
ExpressVPN Keys
Security White Paper
Updated October 31, 2023

Table of Contents

1. Introduction 3

2. Strategies and principles 4

Kerckhoffs’s principle 5

Your secret stays with you 5

Good software design 5

Trust but verify 6

3. Authentication 7

Step-up authentication 7

Network security 8

A word about “keys” vs “Keys” 9

4. Zero-knowledge encryption 11

Account creation 11

A word about your primary password 11

Primary Password Derived Key (ppdk) 12

Recovery Code Derived Key (rcdk) 13

A word about your recovery code 13

User Root Key, User Document Key, and Encrypted User Record 14

A day in the life of a password 17

Storage 17

Autofill 18

Summary of cryptographic keys 18

5. Password Health 21

Data breach detection 22

6. Supply chain security 25

Internally developed code 25

Third-party code 25

7. Hardening our apps 27

Stored items remain encrypted until used 27

Autofill security 27

1

Security screen 28

Biometric unlock 28

8. Server and cloud infrastructure 29

9. Security audits 30

Internal 30

External 31

Bibliography 33

Glossary 36

2

1. Introduction
In 2022, 86% of all attacks against web applications started with stolen credentials, mainly
weak or reused passwords1. It’s an enormous problem… with a simple but criminally
underutilized solution.

A password manager not only makes it easy to replace weak credentials with strong ones, it
also greatly reduces damage caused by any one credential’s exposure. To encourage more
widespread adoption of this solution, we at ExpressVPN decided it was time to draw on our
over 10 years of security expertise to develop our own password manager: ExpressVPN Keys.

ExpressVPN Keys (or, simply, “Keys”) is not a standalone app; it lives in our flagship
ExpressVPN apps for iOS and Android, and in a browser extension for Chrome (and other
Chromium-based browsers) for use on Mac, Windows, and Linux computers. Everything stored
in Keys is securely synced across all platforms for easy access, and Keys users can store and
view as many items (logins, secure notes, credit/debit cards) across as many devices as they
like.

Keys has many security features, including biometric unlock, two-factor authentication,
breach alerts, and a security “scoring” system for each login, which we call Password Health.
In the interest of transparency and greater security awareness, we created this white paper to
outline our implementation of these and other features. We also take the opportunity to
discuss the design, philosophy, and cryptography principles on which Keys is built, maintained,
and improved.

We welcome any questions or comments you may have about Keys or this white paper, which
you can send to us by contacting ExpressVPN Support. If you find a bug or potential
vulnerability, please report it immediately through our bug bounty program so our engineers
can validate and triage the issue.

Now, let’s talk about Keys!

1 2023 Data Breach Investigations Report, Verizon:
https://www.verizon.com/business/resources/reports/dbir/2023/summary-of-findings/

3

https://www.expressvpn.com/support/
https://bugcrowd.com/expressvpn
https://www.verizon.com/business/resources/reports/dbir/2023/summary-of-findings/

2. Strategies and principles
The following strategies have always guided how we protect VPN customer data, and they
apply just as readily to how we protect the items in a Keys user’s encrypted vault:

ExpressVPN’s four key strategies

For examples of how these principles are implemented across all ExpressVPN products,
visit the ExpressVPN Trust Center.

4

https://www.expressvpn.com/trust

In designing a new password manager from the ground up, however, we also employed a few
additional principles:

Kerckhoffs’s principle
The renowned mathematician Claude Shannon once said, “One ought to design systems under
the assumption that the enemy will immediately gain full familiarity with them” (Shannon,
1949).

In cryptography, this is known as Kerckhoffs’s principle: the idea that a system should be
secure even if adversaries know everything about the system—as long as they don’t know the
secret key (Kerckhoffs, 1883). In the context of ExpressVPN Keys, this means your stored items
are secure even if a persistent adversary has gained complete knowledge of our
cryptosystem—as long as that adversary doesn’t have your primary password.

In other words, we don’t rely on “security through obscurity.” We want our cryptosystem to be
fully transparent so that it can be studied, tested, and improved; in fact, that is why we are
writing this white paper!

Your secret stays with you
When you first set up ExpressVPN Keys, the app guides you to set a strong primary password.
Because the security of all your stored items hinges on the secrecy of that primary password,
we don’t want anyone but you to have it, not even us.

To minimize risk, we designed a client-server protocol that ensures that all computations
requiring your primary password are done in your local system and never leave your device.
That’s because sending your primary password in any form (even encrypted) increases the risk
of compromise. We want your primary password to remain secure even in the unlikely event
that network attackers are harvesting your traffic with the goal of decrypting it later. Therefore
we will never require you to send your primary password in any form.

See our section on zero-knowledge encryption for more detail.

Good software design
In designing Keys, we made several decisions at the very start that allowed developers to
focus on security without adding unnecessary complexity or reinventing the wheel:

● First, we wrote a self-contained core library in Rust as the base component, which
allows for a well-defined interface with compatibility across many platforms in a
type-safe and memory-safe way.

5

https://www.rust-lang.org/

● Next, we used the Concise Binary Object Representation (CBOR) for serialization and
deserialization of data in our communications, reducing risk of dangerous
deserialization attacks that are common in other frameworks.

● Finally, we made a conscious choice to pick standard, well-tested cryptographic
primitives. In particular, we use the class of ciphers that allow for authenticated
encryption with associated data: AEAD (Rogaway, 2002), which simultaneously ensures
confidentiality, integrity, and authenticity.

Trust but verify
Even if we designed the perfect system, we would still need to verify its implementation. After
all, bugs can potentially creep in if developers are not careful, edge cases may crop up without
proper testing, and we must always be ready for issues in the software supply chain. To ensure
ExpressVPN Keys lives up to the security guarantees described in its design:

● Our codebases go through a battery of internal penetration testing.

● We regularly commission independent, third-party audits of our apps.

● We remain open to security research by the public, and anyone can report security
issues through our bug bounty program.

Now, let’s dive into how Keys actually works.

6

https://datatracker.ietf.org/doc/html/rfc8949
https://github.com/advisories/GHSA-j9c5-6p9g-hwf3
https://github.com/advisories/GHSA-j9c5-6p9g-hwf3

3. Authentication
When you sign in to ExpressVPN Keys, various cryptographic and network operations occur in
the background. Here we’ll walk you through how your communications to the server are
protected by multiple authentication mechanisms, both through standard cryptographic
protocols and through additional protections implemented at the application layer. We’ll
illustrate how these mechanisms protect your traffic and your account from network attackers
who might be passively listening or attempting to modify traffic to our servers.

Step-up authentication
Keys accounts are tied to ExpressVPN accounts, so before you can create or access your Keys
account, we need to confirm that you are the owner of the ExpressVPN account that is signing
up for Keys.

To perform this authentication, the first step is to validate your ExpressVPN account
credentials. Then we perform another round of authentication using a second factor to ensure
that the owner of the account is the same person requesting access to Keys2. This step-up
authentication takes the form of a six-digit code sent to the primary email address associated
with the ExpressVPN account. This code must be entered into the app, after which the user is
authenticated to ExpressVPN Keys, and an authentication token (in the form of a JSON Web
Token (JWT) signed with RS2563) is returned. This token contains an additional scope allowing
it access to ExpressVPN Keys, but it will still not be able to access the passwords in the vault,
since the user has not provided the secret primary password (more on this in the next section).

3 This is the recommended “alg” setting for JSON Web Tokens according to RFC 7518. We follow current best
practices in authenticating tokens as per RFC 8725.

2 Note that the above process does not apply to iOS users who have already completed Apple's 2FA process.

7

https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7519
https://datatracker.ietf.org/doc/html/rfc7518
https://www.rfc-editor.org/rfc/rfc8725

Network security
As you use the password manager (including the authentication described above), layers of
authentication and authorization protect all API requests made by ExpressVPN Keys. These
layers are intended to make it nearly impossible for an attacker to gain access to, download,
and/or tamper with your stored items.

