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ABSTRACT
Predictions from early alert systems are increasingly being used
by institutions to assist decision-making and support at-risk indi-
viduals. Concept drifts caused by the 2020 SARS-CoV-2 pandemic
are threatening the performance and usefulness of the machine
learning models that power these systems. In this paper, we present
an analytical framework that uses imputation-based simulations
to perform preliminary evaluation on the extent to which data
quality and availability issues impact the performance of machine
learning models. Guided by this framework, we studied how these
issues would impact the performance of the high school dropout
prediction model implemented in the Early Warning System (EWS).
Results show that despite the disruptions, this model can still be
reasonably useful in assisting decision-making. We discuss the im-
plications of these findings in more general educational contexts
and recommend steps in countering the challenges of using pre-
dictions from imperfect machine learning models in early alert
systems and, more broadly, learning analytic research that uses
longitudinal data.
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1 INTRODUCTION
More institutions are adopting early alert systems powered by
risk prediction models to assist decision-making [9]. Trained with
historical data, these machine learning models uncover patterns in
the relationships between certain risky outcomes (e.g., dropping
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out of school) and behavioral and performance metrics that tend
to be associated with them. The models then produce “risk scores”
that indicate the likelihood of these outcomes for individuals in
the future based on past behavior and/or performance and flag
those whose risk scores are above certain thresholds. This prompts
decision-makers to take actions in supporting the individuals that
the models deem at-risk.

The 2020 SARS-CoV-2 pandemic has highlighted the need for
more discussions on the impact of concept drifts in early alert
systems research in the learning analytics community. The term
“concept drift” refers to the phenomenon where changes in data
over time cause decay in the performance of predictive models
[12]. The stream learning literature has systematically studied this
issue [4, 12], focusing on developing efficient online algorithms for
automatic drift detection [6] and adaptive model updating [3, 5, 13]
in systems that process large volumes of streaming data. In the
context of early alert systems, the pandemic has caused disrup-
tions to data collection practices that will likely alter the quality
and potentially the meaning of education data gathered during its
course. It also may substantively alter people’s behavior, potentially
rendering the machine learning models trained on pre-pandemic
data much less useful. Therefore, we need principled ways to think
about how to make predictive models useful despite the impact
of concept drifts. First, we need to evaluate the extent to which
concept drift degrades model performance. Second, we need to con-
sider the sociopolitical implications of using results produced by
less-than-optimal models, especially given the increasing scrutiny
that model-assisted decision-making is under for concerns over its
fairness and transparency [8, 10, 15].

In this study, we propose an analytical framework to evaluate the
impact of the SARS-CoV-2 pandemic on machine learning models
in early alert systems trained with pre-pandemic historical data.
We focus on using a real-world example of a high school student
dropout prediction model implemented in the Early Warning Sys-
tem (EWS) piloted by the Rhode Island Department of Education
(RIDE) in collaboration with The Policy Lab at Brown University
and DataSpark. Guided by the definition of concept drift from
stream learning literature [12], we enumerate several potential pat-
terns in pandemic-induced data quality issues and perform several
imputation-driven simulation studies of their potential effects using
available historical data. Our goal is to understand as best as we can
how risk models’ predictions may be impacted by the pandemic. In
particular, we explore:

• How, if at all, can the existing EWS model still be useful
in making dropout risk predictions on the School Year (SY)
2019-20 data impacted by pandemic-related disruptions?
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• Assuming that schools reopen and in-person instruction
resumes early in SY 2020-21, how, if at all, can future EWS
models incorporate such impacted data?

• Assuming that schools remain closed for at least a large pro-
portion of SY 2020-21, how can future EWS models account
for this “new normal?”

To answer these questions, we open with a brief background on
the EWS and situate the challenges of concept drift in both data
quality and in the current sociopolitical context. We will then de-
scribe in detail the existing dropout prediction model and introduce
the analytical framework built on related work on concept drift
that addresses these challenges. After presenting the results from
the simulation study, we will discuss the usefulness of these results
and the political implications of using imputations in this and more
general contexts.

