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The HealthLumen1 microsimulation consists of two modules. The first module calculates the 
predictions of smoking prevalence trends over time based on data from rolling cross-sectional 
studies. The second module performs the microsimulation of a virtual population, generated 
with demographic characteristics matching those of the observed data. The health trajectory 
of each individual from the population is simulated over time allowing them to contract, survive 
or die from a set of diseases or injuries related to the analysed risk factors. The detailed 
description of the two modules is presented below.(1) 

Smoking status groups are indicated in Table 1. 

Table 1. Description of the categories used for tobacco consumption the risk factor of interest 

Smoker status Number of 
categories (N) 

Categories 

Tobacco (initialisation) 3 1 Never smoker 
2 Ex-smoker 
3 Smoker 

Tobacco (changes in 
smoking over time) 

2 1 Non-smoker 
2 Smoker 

 

Smoking is the categorical risk factor. Each individual in the population may belong to one of 
the three possible smoking categories {never smoked, ex-smoker, smoker} with their 
probabilities {p0, p1, p2}. These states are updated on receipt of the information that the person 
is either a smoker or a non-smoker. They will be a never-smoker or an ex-smoker depending 
on their original state (an ex-smoker can never become a never-smoker). 

The complete set of longitudinal smoking trajectories and the probabilities of their happening 
is generated for the simulation years by allowing all possible transitions between smoking 
categories: 

{never smoked}  → {never smoked, smoker }   

{ex-smoker} → {ex-smoker, smoker}   

{smoker} → {ex-smoker, smoker}    

When the probability of being a smoker is p the allowed transitions are summarised in the state 
update equation 

 
1 Originally developed within UK Health Forum 
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In the initial year of the simulation, a person may be in one of the three smoking categories this 
is determined by the static trend with three smoking categories. After N updates there will be 

3  2N possible trajectories. These trajectories will each have a calculated probability of 
occurring; the sum of these probabilities is 1. 

In each year the probability of being a smoker or a non-smoker will depend on the forecast 
smoking scenario which provides exactly that information. In the baseline scenario this is the 
dynamic trend. Note that these states are two dimensional and cross-sectional {non-smoking, 
smoking}, and they are turned into three dimensional states {never smoked, ex-smoker, 
smoker} as described above. The time evolution of the three-dimensional states are the 
smoking trajectories necessary for the computation of disease table disease and death 
probabilities. 

Measured data consist of sets of probabilities, with their variances, at specific time values 
(typically the year of the survey). For any particular time the sum of these probabilities is unity. 
Typically such data might be the probabilities of never smoker, ex-smoker, smoker as they are 
extracted from the survey data set. Each data point is treated as a normally distributed2 random 

variable; together they are a set of N groups (number of years) of K probabilities {{ti, ki, ki 

|k[0,K-1]} | i[0,N-1]}. For each year the set of K probabilities form a distribution – their sum 
is equal to unity. 

The regression consists of fitting a set of logistic functions {pk(a, b, t)|k[0,K-1]} to these data 
– one function for each k-value. At each time value the sum of these functions is unity. Thus, 
for example, when measuring smoking status in the three states already mentioned, the k = 0 
regression function represents the probability of being a never smoker over time, k = 1 the 
probability of being an ex-smoker and k = 2 the probability of being a smoker. 

The regression equations are most easily derived from a familiar least square minimization. In 
the following equation set the weighted difference between the measured and predicted 
probabilities is written as S; the logistic regression functions pk(a,b;t) are chosen to be ratios of 
sums of exponentials (This is equivalent to modelling the log probability ratios, pk/p0, as linear 
functions of time.) 

 
2 Depending on the circumstances this assumption will be more or less accurate and more or less necessary. In 
general, it is both extremely useful and accurate. For simple surveys the individual Bayesian prior and posterior 
probabilities are Beta distributions – the likelihood being binomial. For reasonably large samples, the 
approximation of the beta distributions by normal distributions is both legitimate and a practical necessity. For 
complex, multi-PSU, stratified surveys, it is again assumed that these base probabilities are approximately 
normally distributed and, again, it is an assumption that makes the analysis tractable. 
 
Depending on the nature of the raw data set it may be possible to use non-parametric statistical methods for this 
analysis. This is possible for the HSE and GHS data sets of this study but when this has been done the authors can 
report no discernible difference in the results.       
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The parameters A0, a0 and b0 are all zero and are used merely to preserve the symmetry of the 
expressions and their manipulation. For a K-dimensional set of probabilities there will be 2(K-
1) regression parameters to be determined.    