First, all network communication to ExpressVPN API servers are protected through TLS4, and
HTTPS is used in all communications. No HTTP endpoint—which would otherwise be in
plaintext—is exposed. A security policy is configured and enforced at the gateway for the
negotiation of appropriate cipher suites. Additionally, TLSv1.3 is supported, so cipher suites
providing PFS (perfect forward secrecy) are supported and used if the client supports it. This
means traffic sent to our server is much harder to compromise, since unique keys are
generated, used, and rotated throughout. On top of this, TLS also provides the standard
security guarantees for your network traffic with us:

a. encrypting your traffic so network attackers cannot access the plaintext

b. calculating a message authentication code to prevent modification to your
communications with us, and

c. verifying that you are indeed talking to the real ExpressVPN API servers

Backing the secure communications is a public certificate tying the ExpressVPN API domain
name to the server. This public certificate contains a 2048-bit RSA public key5 and is signed by
a trusted CA (Certificate Authority), with the certificates themselves rotated automatically
every 3 months (an example of minimizing the time of compromise).

Next, we implement another layer of authentication at the application layer, built around a
4096-bit RSA key pair known as the user’s identity that is generated when the account is
created. The RSA key pair consists of two parts:

1. The private key (also called the Private Identity Key). This is used to produce a
cryptographic signature to prove to the server that the user is the one making the
request. More precisely, this key is used to sign the payload/contents of an API request.
The private key is kept secret through the secret primary password provided by the
user and this part of the keypair never leaves the device in plaintext.

2. The public key (also called the Public Identity Key). This is used to verify the contents
of the API request and establish that the user making the API request has access to the
Private Key. As suggested by the name, this part of the key pair is meant to be public
and can be used by anyone to validate a signature produced by the private key. The

5 Barker, E., & Dang, Q. (2015, January). NIST SP 800-57 Part 3 Rev. 1, Recommendation for Key
Management, recommends 2048-bit RSA keys to be used for Public Key Infrastructure (PKI).

4 We follow the guidelines presented in SP 800-52 Rev. 2, Guidelines for the Selection, Configuration, and Use
of Transport Layer Security (TLS) Implementations

8

https://www.ietf.org/rfc/rfc8446.html
https://www.rfc-editor.org/rfc/rfc8446#section-9.1
https://www.rfc-editor.org/rfc/rfc8446#section-9.1
https://datatracker.ietf.org/doc/html/rfc5246#section-5
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-57pt3r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf

ExpressVPN Keys server stores the public key and uses it to validate the signature on
any API request.

A word about “keys” vs. “Keys”
For the purposes of this paper, references to cryptographic keys will be uncapitalized
except when named in a specific, singular key such as the Private Identity Key.
Wherever “Keys” is capitalized and plural, you can safely assume we’re talking about
the password manager itself.

Once the client establishes communication with the ExpressVPN Keys server, the first and only
API endpoint used by the client that does not require a payload signed with the user identity is
the API endpoint used to fetch the encrypted user record6. After the user decrypts the
encrypted user record using the secret primary password, all further communications to the
API server (including those that fetch the user’s stored items, and those which modify them)
are protected by this additional layer of authentication. Specifically, ExpressVPN Keys uses
RSA-PSS (Bellare & Rogaway, 1998) with the SHA512 hash algorithm and a 512-bit salt to sign
each request with the private key. An attacker without the private key is unable to sign
requests on behalf of the user and would therefore have those forged requests rejected by the
ExpressVPN Keys API server.

As an extra layer of protection, we include an additional single-use signed cryptographic
nonce within the payloads sent to the server. This nonce is a randomly7 generated 64-bit
unsigned integer8 tied to a specific user and is generated server-side when requested by a
user. This nonce is only valid for a single use or for 5 minutes, whichever comes first. The
single-use property prevents replay attacks, where in the very unlikely event that a passive
adversary manages to break TLS to observe, collect, and resend your traffic to our servers,
then our systems know to reject the replayed request because the nonce has already been
used. The latter property ensures that the request is timely—if a user requested a token from
the server but did not use it within 5 minutes, an attacker will not be able to abuse the fact that
the token was stored unused for some period of time.

8 A 64-bit integer allows for approximately 18 quintillion possible unique numbers, which in more countable
terms is about 18,000,000,000,000 million. The likelihood that there is a collision with existing nonces from the
same user, assuming the user has 10 devices, can be approximated with the equation n2/2m (where n is the
number of existing per-user nonce, and m is the range for a nonce) or more concretely 102 / (2×264) which is
0.000…00027 (with 18 zeros), which means it is effectively impossible for an attacker to replay a request. See
the Birthday Problem for a theoretical explanation.

7 We use a cryptographically secure random number generator currently based on the ChaCha12 block cipher
(see StdRng for more information).

6 This avoids a “chicken and egg” situation where we need the private key to sign the request, but we don’t yet
have it since it’s tied to an encrypted user record stored on the server.

9

https://datatracker.ietf.org/doc/html/rfc4055#section-3
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-102.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-102.pdf
https://www.expressvpn.com/blog/sweet-32-birthday-problem/
https://docs.rs/rand/latest/rand/rngs/struct.StdRng.html

10

Even after authentication, however, the user’s vault is not yet accessible until after a primary
password is provided. In the next section, we will elaborate on how the vault works.
Specifically, we will detail the operations that ExpressVPN Keys performs locally on your device
using the secret primary password.

4. Zero-knowledge encryption
Zero-knowledge encryption allows you to store items in Keys in a way that only you—the
person with the secret primary password—can access. When you store items in your vault,
your primary password and any other plaintext information never leaves your device.
Therefore, ExpressVPN Keys and its servers have no way of accessing this information in
plaintext. Even if a sophisticated attacker were to somehow get access to our systems, all
information is encrypted—no plaintext information corresponding to your vault is ever stored in
the ExpressVPN Keys database.

To understand how this works, let’s take a look at what happens when you first create your
account with your primary password and how we derive the necessary cryptographic
ingredients from that primary password.

Account creation
In ExpressVPN Keys, the onboarding process is relatively simple. After step-up authentication,
you simply have to provide your preferred primary password, and all cryptographic keys will be
generated locally on your device in the background.

A word about your primary password
This password is the key to your entire vault, therefore it is critically important that it is
neither leaked nor guessable by an attacker.

To help you choose a strong, unguessable password, ExpressVPN Keys evaluates
your proposed primary password using the industry standard zxcvbn password
strength estimator (Wheeler, 2016). zxcvbn measures the guessability of your
password without relying on outdated password rules around the number of capital
letters and special symbols9. If your password is considered weak then you will be
warned, and if it is too weak then you will not be able to proceed.

9 Length and complexity requirements are counterproductive as users tend to work around them in predictable
ways, and should no longer imposed as requirements beyond the guidance in NIST Special Publication
800-63B, Digital Identity Guidelines: Authentication and Lifecycle Management

11

https://docs.google.com/document/d/1cxGu-ULthhF4eQzyvmAALQZh-nyHTc-P-DHRuMrc0XU/edit#heading=h.ub4kxbzfapoa
https://github.com/dropbox/zxcvbn
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf

Your primary password should also be memorable enough that you won’t be tempted
to copy it somewhere else in plaintext (or in plain sight, such as by sticking a note on
your computer). That’s why we also suggest using “random” words with personal
meaning (but not guessable information like family names or birthdays).

Primary Password Derived Key (ppdk)
Using a key derivation function called PBKDF2, we transform your primary password into a
cryptographic key called the Primary Password Derived Key (ppdk):

𝑝𝑝𝑑𝑘 : = 𝑃𝐵𝐾𝐷𝐹2
𝑆𝐻𝐴512

(𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑, 𝑠𝑎𝑙𝑡, 210000, 32)

The PBKDF2 function uses a SHA512 HMAC as the pseudorandom function, your primary
password, a 32-byte salt10, and runs the key derivation function for 210,000 iterations11 before
returning a 32-byte key: the ppdk.