2 BACKGROUND AND RELATEDWORK
2.1 The Early Warning System
Rhode Island’s Early Warning System is designed to assist adminis-
trators and teachers in identifying 9th through 12th Grade students
who are at risk of dropping out and connecting those students with
resources they need to be successful. The system features a teacher
information portal, which displays the latest available data on six
student performance indicators updated monthly: attendance per-
centages, grade retention, suspensions, math proficiency, English
Language Arts (ELA) proficiency, and a risk indicator of dropping
out. The risk indicator is color-coded with red, yellow, or green
to indicate high, moderate, and low risk of dropping out at the
beginning of each school year.

The risk model—including what data to include and how to
display risk bands—was developed collaboratively by RIDE, The
Policy Lab, and DataSpark. It is produced by a machine learning
model trained on historical student outcome data on all public
high school students in Rhode Island from between SY 20071 and
2015. We will furnish more details on the model itself in Section 3.
For now, we emphasize that although the model is trained with
dropping out as the outcome, the goal of the risk indicator is to,
in addition to the five other performance indicators, provide the
teachers and administrators another way to identify students most
in need of help. For this purpose, EWS provides educators with
links to resources most relevant to the students at risk of dropping
out.

After a period of user testing and small-scale releases, the EWS
was successfully released to all teachers and administrators in Feb-
ruary 2020, one month before the SARS-CoV-2 pandemic closed
down schools and instruction started moving online. Due to uncer-
tainty in model performance under changed circumstances, RIDE
decided to temporarily disable the predictive model but retain the
other performance indicators on their dashboard. Before relaunch-
ing the model, RIDE asked The Policy Lab to explore how several
potential challenges to the EWS’s underlying data might impact
model performance, In particular, the widespread shutdowns and
online instruction might cause changes in definitions in attendance
and grievances. In addition, Rhode Island cancelled standardized

1For simplicity, school years are referenced by the year of the Fall semester.

testing for SY 2019 [2], so some standardized test scores will not be
available to the model.

We also need to consider the sociopolitical implications of using
less accurate predictions. A recent example from the UK where a
model was used to impute test scores for standardized tests can-
celled due to the pandemic make this particularly salient [1]. Al-
though the EWS risk indicator was not designed to assign account-
ability or otherwise punish or promote, there could still be stigma
associated with being identified as “at-risk.” Perhaps most impor-
tantly, we need to communicate transparently and effectively both
the usefulness and the caveats of using such imperfect predictions.

2.2 Concept Drift
Concept drift is the problem that how and whether data is collected
and how it relates to outcomes changes over time. It is an issue
in machine learning that had received much scholarly interest
before the pandemic because it happens to almost all machine
learning models that rely on longitudinal data. There have been
many attempts over the past decade to precisely define concept
drift and chart the landscape of all efforts to address this issue
especially in streaming machine learning literature [4, 11, 12, 16].
Among these efforts, [12] performed a comprehensive review of the
concept drift literature and offered a most succinct definition. In
the remainder of this paper, we rely on their definition as follows:

Let 𝑋𝑡 denote the vector of features collected at time 𝑡 and 𝑌𝑡
denotes the label corresponding to each record in 𝑋𝑡 , then concept
drift occurs when one or both of the following is observed:

(1) the distribution of data changes: 𝑃 (𝑋𝑡+1) ≠ 𝑃 (𝑋𝑡 );
(2) the underlying relationship between the features and labels

changes: 𝑃 (𝑌𝑡+1 | 𝑋𝑡+1) ≠ 𝑃 (𝑌𝑡 | 𝑋𝑡 ).

In this paper, we will be concerned primarily with the first situa-
tion. While it is possible (perhaps even likely) that the pandemic
has radically altered the relationship between the EWS’s features
and its labels (whether a student will drop out), we will be unable
to validate that assumption until well after SY 2020 ends. A policy-
maker who believes that this relationship in a predictive model has
radically changed should consider suspending the use of the model
until more data can be gathered.

