TRAINING COURSE

Confluent Developer Skills for Apache Kafka®

Course Objectives

In this hands-on course, you will:

- Write Producers and Consumers to send data to and read data from Kafka
- Integrate Kafka with external systems using Kafka Connect
- Write streaming applications with Kafka Streams & ksqlDB
- Integrate a Kafka client application with Confluent Cloud

Hands-on Training:

The hands-on lab exercises in the course follow the coherent story of building and upgrading a driver location app. This gives a throughline throughout the course where concepts are applied directly to a working application. Exercises are available in **Java**, **C#** and **Python**.

Exercises include:

- Working with Kafka command line tools
- Producing driver location data to Kafka and consuming that data in real-time
- Refactoring the application to use Avro and Schema Registry
- Creating a Kafka Streams application to do real-time distance aggregation
- Extracting a table from an external database into Kafka using Kafka Connect
- Creating a full event streaming application using kslqDB that enriches driver location data with driver profile data
- Experimenting with semantic partitioning

Course Duration

This is a three-day training course.

Who Should Attend?

Application developers and architects who want to write applications that interact with Apache Kafka®. The course treats Java as a first-class citizen, but students will derive value even if Java is not their primary programming language. Python, C# and NodeJS clients will also be used.

Prerequisites:

Attendees should be familiar with developing professional apps in Java (preferred), C#, or Python. Additionally, a working knowledge of the Apache Kafka architecture is required for this course, either through:

- · Prior experience, or
- By taking **Confluent Fundamentals for Apache Kafka**, which can be accessed <u>here</u>.

Participants are also required to provide a laptop computer with unobstructed internet access to fully participate in the class.

To evaluate your Kafka knowledge for this course, please complete the self-assessment: https://cnfl.io/fundamentals-guiz

Content

MODULE	DESCRIPTION
Fundamentals of Apache Kafka	 Explain the value of a *Distributed Event Streaming Platform* Explain how the "log" abstraction enables a distributed event streaming platform Explain the basic concepts of: Brokers, Topics, Partitions, and Segments Records (a.k.a. Messages, Events) Retention Policies Producers, Consumers, and Serialization Replication Kafka Connect
Producing Messages to Kafka	 Sketch the high level architecture of a Kafka producer Illustrate key-based partitioning Explain the difference between `acks=0`, `acks=1`, and `acks=all` Configure `delivery.timeout.ms` to control retry behavior Create a custom `producer.properties` file Tune throughput and latency using batching Create a producer with Confluent REST Proxy
Consuming Messages from Kafka	 Illustrate how consumer groups and partitions provide scalability and fault tolerance Tune consumers to avoid excessive rebalances Explain the difference between "range" and "round robin" partition assignment strategies Create a custom `consumer.properties` file Use the Consumer API to manage offsets Tune fetch requests Create a consumer with Confluent REST Proxy
Schema Management in Apache Kafka	 Explain what Avro is Write Avro messages to Kafka Use the Confluent Schema Registry to guide schema evolution
Stream Processing with Kafka Streams	 Compare KStreams to KTables Create a Custom `streams.properties` file Explain what co-partitioning is and why it is important Write an application using the Streams DSL (Domain-Specific Language)
Data Pipelines with Kafka Connect	 Explain the motivation for Kafka Connect List commonly used Connectors Explain the differences between standalone and distributed mode Configure and use Kafka Connect

Content (continued)

MODULE	DESCRIPTION
Stream Processing with Kafka Streams	 Compare KStreams to KTables Create a Custom `streams.properties` file Explain what co-partitioning is and why it is important Write an application using the Streams DSL (Domain-Specific Language)
Data Pipelines with Kafka Connect	 Explain the motivation for Kafka Connect List commonly used Connectors Explain the differences between standalone and distributed mode Configure and use Kafka Connect
Event Streaming Apps with ksqIDB	 Use ksqIDB to filter and transform a stream Write a ksqIDB query that joins two streams or a stream and a table Write a ksqIDB query that aggregates values per key and time window Write Push and Pull queries and explain the differences between them Create a Connector with ksqIDB
Design Decisions	 List ways to avoid large message sizes Decide when to use ksqlDB vs. Kafka Streams vs. Kafka Connect SMTs Explain differences and tradeoffs between processing guarantees Address decisions that arise from key-based partitioning Authenticate a client app with a secure Kafka cluster
Confluent Cloud	 Explain what "fully-managed" means in the context of Confluent Cloud Authenticate a Kafka client to Confluent Cloud Do basic operations with the `ccloud` CLI

Confluent offers instructor-led courses in both traditional and virtual classroom formats, as well as in an on-demand (recorded) format. Please visit **http://confluent.io/training** for more information.