11 This is based on recommendations from OWASP.

10 Note that the salt is uniquely generated for every user and uses OpenSSL’s RAND_bytes function or the Web
Crypto API’s getRandomValues function, depending on the platform. This unique salt prevents the use of
rainbow tables to precompute the output from a hash function, significantly increasing the computation required
for an attacker to recover the original primary password.

12

https://datatracker.ietf.org/doc/html/rfc2898#section-5.2
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://www.openssl.org/docs/manmaster/man3/RAND_bytes.html
https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues
https://www.expressvpn.com/blog/salt-hash-password-protection/

Unset

The ppdk never leaves your device; in fact it is never stored anywhere and exists only briefly as
part of the vault unlock process. We use the ppdk to encrypt downstream cryptographic key
material and, since only you know the primary password from which it is generated, attackers
without knowledge of your primary password won’t be able to decrypt it and access your
stored items.

Recovery Code Derived Key (rcdk)
We also generate a recovery code locally on your device when you first sign up for Keys. The
recovery code (which we’ll call k below) is a 15-byte string (giving 120-bits of security12)
generated from a cryptographically secure pseudorandom generator implemented in OpenSSL
or the Web Crypto API, depending on the platform.

We encode the 15-byte string into printable characters (alphanumerics) via Base32 encoding
(e.g., AAAB-TP5X-3F7A-XTUA-4DA4-YA4Q), so users will be able write down the characters of
the recovery key and store it in a secure place. The pseudocode for the recovery code
generation algorithm is illustrated below:

function generate_recovery_code():
r := openssl_RAND_bytes(15)
k := BASE32_NOPAD.encode(r)
return format("{}-{}-{}-{}-{}-{}", key[0:4], key[4:8], key[8:12],

key[12:16], key[16:20], key[20:24])

In precisely the same way as described above for your primary password, your recovery code
is used to generate a cryptographic key: the Recovery Code Derived Key (rcdk) using the
same key derivation function and parameters. Your rcdk can only be generated by you and
never leaves the device, so attackers without knowledge of your recovery code won’t be able
to decrypt downstream cryptographic key material and access your stored items.

12 SP 800-131A Rev. 2 - Transitioning the Use of Cryptographic Algorithms and Key Lengths recommends a key
size of at least 112 bits of security.

13

https://datatracker.ietf.org/doc/html/rfc4648#section-6
https://csrc.nist.gov/publications/detail/sp/800-131a/rev-2/final

A word about your recovery code
It is very important to keep this recovery code in a safe location. If you ever forget
your primary password, this recovery code will be the only way to recover access to
the vault and change your primary password.

ExpressVPN Keys has no knowledge of your primary password or your recovery code,
so if you lose both, your vault will be permanently encrypted and all your data will be
effectively lost.

The ppdk and rcdk both have the ability to unlock your vault. In order to allow two different
keys to have access to the same information, we use something called a User Root Key.

User Root Key, User Document Key, and Encrypted User Record
The User Root Key is a 256-bit, randomly generated AES key used to protect the cryptographic
key that actually encrypts and decrypts your stored items. That key, known as the User
Document Key, is also a 256-bit, randomly generated AES key. This two-tier approach enables
users to change their primary password without ever having to decrypt the entire vault and
re-encrypt using a new User Document Key. What happens in the background is that the User
Root Key is simply re-encrypted with the new password.

14

Unset

This also enables changing the recovery code if needed: the app can present the user with a
new recovery code and re-encrypt the User Root Key to be re-encrypted using the newly
derived key.

For an additional layer of security, if the user changes both the primary password and the
recovery code at the same time, then we also opportunistically rotate the User Root Key and
encrypt the new one with both keys.

The Encrypted User Record is first generated locally using the following information:

EncryptedUserRecord {
primary_password_key: EncryptedUserRootKey,
recovery_code: EncryptedUserRootKey,
identity: PublicKey
body: EncryptedUserRecordBody

}

The identity above is the same identity used for authentication in the previous chapter. The
primary_password_key is an encrypted vector that decrypts to the User Root Key.

Suppose the following function prototype for AES-256-GCM13:

AES-256-GCM_encrypt(data_to_encrypt, key, IV)

The primary_password_key and recovery_code are defined as follows, using a random 12 byte
initialization vector (IV)14.

14 NIST SP 800-38D - Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC allows the use of an RBG-based construction of IVs as long the randomness is sufficient and the
number of encryption invocations do not exceed 232 invocations.

13 The Advanced Encryption Standard (AES) is a symmetric key block cipher that splits input data into 128-bit
padded blocks and encrypts them with various keys derived from the user provided key. We use 256-bit
randomly generated keys, which gives the maximum possible strength, and we apply the Galois/Counter Mode
(GCM) allowing for authenticated encryption with associated data. This means that an authentication tag is
generated, allowing for detection if the ciphertext is ever modified. We use OpenSSL’s implementation of
AES-GCM in ExpressVPN Keys.

15

https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://doc.servo.org/openssl/symm/fn.encrypt_aead.html

Unset

user_root_key15 := rand_bytes16(32)
primary_password_key := AES-256-GCM_encrypt(user_root_key, ppdk, RAND_bytes(12))
recovery_code := AES-256-GCM_encrypt(user_root_key, rcdk, rand_bytes(12))

We then use the user_root_key and encrypt the UserRecordBody using the below operation:

body := AES-256-GCM_encrypt(UserRecordBody, user_root_key, rand_bytes(12))

The body stored in the EncryptedUserRecord is the encrypted version of the
UserRecordBody data structure below:

UserRecordBody {
document_key: UserDocumentKey
user_private_key: PrivateKey

}

where document_key is a User Document Key that is generated locally as below:

document_key17 := rand_bytes(32)

This User Document Key is a 256-bit AES key that is used to encrypt items (i.e., your
passwords, credit/debit cards, secure notes, associated metadata, or any other information
that may be stored in your vault). This key is extremely important—any access to this key
enables access to your passwords and other data in the vault. As noted above, the User
Document Key is secured and encrypted with the User Root Key, which in turn is further
secured by a key derived from your primary password (ppdk) or from your recovery code
(rcdk).

Lastly, in the User Record, the user_private_key (or the Private Identity Key) is the RSA
private key associated with the identity seen in the EncryptedUserRecord, and will be used
to sign messages to the API servers (see previous chapter), and is secured in a similar manner.
In the end, when your ExpressVPN Keys account is created, only the Encrypted User Record
leaves your device, where it is transmitted and stored on the ExpressVPN Keys servers.

17 The User Document Key is never stored on the filesystem in plaintext and is decrypted as needed to
access the contents of your vault.

16 This is Web Crypto API’s getRandomValues function on our browser extension, and OpenSSL’s RAND_bytes
on other platforms.

15 The User Root Key is never stored on the filesystem in plaintext and is decrypted as needed to access the
User Document Key to read the contents of your vault.

16

https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues
https://www.openssl.org/docs/manmaster/man3/RAND_bytes.html

The above process may seem complex, but it is the foundation for the security of ExpressVPN
Keys. Because the User Document Key and the User Root Key never leave your device
unencrypted, no one at ExpressVPN, nor any attacker who may compromise any infrastructure
at ExpressVPN, has access to the keys needed to decrypt your stored items or the Encrypted
User Record. This is the core benefit of zero-knowledge encryption: only you, with your
primary password or recovery code, have the power to decrypt your stored items.

A day in the life of a password
To explore how this all works in the context of your passwords, let’s look at the life of a typical
item you might store in Keys: a single login (username and password).

Storage
This is what happens when you store a login in Keys:

1. You sign in to ExpressVPN Keys with step-up authentication.

2. The Encrypted User Record is retrieved from the ExpressVPN Keys server.

3. You provide the primary password18 so the ppdk can be generated locally.

4. The ppdk is used to decrypt the encrypted User Root Key in the Encrypted User
Record.

5. The User Root Key is used to decrypt the encrypted User Document Key and Private
Identity Key in the Encrypted User Record Body.

6. The metadata of the login to be stored (e.g., the username and the domain where the
login should be filled) is first encrypted19 using AES-256-GCM and the User Document
Key and stored in the metadata field of the document record d.