For a given dimension K there are K-1 independent functions pk – the remaining function being 
determined from the requirement that complete set of K form a distribution and sum to unity. 

Note that the parameterization ensures that the necessary requirement that each pk be 
interpretable as a probability – a real number lying between 0 and 1. 

The minimum of the function S is determined from the equations  

 0        for j=1,2,....,k-1
j j
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The values of the vectors a, b that satisfy these equations are denoted b,a ˆˆ . They provide the 

trend lines, ( )tpk ;ˆˆ b,a , for the separate probabilities. The confidence intervals for the trend 

lines are derived most easily from the underlying Bayesian analysis of the problem. 

The 2K-2 regression parameters {a,b} are regarded as random variables whose posterior 
distribution is proportional to the function exp(-S(a,b)). The maximum likelihood estimate of 
this probability distribution function, the minimum of the function S, is obtained at the values 

b,a ˆˆ . Other properties of the (2K-2)-dimensional probability distribution function are obtained 

by first approximating it as a (2K-2)-dimensional normal distribution whose mean is the 
maximum likelihood estimate. This amounts to expanding the function S(a,b) in a Taylor series 

as far as terms quadratic in the differences ( ) ( )bb,aa ˆˆ −−  about the maximum likelihood 

estimate ( )b,aS ˆˆˆ S . Hence 
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The (2K-2)-dimensional covariance matrix P is the inverse of the appropriate expansion 
coefficients. This matrix is central to the construction of the confidence limits for the trend 
lines.   

The logistic regression functions pk(t) can be approximated as a normally distributed time-

varying random variable ( ) ( )( )ttpN kk
2,ˆ   by expanding pk about its maximum likelihood estimate 

(the trend line) ( ) ( )tptpk ,ˆ,ˆˆ ba=  
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Denoting mean values by angled brackets, the variance of pk is thereby approximated as 
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When K=3 this equation can be written as the 4-dimensional inner product  

 ( )
( ) ( ) ( ) ( )

( )

( )

( )

( )

1

11 12 11 12

221 22 21 222

11 12 11 121 2 1 2

21 22 21 22 1

2

ˆ

ˆ

ˆ

ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ

ˆ

ˆ

ˆ

k

kaa aa ab ab

aa aa ab abk k k k

k

ba ba bb bb k

ba ba bb bb

k

p t

a

p tP P P P

aP P P Pp t p t p t p t
t

P P P P p ta a b b

P P P P b

p t

b



 
 

 
  
          =             

  
 
 

  


  (1.9) 

where ( )( )jjiicdij ddccP ˆˆ −− . The 95% confidence interval for pk(t) is centred given as 
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( ) ( ) ( ) ( ) ttttp kkk  96.1p ,96.1ˆ
k +− . 

 

Simulated people are generated with the correct demographic statistics in the simulation’s 
start-year. In this year women are stochastically allocated the number and years of birth of 
their children – these are generated from known fertility and mother’s age at birth statistics 
(valid in the start-year). If a woman has children then those children are generated as members 
of the simulation in the appropriate birth year. 

The microsimulation is provided with a list of relevant diseases. These diseases used the best 
available incidence, mortality, survival, relative risk and prevalence statistics (by age and 
gender). At initialisation, the prevalence statistics are used to generate stochastically a 
simulated person’s initial disease state in the simulation start-year. The population of people, 
so initialised, will stochastically reproduce the national prevalence statistics for each disease. It 
is assumed that at initialisation the diseases are independent random variables. In the course 
of their lives, simulated people can die from one of the diseases caused by smoking that they 
might have acquired or from some other cause. The probability that a person of a given age 
and gender dies from a cause other than the disease are calculated in terms of known death 
and disease statistics valid in the start-year. It is constant over the course of the simulation. The 
survival rates from tobacco-related diseases will change as a consequence of the changing 
distribution of smoking level in the population.  

The microsimulation incorporates a sophisticated economic module. The module employs 
Markov-type simulation of long-term health benefits, health care costs and non-health care 
related costs of specified interventions.  

This section provides an overview of the initialisation of the microsimulation model and will be 
expanded upon in the next sections.  