3 METHODS
We begin this section by furnishing more technical details on the
EWS risk prediction model. Then we will use the definition of
concept drift to construct the analytical framework that we use to
evaluate the impact of the pandemic under different scenarios.

3.1 The EWS Model
The model that powers the dropout risk indicator in EWS is a ran-
dom forest [7] model. RIDE uses a .NET-based system, so we trained
the model using the FastForest implementation in Microsoft’s
nimbusml package for Python and incorporated the model into
RIDE’s student information system. The training set contained his-
torical year-end outcome data on all Rhode Island public school
students from 9th to 11th Grade between 2007 and 2015. Features
include:
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• Demographic information: gender, age, race, ethnicity, so-
cioeconomic statuses, and special education statuses;

• Attendance and grade retention: rate of attendance and
whether the student repeated a grade;

• Grievances: numbers of infractions and of days a student
was suspended both in- and out-of-school;

• Test scores: scores from state standardized tests, and SATs
and PSATs if available.

The labels of the training set were whether a student eventually
dropped out in or before 12th Grade. We used data from the two
previous years to make predictions when possible. We also applied
techniques such as a combination of over- and under-sampling to
counter the issue of imbalance and down-weighting less-recent
records from the same individual to achieve better predicative per-
formance. We tested the model performance on the test set which
consists of identically structured data from 2016.

Before productionizing the model, The Policy Lab, DataSpark,
and RIDE collaboratively made several modeling decisions. For
instance, in one meeting, a longtime RIDE employee mentioned
that RIDE’s suspension policy had dramatically changed in SY 2012,
leading to a discussion of how to weight infraction data. We also
collaboratively examined the model’s performance on subgroups
within the test set to ensure equitable performance for each sub-
group as well as to determine where the model would not be helpful.
For instance, Rhode Island’s juvenile detention facility has a dra-
matically different dropout rate than other schools in the state, and
its students have dramatically different needs than others. So a
decision was made both to exclude it from the training data and to
not deploy it to that school.

Table 2 shows the how the model performed on each of the
metrics that we used. In addition to the frequently used metrics to
evaluate machine learning models such as overall accuracy, preci-
sion, recall, F1 scores, and AUC scores, we also used three metrics
specific to this context: the predicative accuracy among the top
100, 3%, and 5% individuals ranked by the risk scores produced by
the model. This is because in practice, the EWS will mark the top
3% of the individuals with the highest risk scores as at “high” risk
of dropping out, and the subsequent 2% as at “moderate” risk of
dropping out. These cutoffs were chosen by RIDE with input from
many of their domain experts. They considered in particular: 1) the
capacity to perform interventions, 2) the perceived “utility” of the
rating, 3) the actual dropout rate, 4) technical limitations, and 5)
the ethical impacts of over/under-labeling students.

3.2 Analytical Framework
This analytical framework focuses on the problem that the pan-
demic causes sufficient data quality issues that corrupt at least some
features. Formally, at a certain time 𝑡 + 1 after the onset of the pan-
demic, we obtain a dataset 𝑋𝑡+1 with at least some corrupted or
missing features due to disruptions in data generation or collection.
We have an existing model𝑀𝑡 trained with a dataset 𝑋𝑡 and labels
𝑦𝑡 collected before the disruptions. We are concerned with the ex-
tent to which𝑀𝑡 can still produce reasonably accurate predictions
𝑦𝑡+1 from 𝑋𝑡+1, because not all features in 𝑋𝑡+1 are equally useful
in making the predictions. If 𝑦𝑡+1 is reasonably reliable, these pre-
dictions can still have some practical value, whereas𝑀𝑡 should no

longer be used if 𝑦𝑡+1 produces nonsensical results. However, we
do not have true labels 𝑦𝑡+1 associated with 𝑋𝑡+1 for us to make
such evaluations.