7. The actual password (or the body of the document) is then encrypted20 using
AES-256-GCM and the User Document Key and stored in the body field of the same
document record d.

20 Similarly, AES-GCM with up to 128 bytes of additional padding makes it resistant to both read and read-write
adversaries. The padding is especially important here since short passwords (up to a 16-byte resolution) may
be targeted by adversaries.

19 While the original construction using AES-GCM is already IND-CPA secure (ciphertexts are sufficiently
randomized given the same input and therefore IND-CDBA secure—meaning an read-only adversary cannot
glean any meaningful information from the vault), the metadata is further padded by up to 128 bytes to prevent
a length side channel from leaking the actual length of the metadata (or specifically, the domain), therefore it is
nearly impossible to glean the actual domain from encrypted ciphertext of the metadata. We note that
AES-GCM is an AEAD cipher and is resistant against a read-write adversary as per the MAL-CDBA game. See
On the Security of Password Manager Database Formats (Gasti and Rasmussen, 2012) for more details.

18 The recovery code would also allow the user to retrieve the User Document Key and the primary password is
used for the sake of illustration.

17

https://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf
https://www.cs.ox.ac.uk/files/6487/pwvault.pdf
https://www.cs.ox.ac.uk/files/6487/pwvault.pdf

8. An API call to /sync is made, where new encrypted document record(s) d are signed
with the Private Identity Key using RSA-PSS and sent upstream to the server.

9. The server verifies the signed message using the Public Identity Key and stores the
encrypted document record in the database.

Autofill
And this is what happens when, after you visit a website or app whose login you’ve stored in
Keys, you want to autofill that login’s username and password:

1. You sign in to ExpressVPN Keys via step-up authentication.

2. The Encrypted User Record is retrieved from the ExpressVPN Keys server.

3. You provide the primary password to the ExpressVPN Keys application so the ppdk can
be generated locally.

4. The ppdk is used to decrypt the encrypted User Root Key in the Encrypted User
Record.

5. The User Root Key is used to decrypt the encrypted User Document Key and Private
Identity Key in the Encrypted User Record Body.

6. An API call to /documents is made, signed with the Private Identity Key using RSA-PSS,
and the encrypted documents are retrieved from the server.

7. The server verifies the signed message using the Public Identity Key and returns the list
of documents stored for the particular user.

8. The metadata of the documents are decrypted using the User Document Key, allowing
Keys to match against domains with existing password entries.

9. Only when requested21, the body of the document d is decrypted with the User
Document Key, revealing the password stored for the domain.

10. ExpressVPN Keys autofills the password on the domain, as instructed.

Most of this happens in the background, of course. As the user, you experience this process in
a matter of moments as you sign in to Keys, visit a site or app, and witness your stored
username and password conveniently autofilled into the login screen.

21 See the section on Autofill security for more on when we allow this.

18

Summary of cryptographic keys
To help you keep track of all the “keys” used in Keys, here’s a summary of cryptographic keys
in table and diagram forms:

Name Algorithm Purpose Stored
Server-side?

Encrypted
With?

Primary
Password
Derived
Key
(ppdk)

Generated via PBKDF2
with SHA512 HMAC, 32
byte salt, 200000
iterations

Used for AES-256-GCM

Key size: 256-bits

AES key derived using
the user provided
primary password,
used to
encrypt/decrypt the
User Root Key

NO N/A

Recovery
Code
Derived
Key (rcdk)

Generated via PBKDF2
with SHA512 HMAC, 32
byte salt, 200000
iterations

Used for AES-256-GCM

Key size: 256-bits

AES key derived using
the randomly generated
recovery code, used to
encrypt/decrypt the
User Root Key

NO N/A

User Root
Key

Generated randomly
using a CSPRNG

Used for AES-256-GCM

Key size: 256-bits

Used to
encrypt/decrypt the
Encrypted User Record
containing the User
Document Key and
Private Identity Key

YES,
encrypted

Encrypted
using the
ppdk and
the rcdk

User
Document
Key

Generated randomly
using a CSPRNG

Used for AES-256-GCM

Key size: 256-bits

Used to
encrypt/decrypt
document metadata
and body

YES,
encrypted

Encrypted
using the
User Root
Key

Public
Identity
Key

Generated randomly
using a CSPRNG

Used for RSA-PSS
verification

Key size: 4096-bits

Used by the server to
verify API requests to
the Password Manager
is from a legitimate user
with access to the vault

YES N/A

Private
Identity
Key

Generated randomly
using a CSPRNG

Used for RSA-PSS
signing

Key size: 4096-bits

Used by the client to
sign API requests to the
Password Manager
server to authenticate
as a user with access to
the vault

YES,
encrypted

Encrypted
using the
User Root
Key

19

20

5. Password Health
Beyond storing and retrieving your logins, ExpressVPN Keys also helps you monitor and
improve their security with a feature we call Password Health.

Password Health gives a percentage score for the “health” of your vault. This score takes into
consideration several factors for each login stored in your vault. The score is calculated locally
on your device without sending any passwords (or any other element of your stored login) to
any server.

In order of decreasing importance, the factors for each login included in the health score are:

1. Has the password been exposed in a known data breach?22

ExpressVPN Keys lets you know whether your passwords have been exposed in data
breaches aggregated by HaveIBeenPwned. Your passwords are never shared with
ExpressVPN, HaveIBeenPwned, or any external parties during this process, as we’ll
explain in Section 5.1. If you do not wish to check for exposed passwords, you can
always disable this feature in the app settings.

2. Is the password used for more than one login in your vault?
Reusing passwords puts you at greater risk from data breaches. If any one of the sites
are breached then the attacker potentially gains access to all of the sites where the
same password was reused. ExpressVPN Keys checks whether your passwords are
used by more than one login in a privacy-preserving way, ensuring your passwords are

22 This feature is currently available on iOS and Android, and coming soon to the browser extension.

21

https://haveibeenpwned.com/

not decrypted and loaded into memory unless absolutely necessary (i.e., if we find that
two hash prefixes match and must briefly decrypt to check for an exact match).

3. How strong is the password?
ExpressVPN Keys uses the industry-standard zxcvbn to provide a measure of a
password’s resistance to guessing or brute-force attacks. A password is considered
weak if it could be easily crackable in a matter of hours or days.

4. Does the login contain a 2FA code (if the domain is known to support it)?
ExpressVPN Keys uses data provided by the 2FA directory to determine if the domain of
the login supports 2FA via TOTP, a time-based one-time password algorithm. The check
is performed locally using a built-in database, so no request is needed to any server.
2FA improves your security by providing each account with a constantly changing
one-time code. If a code is leaked then, unlike a password, it will become useless
shortly afterwards. Therefore, for sites that support TOTPs, ExpressVPN Keys will
encourage you to configure it. For sites not covered by the 2FA directory, you can still
configure a TOTP.

5. Does the login contain a domain that uses HTTP?
Connections made using HTTP (as opposed to HTTPS) are not encrypted, meaning your
carefully generated secure password would be sent to the site in plaintext, vulnerable to
interception or observation by an attacker.

If a login falls short on any of the above factors, Keys will guide you through updating the
relevant factor to improve the security of that login, and the overall Password Health of your
vault.

Data breach detection
ExpressVPN Keys uses HaveIBeenPwned (HIBP) to provide monitoring and alerting of whether
your passwords have ever been compromised by a data breach.

The HIBP APIs are carefully designed using k-anonymity to ensure that your data is never
shared directly with the provider of the service and that even an attacker observing the traffic
to those services does not gain useful insights into the data.

This is achieved by dividing the results into buckets of at least k entries. This ensures that the
response associated with your password or email is indistinguishable from at least k-1 other
entries. The buckets have been defined by HIBP such that k is always at least several hundred
responses.