Populations are implemented as instances of the TPopulation C++ class. The TPopulation class 
is created from a population (*.ppl) file. Usually a simulation will use only one population but 
it can simultaneously process multiple populations (for example, different ethnicities within a 
national population). 

Distribution name symbol note 

MalesByAgeByYear 𝑝𝑚(𝑎) Input in year0 – probability of a male having age a 

FemalesByAgeByYear 𝑝𝑓(𝑎) Input in year0 – probability of a female having age a 

BirthsByAgeofMother 𝑝𝑏(𝑎) Input in year0 – conditional probability of a birth at age 
a| the mother gives birth. 

NumberOfBirths 𝑝(𝑛) TFR, Poisson distribution, probability of giving birth 
to n children 
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MaleDeathByAge 𝑝𝑚(𝑎) Input in year0, probability of a male dying at age a 

FemaleDeathByAge 𝑝𝑓(𝑎) Input in year0, probability of a female dying at age a  

Any female in the child bearing years {AgeAtChild.lo, AgeAtChild.hi} is deemed capable of 
giving birth. The number of children, n, that she has in her life is dictated by the Poisson 
distribution 𝑝(𝑛) where the mean of the Poisson distribution is the Total Fertility Rate (TFR) 
parameter3.  

The probability that a mother (who does give birth) gives birth to a child at age a is 
determined from the BirthsByAgeOfMother distribution as 𝑝𝑏(𝑎). For any particular mother 
the births of multiple children are treated as independent events, so that the probability that 
a mother who produces N children produces n of them at age a is given as the Binomially 
distributed variable, 
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The probability that the mother gives birth to n children at age a is 
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Performing the summation in this equation gives the simplifying result that the probability 
pb(n at a) is itself Poisson distributed with mean parameter 𝜆𝑝𝑏(𝑎), 
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Thus, on average, a mother at age 𝑎 will produce 𝜆𝑝𝑏(𝑎) children in that year. 

The gender of the children4 is determined by the probability pmale=1-pfemale. In the baseline 
model this is taken to be the probability Nm/(Nm+Nf).  

The Population editor’ menu item Population Editor\Tools\Births\show random birthList 
creates an instance of the TPopulation class and uses it to generate and list a (selectable) 
sample of mothers and the years in which they give birth. 

The TFR parameter for future years can be input from file if known – or otherwise modelled. 
In this project the TFR parameter is kept constant overtime (ONS, 2016). In each year of their 
simulated life (y at age a), mothers of child bearing age can use the appropriate Poisson 
parameter 𝜆(𝑎)𝑝𝑏(𝑎) to generate the number of children in that year. Each child is recorded 
in the mother’s Life Event list and processed as part of the current family at the end of the 
mother’s life.  

 
3 This could be made to be time dependent; in the baseline model it is constant. 
4 The probability of child gender can be made time dependent.  
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In some year, Y, the population will consist of Nm males and Nf females with their respective 
age distributions. In the next year, Y’, the numbers will have been depleted by deaths and 
augmented by the Nnewborn births. The new, primed, population is determined from the old by 
the following equation set 
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The simulation models any number of specified diseases some of which may be fatal. In the 
start year the simulation’s death model uses the diseases’ own mortality statistics to adjust 
the probabilities of death by age and gender. In the start year the net effect is to maintain the 
same probability of death by age and gender as before; in subsequent years, however, the 
rates at which people die from modelled diseases will change as modelled risk factors change. 
This the population dynamics sketched above will be only an approximation to the simulated 
population’s dynamics. The latter will be known only on completion of the simulation. 

Multiple populations can be used in a simulation provided they are non-overlapping (people 
cannot belong to both). 

In a simulation, Monte Carlo trials are allocated between current different populations in 
proportion to their total person count (malesCount+femalesCount). The idea being to provide 
a representative sample of the combined population.  
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In a simulation, a population (pop) is current if the simulated year Y satisfies   

 pop startYear Y pop stopYear→   →   (1.21) 

This model is an open population model which allows people to enter and to depart from the 

population (departure probability p(t)). 

In the year y the number of males and females in the population are denoted as {Nm(a,y), 
Nf(a,y)}, 

And we suppose that they have departure probabilities {pm(a,y), pf(a,y)}. The number of new 
arrivals into each age in the year Y are denoted {NmArr(a,y), NfArr(a,y)}.  

