1	5.5
DUNS0034	12.6	7.8	2.9	DUNS0105	24.5	12.9	7	DUNS0176	15.1	7.6	3.7	DUNS0247	10.7	12	2.4
DUNS0035	18.3	12.1	4.7	DUNS0106	23.8	10.5	6.1	DUNS0177	23.1	17.5	6.3	DUNS0248	8.7	5.3	1.7
DUNS0036 DUNS0037	18.6 28.8	17.6 17.2	4.8	DUNS0107 DUNS0108	41.4	17.6	9.4 6.3	DUNS0178 DUNS0179	39.2	27.3 19.3	10.4	DUNS0249 DUNS0251	13 5.5	7 5.2	2.8
DUNS0037	28.8	12.1	6.7 5	DUNS0109	23.8 40.3	11.3 23.8	0.3 11	DUNS0179	13.5 20.6	19.3	6.8 5.9	DUNS0251	22.6	11	1.2 4.9
DUNS0039	24.1	15.7	6.7	DUNS0110	65.9	32.2	14.3	DUNS0181	27.3	13.7	7.6	DUNS0253	17.7	8.2	3.9
DUNS0040	16.8	24.9	6.4	DUNS0111	40.3	28.9	12.4	DUNS0182	18	16.5	5.8	DUNS0254	31.7	12.2	6.5
DUNS0041	19.1	14.7	5.1	DUNS0112	36.9	27.2	10.6	DUNS0183	28.9	18.9	6.9	DUNS0255	26.7	14.9	6.6
DUNS0042	16.6	10.4	6.2	DUNS0113	34.2	14.2	10.4	DUNS0184	25.3	13.3	5.9	DUNS0256	9.1	5.6	1.8
DUNS0043	43.2	54.6	17.8	DUNS0114	38.7	30.7	10.3	DUNS0185	30.6	15.2	6.8	DUNS0257	11.3	5.7	2.3
DUNS0044 DUNS0045	22.8 31.7	17.2 23.8	7.8 10.3	DUNS0115 DUNS0116	49.5 33.2	38.8 30.4	11.2 7.7	DUNS0186 DUNS0187	28.4 13.2	15.8 8.2	6.7 3	DUNS0258 DUNS0259	26.3 20.5	14.1 8	5.6 4
DUNS0045	27.7	23.8	8.4	DUNS0117	33.4	30.4	9.8	DUNS0187	11.5	6.2 5.7	2.1	DUNS0259	20.5 8.6	8 4.9	4
DUNS0047	29.6	29	10.1	DUNS0118	49.4	37.4	12.9	DUNS0189	21.5	10.2	4.7	DUNS0261	33.4	13.9	7.4
DUNS0048	34.6	23.4	9.2	DUNS0119	36.3	41	9.3	DUNS0190	15.5	7.7	2.8	DUNS0262	18.8	8.5	4
DUNS0049	34.4	32.5	10.7	DUNS0120	61	32.7	13.9	DUNS0191	21	13.9	5.6	DUNS0263	22.3	9.8	5.3
DUNS0050	36.4	29	9.6	DUNS0121	58.6	33.8	13.2	DUNS0192	10.3	5.1	2.7	DUNS0264	16.3	8.1	3.8
DUNS0051	26	19.4	6.8	DUNS0122	37.7	37.8	8.6	DUNS0193	12.2	6.8	3.1	DUNS0265	15	7.5	3.3
DUNS0052 DUNS0053	27.3 30.6	20.1 18.1	8.1 8.9	DUNS0123 DUNS0124	40.5 24.7	21.2 10	10 7.2	DUNS0194 DUNS0195	16 20.2	7.3 8	2.8 4.2	DUNS0266 DUNS0267	23.8 18.5	10.6 9	5.5 4.2
DUNS0054	26.8	20.1	7.9	DUNS0125	19.8	10.8	4.7	DUNS0196	32.6	13.8	5.9	DUNS0268	22	9.2	4.9
DUNS0055	33.1	27.4	11.1	DUNS0126	27.8	13.4	7.5	DUNS0197	17.2	8.1	3.8	DUNS0269	24.3	9.5	5.5
DUNS0056	24.4	24.4	6.8	DUNS0127	45.3	48.2	14.1	DUNS0198	7.7	4.7	2.1	DUNS0270	34.6	17.8	11.4
DUNS0057	22.7	20.3	6.2	DUNS0128	49.9	27.7	12.7	DUNS0199	25.8	10.2	4.9	DUNS0271	29	12.3	6.8
DUNS0058	29.7	23	7	DUNS0129	65.5	35	19.1	DUNS0201	32.6	17.9	6.3	DUNS0272	16.5	7.8	3.7
DUNS0059	23.7	32.8	6.9	DUNS0130	38.4	23.3	10.4	DUNS0202	23.2	10	4.7	DUNS0273	8	5.3	1.4
DUNS0060 DUNS0061	27.1 17.6	20.6 9.6	7.2 4.9	DUNS0131 DUNS0132	40.5 21.5	14.3 8.9	9.6 5	DUNS0203 DUNS0204	21.5 14.2	11.4 6.8	4.7 2.9	DUNS0274 DUNS0275	26.3 13.3	11.9 7.5	5.7 3.1
DUNS0061 DUNS0062	17.6	9.6 8.2	4.9 3.5	DUNS0132	42.8	8.9 20.7	9.3	DUNS0204	14.2	0.0 7	3.2	DUNS0275 DUNS0276	21.5	9	4.8
DUNS0063	18.5	9.1	4.5	DUNS0134	60.6	26.9	14.8	DUNS0206	29.7	13.8	5.9	DUNS0277	28.1	13.8	7.2
DUNS0064	41	21.4	10.1	DUNS0135	46.8	22.5	11.4	DUNS0207	14.6	7.2	3	DUNS0278	32.3	13.1	7.3
DUNS0065	18.9	12.2	5.6	DUNS0136	38.7	22.5	12.4	DUNS0208	6.8	4.5	1.5	DUNS0279	35.8	17.5	7.8
DUNS0066	35.1	18.9	9.2	DUNS0137	49.5	18.5	14	DUNS0209	10.1	7	1.9	DUNS0280	12.4	7.1	2.6
DUNS0067	28.1	13.3	7.5	DUNS0138	56	25.9	14.9 10.6	DUNS0210	7	6	2	DUNS0281	42.4	19.5	8.7
DUNS0068 DUNS0069	33.9 37.1	16.8 29	9.3 10.1	DUNS0139 DUNS0140	83.2 92.3	29.8 25.4	19.6 17.1	DUNS0211 DUNS0212	34.1 33	18.7 12.5	8.4 6.2	DUNS0282	13.9 na sample nur	7.7 nbers: 0100, 01	2.9 50_0200 and
DUNS0070	37.1	29 30	9.3	DUNS0140	92.3 75.8	33.5	14.5	DUNS0212	16.9	8.2	3.8			, inserted for qu	
201100010	01	50	0.0	201.00141	, 5.0	55.0		201100210		0.2	5.0				,