HIBP achieves this by taking an SHA1 hash of the relevant data (either a password or an email
address) and requesting the buckets of results corresponding to the first N hexadecimal
characters of that hash. For passwords, N is 5 (meaning there are 1,048,576 buckets) and for
emails, N is 6 (corresponding to 16,777,216 buckets). Both values of N were chosen to ensure

22

https://github.com/dropbox/zxcvbn
https://www.expressvpn.com/blog/how-attackers-brute-force-password/
https://2fa.directory/
https://haveibeenpwned.com/
https://en.wikipedia.org/wiki/K-anonymity
https://en.wikipedia.org/wiki/SHA-1

that each bucket contains hundreds of results, typically on the order of 800 results. The results
then include all the known hash suffixes (the remaining 40-N hexadecimal characters) and the
corresponding leak or breach information.

Let’s say one of your stored passwords is “Passw0rd”. The SHA1 of the string “Passw0rd” is

EBFC7910077770C8340F63CD2DCA2AC1F120444F

Taking the first five characters, we get the range EBFC7. We request that range from HIBP and,
at time of writing23, we received a response with 823 results24. Within those results we search
for the hash and find a single result:

910077770C8340F63CD2DCA2AC1F120444F:93254

Indicating that the password “Passw0rd” has been seen in data breaches 93,254 times. Note
that any attacker who might observe the request for range EBFC7 would not be able to
distinguish this from the 822 other results in that bucket.

If instead we use a randomly generated password like “!zH%g7\"B/0DLhcl5”, which hashes to:

0C15D86EBD64CCD8A73AAD731B575C69F942943A

Then we look up the range 0C15D and we do not find the suffix 86EBD…2943A in the 849
results, indicating that “!zH%g7\"B/0DLhcl5” has never been seen in a data breach.

To allow ExpressVPN Keys to make these checks without requiring that the actual password is
decrypted unless absolutely necessary, the 5-character prefix is stored in document metadata
so as to be available when the vault is unlocked (unlike the password itself, which remains
encrypted until specifically required).

In addition to passwords, Keys can also help you check whether your email address has been
found in a data breach through HIBP25. The process is the same as above except HIBP uses the
first 6 characters as the range. For example, the email address
“expressvpnkeys-user@example.com” hashes to:

25 Note that breach checks using an email address are performed only when requested by the user, while
breach checks for stored items in Keys are performed continuously as part of Password Health.

24 For the purposes of this example, we have not requested padding from the HIBP API. ExpressVPN Keys
always requests padding, which helps obscure the request even from attackers who can observe the TLS
encrypted request by preventing them from making estimations based on the sizes of responses.

23 HIBP frequently ingests new data breaches from a variety of sources, so this number will grow.

23

https://haveibeenpwned.com/API/v3#SearchingPwnedPasswordsByRange

B103C9FF83BBF97F00BF5ED14AF44813E60AAAD9

Then we look up the range B103C9 and check for the suffix FF83B…AAAD9.

The k-anonymity design of the HIBP APIs mean that an attacker does not learn anything about
the data we are requesting. This same property extends to the operators of the HIBP service
themselves: we don’t have to trust them at all even though they can see all the requests being
made.

ExpressVPN Keys takes a further step and provides additional privacy guarantees to prevent
any association of the request to your account or IP address. Instead of making requests
directly to the HIBP servers, ExpressVPN Keys instead makes requests through a proxy that we
run for this purpose. HIBP never sees the real IP address of an ExpressVPN Keys user; instead
they see an IP address associated with ExpressVPN Keys infrastructure. The result is that HIBP
is not aware that specifically you were interested in ranges EBFC7 and 0C15D (each containing
800+ results) but only that some ExpressVPN Keys users were interested in those ranges. This
adds an additional layer of anonymity to the requests made by you and other ExpressVPN Keys
users.

ExpressVPN Keys takes one final step to preserve the anonymity of requests for commonly
used passwords. For example, the password “password” is found in bucket 5BAA626 9,659,365
times. The other 814 results in that bucket have only been seen 16,160 times between them.
This means that an attacker who observes a request for bucket 5BAA6 can guess, with a
reasonable certainty of success, that the password behind the request is “password”27.

To guard against this, ExpressVPN Keys embeds a corpus of the top 25,000 most reused
passwords from the HIBP database locally, so that it can warn users that the passwords have
been leaked without having to make any external API requests.

27 This is why ExpressVPN Keys encourages the use of strong, randomly generated passwords. Even if they
happen to hash to bucket 5BAA6, the attacker’s guess would be wrong.

26 “password”’s SHA-1 is 5BAA61E4C9B93F3F0682250B6CF8331B7EE68FD8

24

6. Supply chain security

Internally developed code
All components of the ExpressVPN application, including ExpressVPN Keys, are rigorously
reviewed by both human developers and automated systems before being accepted and
merged. These systems are used to enforce security properties all the way from the code that
ships the application to that code included in the shipped ExpressVPN application. These
systems are designed from the ground up to provide defense-in-depth, making it difficult for
adversaries to ship malicious code and preventing the compromise of any single machine or
developer from affecting the ExpressVPN Keys codebase or wider ExpressVPN codebase.

The first step in this process is human review. No code can be accepted into a release branch
of ExpressVPN Keys unless it has been approved by a developer other than the author. When a
pull request (PR) is marked as approved, a continuous integration (CI) bot then checks that the
approver is not the author of any commit in that PR, and if a reviewer is indeed conflicted (i.e.,
authored some of the code) then the PR is not approved for merge and a second,
non-conflicted reviewer must approve.

The next step is automated checks. All commits must be signed by a hardware security device
(YubiKey) that is tied to a developer at ExpressVPN. Every PR and every commit is checked by
a CI bot to ensure that this is the case. The presence of an unsigned commit, or one that is not
signed by an approved YubiKey, will block the PR from merging. The YubiKeys used for this
require a physical touch operation and a passphrase before they will sign anything. This means
without possession of the physical key itself, even if a developer’s machine were compromised,
the private keys that are embedded into the YubiKey are not at risk of being stolen.

Finally, even after a code change makes it onto a release branch, the signatures created by the
YubiKeys are still checked. Only CI builds performed on branches that consist entirely of
suitably signed code produce any artifacts, therefore any shippable artifacts are very unlikely
to be tainted with unsigned, malicious code.

Third-party code
As part of ExpressVPN Keys CI/CD systems, we also perform various checks to ensure the
source code that we consume from third parties remains secure and up to date.

First, we regularly run tooling (cargo deny) against the ExpressVPN Keys codebase, which
checks for new RustSec advisories issues against our third-party dependencies. This means
that if a new issue is discovered, we can immediately start work on an update that corrects the
vulnerability.

Second, we commit to our version control a manifest (Cargo.lock) that enumerates all of our
third-party dependencies. This manifest includes a SHA256 checksum of the dependency,

25

https://www.expressvpn.com/blog/build-verification-system-prevents-malware/
https://www.expressvpn.com/blog/code-integrity-primer-github-commit-signature-verification-via-yubikey/
https://rustsec.org/

meaning that an attacker cannot substitute a compromised version of a dependency without
getting a change committed directly to our version control system, which as we have shown
above is a monumental task for an adversary. This means we always know the version of the
code we are shipping and that it is not changing unexpectedly. To ensure we do not miss
improvements and updates to third-party code, we also run tooling that lets us know about
new versions of dependencies that are not tied to a RustSec advisory.

The above checks apply not just to the code that makes it into the ExpressVPN app but also to
the service side infrastructure, ensuring that no malicious code can be pushed from a single
point of compromise and making sure that dependencies on our servers are up to date.

Finally, permission to deploy to the production infrastructure requires approval from a specific
subset of developers, thus limiting the risk of insider threat through the principle of least
privilege.

ExpressVPN’s build verification process has been independently audited by experts at PwC
Switzerland.28 For more on third-party assessments, see the section on external security
audits.

28 Results of this and other audits are available to ExpressVPN customers on our Privacy and Security
Audits page.

26

https://www.expressvpn.com/security-audits
https://www.expressvpn.com/security-audits

7. Hardening our apps
Thus far we’ve talked about how we secure communications between the server and the
ExpressVPN Keys application, as well as the cryptography that secures your vault. But what
happens after the vault is unlocked is equally important.