The following analysis applies equally to males and females and we drop the gender suffix. 
The male and female populations grow according to the recursion relations 

 ( ) ( ) ( )( ) ( )( ) ( ) ( )Ω1, 1 , 1 1 , ,      1ArrN a y N a y p a p a y N a y a+ + = − − +    (1.22) 

 ( ) ( ) ( )( ) ( )( ) ( ) ( )Ω1, 1 1 0 1 0, 0,      0Newborn ArrN y N y p p y N y a+ = − − + =   (1.23) 

Given a set of X-sectional population projections {Km(a,y), Kf(a,y)|0<=a<=100; Y0<=y<=Y1} (the 
K- population) the question arises of how to model the lives of individuals within the 
population (the N-population). In the absence of precise arrival (immigration) and departure 
(emigration) statistics, many solutions exist. The population is constructed iteratively: given 
the population in year Y the next year’ population is calculated from the known birth and 
death rates; the departure probabilities and arrival numbers are found by matching with the 
projected K-population.  

The minimum arrival and departure model fixes the modelled N-population in the start year 
and compensates in subsequent years either by having non-zero departure statistics (if N>K) 
or by importing new people (K>N).        

From equation (1.22): 

 ( ) ( )( ) ( )Ω  , 1 1, 1if N a y p a K a y−  + +   

 ( )( )
( )

( ) ( )( )
( )

Ω

1, 1
1 ,      1
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K a y
p a y a

N a y p a


+ +
− = 

−
  

⇒ 

 ( ) ( ) ( )( ) ( )( ) ( ) ( )Ω1, 1 , 1 1 , 1, 1      1N a y N a y p a p a y K a y a+ + = − − = + +    (1.24) 



 

 9 

 ( ) ( )( ) ( )Ω  , 1 1, 1if N a y p a K a y−  + +   

 ( ) ( ) ( ) ( )( ) ( )Ω, 1, 1 , 1      1ArrN a y K a y N a y p a a= + + − −    

⇒ 

 ( ) ( ) ( )( ) ( ) ( )Ω1, 1 , 1   , 1, 1ArrN a y N a y p a N a y K a y+ + = − + = + +   (1.25) 

The implementation of this model can be arranged using multiple populations – one 
population for each year of the simulation. The first population consists of the base line 
model that matches the N and K populations in the start year; subsequent populations 
contain the corrections (the arrivals, if any in that year). When arrivals enter the simulated 
population they have a start year corresponding to this population’s start year. They usually 
will have been modelled from birth in the appropriate risk and disease environment. Arrivals 
are ordinary members of the modelled population – they simply enter the population at times 
after the simulation-start time. Arrivals carry with them a population identifier.  

The numbers of males and females and their ages are known for all populations. Within the 
micro simulation multiple populations are sampled at a rate proportional to their population 
size. 

Error! Reference source not found. shows the population distribution in 2019, in the UK used 
in the initialisation of the model. The 2019 England population shows a young population 
with X5% under 50 years of age. The split between males and females shows slightly more 
females (X%) than males (X%). The pyramid also demonstrates that the women are living 
longer, of those aged 60 years and over,  X% are female.  
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Figure 1:Population pyramid in 2019 in the UK 

 

  

The microsimulation framework applied to smoking enables the measurement of the future 
health impact of changes in rates of tobacco consumption.  

In the simulation each person is categorised into one of the three smoking groups: smokers, 
ex-smokers and people who have never smoked. Their initial distribution is based on the 
distribution of smokers, ex-smokers and never smokers as predicted by the three smoking 
category trend. 

During the simulation a person may change smoking states and their relative risk will change 
accordingly. Relative risks associated with smokers and people who have never smoked have 
been collected from published data. The relative risks associated with ex-smokers (RRex-smoker) 
are related to the relative risk of smokers (RRsmoker). The ex-smoker relative risks are assumed 
to decrease over time with the number of years since smoking cessation (Tcessation). These 
relative risks are computed in the model using equations (1.28) and (1.29).(2) 

 ( ) ( )( ) ( )( )ex-smoker cessation smoker cessation, , 1 , 1 expRR A S T RR A S A T= + − −   (1.26) 

 ( ) ( )0 exp  A A  = −   (1.27) 

where γ is the regression coefficient of time dependency. The constants γ0 and η are intercept 
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and regression coefficient of age dependency, respectively, which are related to the specified 
disease (Error! Reference source not found.). 