In this paper, we simulate this issue through imputation. Since
we know that some features in 𝑋𝑡+1 will be corrupted or missing,
we will likely need to impute the values for these corrupted features.
We can simulate this workflow using past data. Specifically, we set
aside a subset of 𝑋𝑡 and the corresponding labels 𝑦𝑡 , which we
will call 𝑋𝑠 and 𝑦𝑠 . We can then treat some features 𝑥𝑖 ∈ 𝑋𝑠 as if
they were corrupt or missing and instead impute these features to
produce a synthetic dataset 𝑋𝑖𝑚𝑝 . The dataset {𝑋𝑖𝑚𝑝 , 𝑦𝑠 } can be
used in conjunction with the rest of {𝑋𝑡 , 𝑦𝑡 } to simulate different
scenarios in which we make predictions.

This framework requires a strong assumption to be meaningful.
Although there are two possible sources of concept drift the defini-
tion in Section 2.2, simulations will only address source (1), changes
in data distributions over time. If source (2)—changes in the rela-
tionship between features and labels—also contributes substantially
to the drift, it is likely that 𝑃 (𝑦𝑠 | 𝑋𝑖𝑚𝑝 ) ≠ 𝑃 (𝑌𝑡 | 𝑋𝑡 ), which means
we cannot use {𝑋𝑖𝑚𝑝 , 𝑦𝑠 } to approximate {𝑋𝑡+1, 𝑦𝑡+1}. Other meth-
ods such as [14] may be able to provide worst-case bounds for the
model’s performance in such a situation, though they require their
own assumptions on how much the distribution 𝑃 (𝑌𝑡+1 | 𝑋𝑡+1) has
changed from 𝑃 (𝑌𝑡+1 | 𝑋𝑡+1).

We will work under this assumption for the rest of this paper.
This is not to deny that source (2) may contribute to drift, and in
future work we hope to explore ways to measure its effects. In the
end, policymakers must make a decision as to whether an early alert
system’s utility outweighs its potential downsides. Indeed, leaving
an early alert system trained on historic data unchanged implicitly
assumes that either the early alert system remains more useful than
harmful or that the early alert system will have little effect at all on
actual educator and student behavior. Our work provides a quick
and inexpensive way for researchers and practitioners to check the
robustness of their existing model against data quality issues. We
hope that by highlighting the complex practical and ethical issues
raised by the pandemic and contributes to discussions among the
learning analytics community on how to proactively address its
effects on the ever-growing number of early alert systems deployed
in the field.

3.3 The Three Scenarios
Below we outline three scenarios we will explore with simulation
studies. They are graphically represented in Figure 1.

3.3.1 Scenario 1: Prediction during concept drift. In this scenario
we evaluate the effectiveness of𝑀𝑡 given new unlabeled data 𝑋𝑡+1
subject to concept drift. In the context of EWS, this scenario focuses
on the most immediate questions of whether we can use the same
EWS model trained on data from SY 2019 and before to predict
risks of dropping out in SY 2020, knowing that SY 2019 data is most
likely to be unreliable with missing fields such as infractions and
suspensions. These metrics might not be well defined with schools
switching to remote learning for the second half of the school year.
Meanwhile, test scores are also missing due to cancellations of
standardized tests.
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Figure 1: Anticipated Scenarios vs. the corresponding simulation strategies.

To simulate this scenario, we dropped the true values from the
test set and imputed new ones to create a synthetic dataset𝑋𝑖𝑚𝑝 . We
then fed the synthetic dataset to the same model𝑀𝑡 to see whether
the model could still produce accurate predictions on imputed data.
We used different imputation strategies for different features. For
standardized testing scores, we used cumulative maximum scores
for each individual in the place of their actual scores in the test set.
For attendance rates and infractions and suspensions, we used the
imputation strategies listed in Figure 1.