In this section, we explore the security measures in our mobile apps and browser extension
that further minimize the risk of your stored items being exposed.

Stored items remain encrypted until used
Unlocking your vault decrypts the metadata about the vault and each document within it, but it
does not decrypt the body of any document. This means that login passwords, TOTPs, the
bodies of your secure notes, and your credit/debit card numbers and their security codes
remain encrypted until exactly when they are used, i.e.:

● when you choose to reveal them in the UI, or

● copy them to your clipboard, or

● use them to autofill a login field

Autofill security
When you visit a website with your vault unlocked, ExpressVPN Keys will prompt you to
automatically fill in (autofill) your login credentials for that website, if they are in your vault.

While the act of populating usernames and passwords into a webpage might seem simple,
there are a lot of complexities around how to do that securely, especially given the possibility
that the website itself could be hostile. The website could be lying about its identity (e.g.,
pretending to be gmail.com), and with some malicious scripting could attempt to harvest all
credentials by forcing the password manager’s browser extension to autofill them into a field
that the attacker controls.29 Similar attacks can be employed on mobile devices as well.

We employ two mechanisms to prevent credential harvesting threats:

1. We strictly require user interaction before credentials are populated, so the user is
always aware of what credential they are filling into the form. Anything that seems out
of the ordinary will immediately sound alarm bells.

2. We also require strict checks on the domain where the credentials are populated. In
particular, we will only fill in the credential if the domain matches30 the one for the
credential in ExpressVPN Keys. If the subdomains are different, a warning is displayed

30 This is a match on the domain name (and all subdomains) and each port is treated as a unique match.
29 This was studied extensively in Password Managers: Attacks and Defenses (Silver et al., 2014).

27

https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-silver.pdf

and the user has to approve the request before the credentials are autofilled. We
determine the correct domain via trusted API calls31 on the browser extension, Android,
and iOS, rather than anything mutable from an attacker’s perspective.

The two mechanisms described significantly raise the difficulty level of attempting an attack
on Keys’ autofill mechanism. We further augment these defenses with regular internal and
external security assessments to ensure that our implementation of the autofill is hardened to
various attack vectors, even potentially novel ones.

Security screen
When multitasking on mobile applications, you could potentially make a mistake and take a
screenshot of your password manager screen when it is in the background, potentially with the
password exposed. With security screen32 enabled, your screenshots will not capture anything
while ExpressVPN Keys is in the background.

Biometric unlock
Enabling biometric unlock in Keys on mobile lets you access your stored items using your
fingerprint or face instead of your primary password. This feature is protected by each
platform’s native authentication security:

On iOS, we allow authentication by Face ID and Touch ID on all devices running iOS 15 and
above.

On Android, we allow biometric unlock only on devices with the most secure class of biometric
sensor (Class 3).

32 Note that this is a feature on mobile versions of ExpressVPN Keys and is not available on the browser due to
limitations on the operating system and browser extension interface.

31 On Android, this performs package verification as per AutofillService documentation. On Chrome, we use the
properties of the Tab object, accessed from the background script. On iOS, we use
ASCredentialServiceIdentifier.

28

https://source.android.com/docs/security/features/biometric/measure#biometric-classes
https://developer.android.com/reference/kotlin/android/service/autofill/AutofillService.html#package-verification
https://developer.chrome.com/docs/extensions/reference/tabs/#type-Tab
https://developer.apple.com/documentation/authenticationservices/ascredentialserviceidentifier

8. Server and cloud infrastructure
Since unencrypted user data never leaves the user’s device, ExpressVPN Keys’ cloud server
infrastructure is never called upon to process or store it. Still, our infrastructure has been
architected to follow strict security best practices.

First, Keys infrastructure is completely separate from any other ExpressVPN infrastructure.
This includes accounts, subscription services, and all VPN servers around the world. This
separation of concerns means that ExpressVPN Keys’ infrastructure is never exposed to any
personally identifiable information (PII), nor affected by any of your VPN traffic.

Like all ExpressVPN infrastructure, Keys infrastructure has been carefully designed around the
principle of least privilege, encryption at rest, as well as proactive monitoring and alerting to
detect any issues.

By default, Keys infrastructure contains no permanent administrative services. All administrator
access is performed using bastion hosts that are created on demand and destroyed when not
in use. Access to create these bastion hosts is granted by a specific administrative role that
has minimal privileges, and access is gated by 2FA backed by hardware devices (YubiKeys)
and a passphrase known only to the owner of the hardware security device. Once they are
created, the bastion hosts are only accessible from a specific list of trusted source IPs and
again with a YubiKey.

Direct administrative access is rarely, if ever, required in Keys infrastructure—everything
possible has been automated. Therefore, any creation of identity and access management
(IAM) roles or cloud credentials that are able to create a bastion host—even the bastion host
creation event itself—will generate a security alert that must be acknowledged or else it is
escalated to a dedicated security operations center (SOC).

Different administrative duties are each given a distinct role (even though they may be
performed by the same person), and each role is granted only the minimum privileges to
perform that specific task. Access to any role requires authentication using a YubiKey device.
All access credentials are disabled when not in use, and this is monitored automatically such
that if a set of credentials are left enabled, this will be flagged for action by the SOC.

Where automation requires infrastructure access, we likewise ensure that dedicated roles with
the minimal required privileges are used and that every environment has separate users and
separate credentials so that environments cannot impact one another. This includes CI/CD jobs
where the final deployment step requires authorization by an administrator before the job is
granted access to the required credentials.

Other properties that are automatically monitored include the creation of new accounts and
the creation of new security credentials. All events are also fed into a security information and
event management (SIEM) system, which monitors and alerts on any anomalous activity.

29

9. Security audits

Internal
As we developed ExpressVPN Keys, our internal security team conducted an extensive review
of the threat landscape and vulnerabilities that can affect password managers, resulting in the
following battery of test cases and scenarios we use when performing our own security
assessments:

30

External
To help us continually improve Keys, we also commission security audits with reputable
external vendors. In a series of third-party audits, we requested Cure53, an independent
security vendor, to evaluate the security posture of ExpressVPN Keys on iOS, Android, and the
Chrome extension. Specifically, Cure53 focused on whether a threat actor could perform the
following exploits on the ExpressVPN Keys application:

● Gain ability to access and steal the vault via any remote means, including inter-process
communication (IPC) mechanisms

● Extract or modify secrets stored in the password manager vault

In all three assessments, the security stance of ExpressVPN Keys was perceived positively by
the assessors. We have reproduced excerpts from the reports here, with the full report linked
below each:

“Generally speaking, the overall yield of findings is relatively moderate in comparison
with similarly scoped audits, which would typically represent a positive indication of
the inscope items’ perceived security strength.”

Cure53 Pentest-Report ExpressVPN Keys Browser Extension 09.-10.2022

“The ExpressVPN Keys password manager was also deemed resilient against Unicode
related origin confusion attacks… Given the importance of login credentials to the
overall framework, the security of the data at rest was rigorously assessed. In this
regard, the cryptographic functions utilized by the password manager to store the
credentials garnered a solid impression on the whole.”

Cure53 Pentest-Report ExpressVPN Android Client App & Integrations 08.2022

“Additionally, the password manager integration and associated features were
examined in-depth by Cure53. Positively, no client-side issues were detected in the
UI components. The matching of domains, subdomains, and the integration of the
Autofill feature within the iOS ecosystem were also soundly handled in general.”

Cure53 Pentest-Report ExpressVPN iOS App 08.-09.2022

31

https://www.expressvpn.com/blog/cure53-keys-password-manager-app-audit/
https://cure53.de/pentest-report_expressvpn-keys-extension.pdf
https://cure53.de/pentest-report_expressvpn-android.pdf
https://cure53.de/pentest-report_expressvpn-ios.pdf

Further, ExpressVPN Keys is continuously tested by security researchers from around the
world. All components of ExpressVPN Keys are in scope as part of our bug bounty program. If
you find any issues that violate the security guarantees laid out in this document, please report
them to us through this program at your earliest convenience.