https://www.linkedin.com/company/dundas-minerals

Suite 13, 100 Railway Road Subiaco, WA 6008

https://twitter.com/DundasMinerals

y

f

admin@dundasminerals.com www.dundasminerals.com

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should 	 A surface soil geochemical survey was conducted on the North-East prospect area. The representivity of the samples was ensured by a uniform selection model for the samples, any abnormalities were noted.
	 not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 These are soil sample results and they are not indicative of the grade and the size of any underlaying mineralisation, but rather provides a pathfinder for concealed mineralisation. The limitations of soil samples with respect to underlaying mineralisation is communicated.
		• All samples were taken as B-C horizon soils, varying from 20-30cm below surface.
		• Samples (n=278) were conducted on a nominal 250m x 250m grid with sample sites established and recoded using a GPS control.
		• Samples were sieved in the field - 60 mesh (250um / 0.25mm), and approximately 300g of the sieved material was placed in a numbered Kraft paper geochemical sachet.
		• The sachets were collected in calico bags and then in polyweave bags for further protection while being transported to the laboratory.
		• Samples were freight transported to the assay laboratory in Perth, Western Australia.
		• All samples were submitted to Intertek Genalysis, Perth, for multielement analysis via AR25/MS52 and 4A/MS48R techniques.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	• This was a surface soil geochemical survey, and no holes were drilled.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade 	This was a surface soil geochemical survey, and no holes were drilled.