3.3.2 Scenario 2. Normalcy returns. In this scenario we evaluate
the case where the pandemic ends and we assume that new data
collected at this point is distributed similarly data collected before
the pandemic. In other words, we have collected a new dataset𝑋𝑡+2
after the abrupt drift subsides, which is similarly distributed to 𝑋𝑡

collected before the pandemic. We want to assess whether a new
model 𝑀𝑡+1 trained on {𝑋𝑡+1, 𝑦𝑡+1} combined with {𝑋𝑡 , 𝑦𝑡 } can
be used in the future. In this and the following scenario, we are
concernedwithmodel performance immediately after the pandemic
subsides and before we have collected new data.

For the EWS, this and the next scenario explore beyond SY 2020.
This scenario focuses on the situation where the disruption from
the pandemic is temporary. We are tasked with making predictions
on “normal” data with models trained on historical data that con-
tain years affected by SARS-CoV-2. We simulate this condition as
follows: first, we train new models on modified training sets. To
produce these sets, we use the same imputation strategies men-
tioned in the previous scenario on the year immediately before the
year in the test set. Then, we re-train the models on these modified
training sets and evaluate the models on the test sets.

3.3.3 Scenario 3. A “new normal” is established. In this scenario, we
evaluate the case where the pandemic has fundamentally modified

people’s behavior so that the data never returns to the same distri-
bution as before the pandemic. In other words, we have collected a
new dataset 𝑋𝑡+2 some time after the abrupt drift subsides, which
is differently distributed than 𝑋𝑡 collected before the pandemic and
𝑋𝑡+1 collected during the pandemic. We want to evaluate whether
a new model𝑀𝑡+1 trained on {𝑋𝑡+1, 𝑦𝑡+1} combined with {𝑋𝑡 , 𝑦𝑡 }
can be used for better performance in the future.

For EWS, this scenario is similar to the previous one with a key
difference: we do not assume that things will go back to normal.
To simulate this condition, we apply the same imputation strategy
used on the training sets in the previous scenario to the test set as
well.

3.4 Checking model performance and equity
In addition to comparing performance metrics with the original
model, in applicable cases, it is imperative that we also consider
the model’s differential performance within subgroups. This is
especially tricky as data quality issues caused by the pandemic may
impact different subgroups differently. However, reporting these
metrics and interrogating their plausibility with policymakers is
critical to the success of any early alert system.

4 RESULTS
In this section we report the simulation results produced from
different imputation strategies on all of the metrics that we used
to evaluate the original model. We reiterate that in each of the
scenarios, we used cumulative maximum scores from all other years
for standardized test scores. The imputation strategies reported only
refers to how we imputed attendance rates, numbers of infractions,
and number of days in in-school and out-of-school suspensions.
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Table 1: Imputation strategies

Strategy Description

Set to Zero Use 0 for infraction and suspension fields and keep attendance intact
Mean Use mean of all other years to fill attendance, infraction, and suspension fields
Median Use median of all other years to fill attendance, infraction, and suspension fields
Nearest neighbor Use values from previous year to fill attendance, infraction, and suspension fields
Worst Use smallest attendance rate and largest numbers of infraction and suspension

from all other years to fill corresponding fields

4.1 Scenario 1: Can the existing model still be
used?

For this scenario we test the original model using the data from
the last year replaced with imputed data. Table 2 suggests that
with most imputation strategies, the model performance does not
deviate much from the performance achieved on the original un-
modified test set. If we set infractions and suspensions to 0 while
not changing the attendance rates, the model performance stays
virtually the same. We postulate two reasons that might be behind
this surprising result. First, the numbers of infractions and suspen-
sions are not as “important” as attendance rates during prediction,
which is consistent with the feature importance scores produced
by the model during training. Second, the model looks back at the
performance of the previous year as well, which was intact. This
practice lends some robustness to the model’s response to sudden
changes in one year.2

4.2 Scenario 2: What if things return to
normal?

For this scenario, we impute on one year’s data within the training
set and use this training set to train newmodels. Because of the way
our data is structured, the imputed values will also propagate to
the corresponding “last year” fields in the test set. Results (Table 3)
show that model performance was again not significantly impacted
by using imputation on one year’s training data. Tables 2 and 3
report very similar results. Again, we postulate that this is because
the model looks at two years’ performance at any given time, which
adds some robustness to sudden changes in data.