32

https://bugcrowd.com/expressvpn

Bibliography
Barker, E. (2009, September). Recommendation for Digital Signature Timeliness. NIST SP

800-102, Recommendation for Digital Signature Timeliness.

https://doi.org/10.6028/NIST.SP.800-102

Barker, E., & Dang, Q. (2015, January). Recommendation for Key Management, Part 3:

Application-Specific Key Management Guidance. NIST SP 800-57 Part 3 Rev. 1,

Recommendation for Key Management, Part 3: Application-Specific Key Management

Guidance. https://doi.org/10.6028/NIST.SP.800-57pt3r1

Barker, E., & Roginsky, A. (2019, March). Transitioning the Use of Cryptographic Algorithms and

Key Lengths. NIST SP 800-131A Rev. 2, Transitioning the Use of Cryptographic

Algorithms and Key Lengths. https://doi.org/10.6028/NIST.SP.800-131Ar2

Bellare, M., & Rogaway, P. (1998, August). PSS: Provably Secure Encoding Method for Digital

Signatures. IEEE P1363.

Bormann, C., & Hoffman, P. E. (2020, December). Concise Binary Object Representation

(CBOR). RFC 8949. https://www.rfc-editor.org/info/rfc8949

Dworkin, M. (2007, November). Recommendation for Block Cipher Modes of Operation:

Galois/Counter Mode (GCM) and GMAC. NIST SP 800-38D, Recommendation for Block

Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC.

https://doi.org/10.6028/NIST.SP.800-38D

Gasti, P., & Rasmussen, K. B. (2012). On the Security of Password Manager Database Formats.

In Computer Security - ESORICS 2012 - 17th European Symposium on Research in

Computer Security, Pisa, Italy, September 10-12, 2012. Proceedings (pp. 770-787).

Springer. https://doi.org/10.1007/978-3-642-33167-1_44

Grassi, P., Newton, E., Fenton, J., Perlner, R., Regenscheid, A., Burr, W., Richer, J., Lefkovitz, N.,

Danker, J., Choong, Y.-Y., Greene, K., & Theofanos, M. (2017, June). Digital Identity

Guidelines: Authentication and Lifecycle Management. NIST SP 800-63B - Digital

33

Identity Guidelines: Authentication and Lifecycle Management.

https://doi.org/10.6028/NIST.SP.800-63b

Jones, M. B. (2015, May). JSON Web Algorithms (JWA). RFC 7518.

https://www.rfc-editor.org/info/rfc7518

Jones, M. B., Bradley, J., & Sakimura, N. (2015, May). JSON Web Token (JWT). RFC 7519.

https://www.rfc-editor.org/info/rfc7519

Josefsson, S. (2006, October). The Base16, Base32, and Base64 Data Encodings. RFC 4648.

https://www.rfc-editor.org/info/rfc4648

Kaliski, B. (2000, September). PKCS #5: Password-Based Cryptography Specification Version

2.0. RFC 2898. https://www.rfc-editor.org/info/rfc2898

Kerckhoffs, A. (1883, January). La cryptographie militaire. Journal des sciences militaires, IX,

5-38.

Li, Z., He, W., Akhawe, D., & Song, D. (2014). The Emperor's New Password Manager: Security

Analysis of Web-based Password Managers. In Proceedings of the 23rd USENIX

Security Symposium, San Diego, CA, USA, August 20-22, 2014 (pp. 465-479). USENIX

Association.

Mckay, K., & Cooper, D. (2019, August). Guidelines for the Selection, Configuration, and Use of

Transport Layer Security (TLS) Implementations. NIST SP 800-52 Rev. 2, Guidelines for

the Selection, Configuration, and Use of Transport Layer Security (TLS)

Implementations. https://doi.org/10.6028/NIST.SP.800-52r2

Oesch, S., & Ruoti, S. (2020). That Was Then, This Is Now: A Security Evaluation of Password

Generation, Storage, and Autofill in Browser-Based Password Managers. In 29th USENIX

Security Symposium, USENIX Security 2020, August 12-14, 2020 (pp. 2165-2182).

USENIX Association.

Rescorla, E. (2018, August). The Transport Layer Security (TLS) Protocol Version 1.3. RFC

8446. https://www.rfc-editor.org/info/rfc8446

34

Rescorla, E., & Dierks, T. (2008, August). The Transport Layer Security (TLS) Protocol Version

1.2. RFC 5246. https://www.rfc-editor.org/info/rfc5246

Rogaway, P. (2002, November). Authenticated-encryption with associated-data. Proceedings

of the 9th ACM Conference on Computer and Security, CCS 2002, Washington, DC,

USA, 98-107. https://doi.org/10.1145/586110.586125

Rogaway, P. (2011, February 10). Evaluation of Some Blockcipher Modes of Operation.

https://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf

Samarati, P., & Sweeney, L. (1998). Protecting Privacy when Disclosing Information:

k-Anonymity and Its Enforcement through Generalization and Suppression. Technical

Report SRI-CSL-98-04. https://www.csl.sri.com/papers/sritr-98-04/

Schaad, J. (2005, June). Use of the RSASSA-PSS Signature Algorithm in Cryptographic

Message Syntax (CMS). RFC 4056. https://www.rfc-editor.org/info/rfc4056

Shannon, C. (1949, October 4). Communication Theory of Secrecy Systems. Bell System

Technical Journal, 28(4), 662. https://doi.org/10.1002/j.1538-7305.1949.tb00928.x

Sheffer, Y., Hardt, D., & Jones, M. B. (2020, February). JSON Web Token Best Current

Practices. RFC 8725. https://www.rfc-editor.org/info/rfc8725

Silver, D., Jana, S., Boneh, D., Chen, E., & Jackson, C. (2014, August). Password Managers:

Attacks and Defenses. Proceedings of the 23rd USENIX Security Symposium, San

Diego, CA, USA, August 20-22, 2014, 449-464.

Wheeler, D. L. (2016). zxcvbn: Low-Budget Password Strength Estimation. In 25th USENIX

Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016 (pp.

157-173). USENIX Association.

Glossary
● 2FA: two-factor authentication, a security mechanism that requests the user to provide

two separate, distinct forms of identification before privilege is granted

35

● AEAD: see authenticated encryption with associated data

● AES: Advanced Encryption Standard, an industry specification for encrypting data with
symmetric keys

● AES-256-GCM: a mode for AES that uses 256-bit keys and the Galois/Counter Mode
that ensures both confidentiality and integrity of the data

● API: Application Programming Interface, a set of definitions and contracts that enable
different systems to communicate and interact with each other

● authenticated encryption with associated data: an encryption scheme that ensures
confidentiality of the data and authenticity, potentially with additional information that
has its integrity protected

● authentication: the process of validating and verifying the identity of a user before
granting access privileges to a system

● authenticity: the property of being unforgeable, meaning that there exists
cryptographic evidence that the request was made by the sender

● authorization: the process of giving access privileges to a system

● autofill: an input method that takes data from a data source and automatically fills the
data on a web page or application, based on the context of the fields to be filled in

● Base32: an encoding of byte data to a restricted set of 32 writable symbols as defined
in RFC4648

● bastion host: a hardened server used to manage access to an internal/private network
from an external network to minimize the attack surface exposed onto the external
network

● bit: binary digit consisting of either 0 or 1

● brute-force attacks: the process of enumerating all possibilities in order to gain access
to a system

● bug bounty program: a program that allows researchers to report security issues and
receive recognition and compensation for valid issues

● byte: 8 bits, typically the smallest addressable unit of memory on computers, which
encodes a single character

● CA: see certificate authority

36

● CBOR: see Concise Binary Object Representation

● CD: see Continuous Delivery

● certificate authority: an entity that stores, signs, and issues digital certificates

● certificate: also known as a public key certificate, this is an electronic identifier for a
given entity with a digital signature issued by a certificate authority

● Chromium: the open-source web browser on which many other web browsers are
based

● CI: see Continuous Integration

● CI/CD: Continuous Integration/Continuous Delivery

● cipher suites: a set of cryptographic algorithms used in TLS to establish secure
communications, with different cipher suites offering different levels of security