Criteria	JORC Code explanation	Commentary
	and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 This was a surface soil geochemical survey, and no holes were drilled. The soil samples were not geologically logged
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	This was a surface soil geochemical survey, and no holes were drilled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The Intertek Genalysis laboratory used for assaying the samples regularly participate in international, national and Internal proficiency testing programs and client specific proficiency programs complements NATA ISO/IEC 17025 accreditation ensuring international standards are maintained in the laboratories' procedures, methodology, validation QA/QC and data handling. Certified Reference Materials and/or in house controls, blanks and replicates are analysed with each batch of samples. These quality contro results are reported along with the sample values in the final report Selected samples are also re-analysed to confirm anomalous results. Al QC data is reported to the Customer. Where the concentration of ar element exceeds the capacity of the original method selected, re-analysis will be carried out using a more appropriate technique.
		The Intertek Genalysis laboratory Q&A Protocol:

Criteria	JORC Code explanation	Commentary
		 Fire assay determination, appropriate for gold ores. Fire assay (50g), total technique is appropriate for gold. Certified reference material, 1 in 50 samples. Control blank 1 in 50 samples (this is added by Intertek Genalysis). Blanks: A lab barren quartz flush is requested following a predicted high grade sample (i.e. visible gold). Random pulp duplicates were taken on average 1 in every 50 samples. Accuracy and precision levels have been determined to be satisfactory after analysis of these QAQC samples, once an Intertek Genalysis QAQC chemist deems all protocols are meet, then the job is reported AAS – ICP finish in your case determination, appropriate for gold.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	• This was a surface soil geochemical survey, and no holes were drilled.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	• This was a surface soil geochemical survey, and no holes were drilled, however, elevations of each sample site were not taken. The grid system uses was: GDA2020: MDA zone 51.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Samples were conducted on a nominal 250 x 250m grid, which was deemed adequate for the size of the prospect. No mineral estimation criteria are applicable.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• The soil rectangular sampling grid is based on the apparent NW structural orientation but a samples have 250m centres, they are not influenced by the orientation of any underlaying structures
Sample security	The measures taken to ensure sample security.	• The collected samples were stored in waterproof and sealed containers and shipped directly under secure conditions to the Perth assay laboratory.

iteria JO	RC Code explanation	Commentary
dits or reviews • ٦	The results of any audits or reviews of sampling techniques and data.	This question is not applicable for the soil sample
-	ng of Exploration Results e preceding section also apply to this section.) JORC Code explanation	Commontory
Criteria	JOKC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The soil survey was conducted across granted exploration licenses E63/2044 and E63/2078, and exploration licence application E63/2170. All licences are 100% owned by Dundas Minerals Ltd and are located within unallocated crown land. Exclusive native title rights has been granted over the area covered by these exploration licences. These rights are held by the Ngadju Native Title Aboriginal Corporation, and the Company has a heritage protection agreement in place with the. Access clearance follows the standard procedure. There are no known impediments to the security of, and access to the tenements.
<i>Exploration done by other parties</i>	 Acknowledgment and appraisal of exploration by other parties. 	 There is no known previous on-ground mineral exploration work within the area covered by this soils sample survey.
Geology	Deposit type, geological setting and style of mineralisation.	 The target explored for is a Proterozoic mafic intrusive Ni-Cu mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 to the upper intrusion of the Nova Ni-Cu deposit has been observed in the area of the soil survey. The Company has conducted various project wide geophysical surveys and established that there are various locations in the North-East prospect area where coincident magnetic, gravity, and electromagnetic anomalies are present.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	This is not applicable.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	This is not applicable.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Diagrams are in the body of the ASX release.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This is only a geochemical soil survey, there is no reference to any underlaying mineralisation are stated. Appendix A shows all assay results for Ni, Cu and Co from the program, and results are also plotted in Figure 4.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	This is not applicable
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further soil sampling that would extend the sample grid tin all directions, plus a tightening of the sample point spacings to 75m x 75m or 50m x 50m is contemplated.