4.3 Scenario 3: What if there is a “new
normal”?

The setup for this scenario is similar to the previous one except
that we also introduce the imputation used in Scenario 1 to the test
set. In other words, both the values for the current year and the
previous year in the test set are now imputed. We do not expect
that the model performance would deviate too much from what
we have seen in Tables 2 and 3. Table 4 shows that it is indeed the
case. However, the last column of Table 4 is particularly interesting.
When tested with the worst performance from each student as im-
puted values, the model has increased recall yet decreased precision,
while the overall performance seems to be on par with the other

2We note that this, in and of itself, is an interesting result as it suggests that earlier
interventions (say in 9th Grade) based primarily off of attendance triggers might have
large effects on eventual dropout.

models. This indicates that the model now has more false positives
than false negatives. We speculate that since neither the “current
year” nor the “previous year” performance data is accurate under
this scenario, some of the robustness that we discussed previously
is now lost. This is especially more apparent when we compare the
last columns of Tables 3 and 4.

5 DISCUSSION
5.1 The utility of the results
We first discuss the utility of the results beyond what is presented
in the previous section. At first glance, our study might seem to
be context-specific and our results context-dependent. Indeed, the
finding that our model might still produce reasonable predictive
performance on imputed data could be a function of the data itself
and the way we structured the data and built the model. However,
we argue that the challenges of concept drift that we faced are
universal to early alert systems. Our study is a first attempt to
quantify the effects of the pandemic on early alert systems built
using longitudinal data, a problem that should be addressed with
some urgency.

Urgency is the keyword here. Our simulation framework offers
one method to explore the potential degradation in model perfor-
mance caused by the pandemic. In particular, it does not rely on
new data, which will not be available until many months after the
model’s predictions might be useful. Indeed, while this study was
underway, we simultaneously requested more recent data from
partners, a process that itself takes time. Still, the preliminary re-
sults presented here facilitated our partners’ short-term planning
for the EWS for SY 2020. In that sense, we believe that our frame-
work does offer some structure in thinking about the present and
the future of existing systems.

In addition, we learned from our simulations that these predictive
models are more robust to abrupt disruptions might be helpful to
counter the immediate impact of the pandemic. Our practice of
looking at more than one year’s data seemed to be in play here.
Future research should examine what practices increase early alert
systems’ robustness.

Finally, recall that our explorations relied on the strong assump-
tion that the pandemic has not radically altered the relationship
between features and labels. This is perhaps an optimistic assump-
tion. However, if it is not true, then policymakers should consider
whether their uncertainty in a model’s performance outweighs the
model’s potential utility. In future work, we plan to explore how we
might quantify this uncertainty, though [14] and related literature
offers some potential avenues.
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Table 2: Simulation results under Scenario 1

Metric Original Model Set to Zero Mean Median Nearest Neighbor Worst

Overall Accuracy 0.9130 0.9120 0.9138 0.9133 0.9120 0.9074
NPV 0.9502 0.9488 0.9538 0.9550 0.9499 0.9423
Precision 0.4812 0.4757 0.4847 0.4811 0.4755 0.4541
Recall 0.5057 0.5086 0.4753 0.4562 0.4973 0.5258
F1 Score 0.4931 0.4916 0.4799 0.4683 0.4861 0.4874
AUC 0.8902 0.8840 0.8791 0.8765 0.8798 0.8785
Accuracy @ Top 3% 0.6452 0.6462 0.6278 0.6278 0.6350 0.6431
Accuracy @ Top 5% 0.5622 0.5628 0.5536 0.5518 0.5567 0.5671
Accuracy @ Top 100 0.83 0.83 0.81 0.81 0.82 0.77
N Positive Examples in Test Set 2731 2731 2731 2731 2731 2731