A baseline and three different smoking cessation services in primary care scenarios were 
simulated in this study. A scenario calculating the attributable burden of smoking was also 
included. The baseline trends were created in module 1 (the projection program) with cross-
sectional Annual Population Survey data from between 2010 to 2017. The other scenarios are 
described in detail in a further appendix, below shows the flow diagram of the SCS primary 
care scenarios.  

The four smoking cessation scenarios modelled are shown in Figure 2. 

 Scenario 1 

“Baseline” 

 Scenario 2 

“VBA + referral” 

 Scenario 3 

“VBA + 
prescription” 

 Scenario 4 

“Ottawa” 

        

(i) 75% of people who smoke attend primary care at least once a year (ISD, 2013)24 

 
 

 

 

 

 

 

 

(ii) Current practice – 
“usual care” 

 75% of patients 
who smoke 
referred to 
specialist SSS 

 75% of patients 
identified who 
smoke offered 
prescription (NRT 
and/or 
bupropion / 
varenicline) with 
brief advice 

 75% of patients who smoke given 
advice 

   

 

 

 

 

 

(iii)   39.66% of 
people who 
were referred by 
GP used a 
referral service 
in the last 
serious quit 
attempt 

 47.54% who use 
prescription NRT 
and non-nicotine 
meds as part of 
last serious quit 
attempt and had 
been given GP 
prescription 

 40% prescription, referral to 
counsellor + advice 

     

 

 

 

     Accept advice 
and 
prescription 
and attend – 
74% 

 26% accept 
advice and 
prescription 
but don’t 
attend 

   

 

 

 

 

 

 

 

(iv)   21.5% quit rate   15% quit rate   27% quit rate  15% quit rate 

   

 

 

 

 

 

 

 

(v)   30% reuptake  30% reuptake  30% reuptake  30% reuptake 

 

Figure 2: Flow diagram of scenarios modelled. 

For each scenario individual Monte Carlo trials sampled from the population are initialised 
with a smoking status based on the specific scenario trend.  



 

 12 

Disease modelling relies heavily on the sets of incidence, mortality, survival, relative risk and 
prevalence statistics. The microsimulation uses risk dependent incidence statistics and these 
are inferred from the relative risk statistics and the distribution of the risk factor within the 
population. In the simulation, individuals are assigned a risk factor trajectory giving their 
personal risk factor history for each year of their lives. Their probability of getting a particular 
risk factor related disease in a particular year will depend on their risk factor state in that year. 
The necessary equations are given below.  

Once a person has a fatal disease (or diseases) their probability of survival will be controlled by 
a combination of the disease-survival statistics and the probabilities of dying from other causes. 
Disease survival statistics are modelled as age and gender dependent exponential distributions.        

The reported incidence risks for any disease do not make reference to any underlying risk 
factor. The microsimulation requires this dependence to be made manifest.  

The risk factor dependence of disease incidence has to be inferred from the distribution of the 

risk factor in the population (here denoted as ); it is a disaggregation process: 

Suppose that  is a risk factor state of some risk factor  and denote by pA(d|,a,s) the 

incidence  probability for the disease d given the risk state, , the person’s age, a, and gender, 

s. The relative risk A is defined by equation (1.30). 

 
( ) ( ) ( )

( )

| 0

| 0

, , , , ,

, 1

d

d

p d a s a s p d a s

a s

   

 

  



=


  (1.28) 

Where 0 is the zero risk state (for example, the moderate state for alcohol consumption). 

The incidence probabilities, as reported, can be expressed in terms of the equation, 

 

( ) ( ) ( )

( ) ( ) ( )0 |

, , , ,

, , , ,

A

A d A

p d a s p d a s a s

p d a s a s a s





  

    





=

=




  (1.29) 

Combining these equations allows the conditional incidence probabilities to be written in terms 
of known quantities 

 ( ) ( )
( )

( ) ( )|

|

,
, , ,

| , ,
Ad

Ad A

p d a s
p d a s a s

a s a s


  
   

=


  (1.30) 

Previous to any series of Monte Carlo trials the microsimulation program pre-processes the set 

of diseases and stores the calibrated incidence statistics pA(d|0, a, s).  

For each scenario the incidence statistics are calibrated against the baseline smoking trends. 
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Published disease statistics are frequently incomplete and occasionally inconsistent. The 
microsimulation program makes use of a number of supporting methods to check and, as 
necessary, to supply missing disease statistics.  

An example is provided here with a standard life-table analysis for a disease d.     