● cloud credentials: an electronic proof of identity used to authenticate to cloud
resources

● commit a snapshot of the current state of the codebase in Git

● Concise Binary Object Representation: a binary data serialization format as defined in
RFC 8949

● confidentiality: the property of secrecy or privacy of data, usually achieved with
encryption

● Continuous Delivery: a software development practice where code changes are
automatically prepared for release or production

● Continuous Integration: a software development practice where code changes are
automatically tested when pushed upstream

● defense-in-depth: the practice of leveraging multiple layers of security measures to
achieve a security goal

● deserialization: a process by which a byte stream representing an object is
re-structured back into a fully functional object at runtime

● document: a generic storage for a record in the vault, consisting of encrypted metadata
and the encrypted contents (see stored item)

37

● Document Object Model: the data representation of the objects that comprise the
structure and content of a document on the web

● DOM: see Document Object Model

● Encrypted User Record: a data record containing the ppdk-encrypted User Root Key,
the rcdk-encrypted User Root Key, the Public Identity Key, and Encrypted
UserRecordBody

● encryption: the process of protecting data by scrambling it with cryptographic
functions such that only an actor with the key can access the unscrambled data

● encryption at rest: the property that any data written to storage is always encrypted
(i.e., plaintext is never stored).

● HaveIBeenPwned: a website that allows users to check whether their personal data has
been compromised in data breaches

● HIBP: see HaveIBeenPwned

● HMAC: a hash-based message authentication code that uses a cryptographic hash
function together with a cryptographic key

● HTTP: Hypertext Transfer Protocol, for transmitting hypermedia documents like
webpages in a web browser

● HTTPS: Hypertext Transfer Protocol Secure, used to transmit hypermedia documents
securely by leveraging TLS

● IAM role: Identity and Access Management role, represents an identity that has specific
permissions to carry out the subset of operations that it is authorized to perform

● iframe: an HTML element on the DOM that loads another document within the current
page

● IND-CDBA: indistinguishability of databases, a property of a password manager
database that implies a read-only adversary cannot infer information on the records
stored in the password manager database

● IND-CPA: indistinguishability under chosen-plaintext attack, a security property that
implies an adversary that has access to an encryption oracle can infer useful
information for future encryptions based on the ciphertexts of those encryptions

● integrity: a security property that implies an adversary is not able to tamper with a
piece of information without being detected

38

● inter-process communication: a mechanism that allows different applications to
communicate and interact with each other

● IPC: see inter-process communication

● JWT: JSON Web Token, a standard for credentials as defined in RFC 7519

● k-anonymity: a property of a dataset that measures the degree of anonymity provided
by the dataset and reduces the risk of being uniquely re-associated with a particular
record

● KDF: see Key Derivation Function

● Kerckhoffs's principle: the principle that a cryptosystem should be secure even if
everything about the system, except the key, is public knowledge

● Key Derivation Function: a function used to derive secret keying material from a secret
and other information

● MAC: seemessage authentication code

● MAL-CDBA:malleability of chosen database game, a security property that implies a
password manager database can detect that it is being tampered with by a read-write
adversary that has access to an encryption oracle

● message authentication code: a digital tag used to authenticate a message and its
integrity

● nonce: a number that is only used once, employed in conjunction with a request to
prevent replay attacks

● OpenSSL: an open source software library for the TLS protocol

● Password Health: a score in ExpressVPN Keys representing the security of the logins in
your vault, taking into account previous exposure, re-use, strength, presence of 2FA,
and protocol used

● PBKDF2: Password-Based Key Derivation Function 2, a cryptographic function used to
generate cryptographic keys from passwords, as defined in RFC 2898

● perfect forward secrecy: a security feature of changing cryptographic keys so that
sessions are not compromised even in the event that the long term secret is
compromised

● personally identifiable information: data that can be used to identify a person,
including but not limited to names, addresses, phone numbers, and email addresses

39

● PFS: see perfect forward secrecy

● PII: see Personal Identifiable Information

● plaintext: any data that is not encrypted, sometimes called cleartext

● ppdk: see Primary Password Derived Key

● PR: see Pull Request

● primary password: the password used to unlock a Keys user’s vault, provided when the
user first signs in to ExpressVPN Keys

● Primary Password Derived Key: a cryptographic key derived from the primary
password; used to decrypt the encrypted User Root Key in the Encrypted User Record

● primitives:well-established, low-level algorithms (e.g., hash functions, key exchanges)
used as building blocks in a larger cryptographic system

● principle of least privilege: the principle that every module of a computer system should
only have access to the functions necessary for its legitimate use, and no more

● Private Identity Key: an RSA private key unique to each user, used to sign requests
made to the ExpressVPN Keys API server

● prototype pollution: a JavaScript vulnerability that enables an adversary to add
arbitrary properties to global object prototypes which may be inherited by other objects

● Public Identity Key: an RSA public key unique to each user, used to verify requests
made to the ExpressVPN Keys API server

● Pull Request: a mechanism in software development where a contributor signals to
others the intention to merge code changes from one source to another source

● rcdk: see Recovery Code Derived Key

● recovery code: a Base32 encoded, randomly generated string that can be used to
recover access to the ExpressVPN Keys vault if the primary password is forgotten or
lost

● Recovery Code Derived Key, a cryptographic key derived from the recovery code; used
to decrypt the encrypted User Root Key in the Encrypted User Record

● replay attack: an attack in which an adversary collects legitimate traffic then
retransmits it in an attempt to gain illegitimate access

40

● RS256: RSA+SHA256 as used in the JWT specifications to sign the JWT, defined in RFC
7518

● RSA: a public key cryptosystem used for secure data transmission, where a key pair
(public, private) is generated for use in cryptographic operations such as encryption or
signing

● RSA-PSS: also known as RSASSA-PSS, a probabilistic signature scheme that replaces
RSA PKCS#1 v1.5, defined in RFC 4056

● salt: random data passed as an additional input to a one-way function to increase
resilience to brute-force attacks

● Security Information and Event Management system: a security solution that provides
real-time analysis of logs and data from applications and hardware to produce security
alerts

● security operations center: a function within an organization that continuously
monitors for threats, detects adversarial activity, and investigates and responds to
cyberattacks

● security screen: a privacy feature in ExpressVPN Keys on mobile platforms that
prevents information on the application screen from being captured in a screenshot
while the application is running in the background

● SHA1: Secure Hash Algorithm 1, a hash function takes an input and outputs a 160-bit
message digest, defined in RFC 3174

● SHA512: a hash function takes an input and outputs a 512-bit message digest, defined
in RFC 6234

● SIEM: see Security Information and Event Management system

● Signature: a mathematical scheme for verifying the authenticity of messages

● SOC: see Security Operations Center

● step-up authentication: a mechanism that requests an additional factor for
authentication when a user of ExpressVPN wishes to access ExpressVPN Keys

● stored item: a login (username/password), credit/debit card details, or secure note
stored in a user’s vault (see document)

● TLS: Transport Layer Security, a cryptographic protocol that provides end-to-end
security for data sent between parties over the internet

41

● TOTP: time-based one-time password, a form of 2FA that uses the current time as a
source of uniqueness, defined in RFC 6238

● User Document Key: the cryptographic key used to encrypt and decrypt documents’
metadata and documents containing username and password information

● User Root Key: the cryptographic key used to decrypt the encrypted UserRecordBody

● UserRecordBody: a data structure, encrypted by default, that stores the User
Document Key and Private Identity Key

● vault: the collection of all documents and their metadata, uniquely tied to the user

● Web Crypto API: a W3C standard that defines an interface to perform cryptographic
operations in web applications

● YubiKey: a hardware authentication device to protect access to systems, typically used
as a second factor

● zero-knowledge encryption: the process of encrypting user data with key material that
cannot be inferred or derived by the service provider

● zxcvbn: an open source password strength estimator, see
https://github.com/dropbox/zxcvbn

42

https://github.com/dropbox/zxcvbn