Table 3: Simulation results under Scenario 2

Metric Original Model Set to Zero Mean Median Nearest Neighbor Worst

Overall Accuracy 0.9130 0.9126 0.9127 0.9151 0.9109 0.9018
NPV 0.9502 0.9482 0.9503 0.9572 0.9491 0.9316
Precision 0.4812 0.4795 0.4797 0.4921 0.4697 0.4346
Recall 0.5057 0.5225 0.5020 0.4537 0.4921 0.5756
F1 Score 0.4931 0.5001 0.4906 0.4721 0.4804 0.4953
AUC 0.8902 0.8910 0.8907 0.8851 0.8855 0.8882
Accuracy @ Top 3% 0.6452 0.6524 0.6370 0.6237 0.6350 0.6513
Accuracy @ Top 5% 0.5622 0.5788 0.5653 0.5622 0.5586 0.5727
Accuracy @ Top 100 0.83 0.85 0.78 0.83 0.85 0.80
N Positive Examples in Test Set 2731 2731 2731 2731 2731 2731

Table 4: Simulation results under Scenario 3

Metric Original Model Set to Zero Mean Median Nearest Neighbor Worst

Overall Accuracy 0.9130 0.9115 0.9122 0.9147 0.9097 0.8954
NPV 0.9502 0.9469 0.9526 0.9610 0.9503 0.9227
Precision 0.4812 0.4741 0.4754 0.4886 0.4610 0.4135
Recall 0.5057 0.5240 0.4698 0.4083 0.4650 0.5965
F1 Score 0.4931 0.4978 0.4726 0.4448 0.4630 0.4885
AUC 0.8902 0.8856 0.8792 0.8683 0.8743 0.8833
Accuracy @ Top 3% 0.6452 0.6503 0.6094 0.6002 0.6104 0.6319
Accuracy @ Top 5% 0.5622 0.5757 0.5536 0.5450 0.5377 0.5665
Accuracy @ Top 100 0.83 0.85 0.80 0.83 0.84 0.83
N Positive Examples in Test Set 2731 2731 2731 2731 2731 2731

5.2 The sociopolitical implication of imperfect
predictions

Perhaps more important is the discussion of the sociopolitical im-
plications of using imperfect predictions from early alert systems.
Our study shows that the EWS model could still be useful even
though the data might not be perfect, which lends confidence to
stakeholders to continue incorporating the model in the EWS. One
recurring theme in our discussionwith stakeholders, however, is the
cost of wrong predictions. While no models are perfect and wrong
predictions are bound to occur, the fact that the model is imperfect
and more likely to make mistakes could potentially outweigh its

usefulness. Whether to continue using an imperfect model is a
highly contextual decision to be made, but we offer the following
recommendations in working with stakeholders on such decisions.

• Lower the stakes. This will lower the cost of wrong predic-
tions and redirect focus on the usefulness of the predictions
on assisting decision-making considering all other factors.

• Ensure transparency. Be candid in communicating the lim-
itations of model predictions to both decision makers and
the public. Be very specific about why the models can be
less than optimal but still useful.
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• Ensure fairness. Checks are needed to ensure that no sub-
group is impacted more negatively than others. These checks
should already be in place to guard against inherent bias in
data but are more relevant now to prevent any techniques
used to adjust models against concept drifts from putting
some subgroups at a disadvantage.

6 CONCLUSION
In this paper, we used concept drift to conceptualize the challenges
that the 2020 SARS-CoV-2 pandemic brings to early alert systems
research and learning analytics research in general that uses longi-
tudinal data. Our simulation framework offers a time-efficient way
to produce preliminary evaluation on the impact of concept drift on
data and predicative modeling and outlines ways to respond to the
immediate and short-term difficulties caused by the pandemic. We
showed that while imperfect, some predictive models can still be
useful under certain circumstances. However, we also highlight the
sociopolitical implications of continuing to use such models. Such
decisions are to be made cautiously with stakeholders and extra
steps need to be in place to ensure the transparency and fairness of
these models.
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