Consider the 4 following states: 

state Description 

0 alive without disease d 

1 alive with disease d 

2 dead from disease d 

3 dead from another disease 

pik  is the probability of disease d incidence, aged k 

pk  is the probability of dying from the disease d, aged k 

𝑝𝜔̅𝑘 is the probability of dying other than from disease d, aged k 

The state transition matrix is constructed as follows 

 

( )

( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

( )

0 0

1 1

2 2

3 3

1 1 1 1 0 0

1 1 1 1 0 0

1 0 1 0

1 0 1

k ik k k k

k ik k k k

k

k k

p k p kp p p p p

p k p kp p p p p

p k p kp

p k p kp p

   

   



 

+   − − − − 
    

+ − − − −    =
    +
    

+     

  (1.31) 

It is worth noting that the separate columns correctly sum to unity. 

The disease mortality equation is that for state-2, 

 ( ) ( ) ( )2 1 21 kp k p p k p k+ = +   (1.32) 

The probability of dying from the disease in the age interval [k, k+1] is ( )kpp k 1  - this is 

otherwise the (cross-sectional) disease mortality, pmor(k). p1(k) is otherwise known as the 
disease prevalence, ppre(k). Hence the relation 

 
( )

( )
mor

k

pre

p k
p

p k
 =   (1.33) 

For exponential survival probabilities the probability of dying from the disease in the age-

interval [k, k+1] is denoted pk and is given by the formula 

 ( )1 ln 1kR

k k kp e R p 

−
= −  = − −   (1.34) 

When, as is the case for most cancers, these survival probabilities are known the 
microsimulation will use them, when they are not known or are too old to be any longer of any 
use, the microsimulation uses survival statistics inferred from the prevalence and mortality 
statistics (equation (1.33)).  
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An alternative derivation equation (1.33) is as follows. Let Nk be the number of people in the 
population aged k and let nk be the number of people in the population aged k with the disease. 
Then, the number of deaths from the disease of people aged k can be given in two ways: as 

pknk and, equivalently, as pmor(k)Nk . Observing that the disease prevalence is nk/Nk leads to 
the equation 

 

( )

( )

( )

( )

k k mor k

k
pre

k

mor

k

pre

p n p k N

n
p k

N

p k
p

p k





=

=



=

  (1.35) 

We begin with the standard 1 year update equation and by defining some probabilities:  

( ),ip a Y   the incidence probability of the disease at age a 

( ),rp a Y  the remission probability of the disease at age a 

( ),p a Y
  the probability of dying from the disease at age a, in year Y 

( ),p a Y
  the probability of dying from other causes at age a, in year Y 

 

And the probabilities of being in a set of states: 

S0 ( ),
d

p a Y   the probability of being alive without the disease at age a, in year 
Y 

S1 ( ),dp a Y   the probability of being alive with the disease at age a, in year Y  

S2 ( ),p a Y
  the probability of being dead as a result of the disease at age a, in 

year Y 

S3 ( ),p a Y


  the probability of being dead from other causes at age a, in year Y 

 

The update equation is (the dependence on the year Y is suppressed)  

 

( )

( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

( )

1 1 1 1 0 0

1 1 1 1 0 0

1 0 1 0

1 0 1

i rd d

d di r

p a p ap p p p p

p a p ap p p p p

p a p ap

p a p ap p

  

  



 

 

 

+   − − − − 
    

+ − − − −    =
    +
       +     

  (1.36) 

1.1.1.1.1 Survival 

At some age, 0a , the person is alive and gets the disease – at this age the state vector is, 
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( )0 1 0 0 . 

If we assume the remission probability is zero the person’s subsequent life is governed by the 
equation 

 

( )

( )

( )

( )

( )

( )

1 1 0 0

1 1 0

1 0 1

d dp a p p p a

p a p p a

p a p p a

 





 

 

+ − −    
    

+ =    
    +     

   (1.37) 

At age 
0a a N= +   it has the solution 

 ( ) ( ) ( )( )0

1

1
k N

d k k

k

p a N p a p a 

=

=

+ = − −   (1.38) 

1.1.1.1.2 Disease survival probabilities 
Disease survival statistics are gathered from those people who do not die from other causes. 
The probability of surviving N years, given that there is no remission, and that there is no 
probability of death from other causes is simply  

 ( ) ( )( )0

1

1
k N

d k

k

p a N p a

=

=

+ = −   (1.39) 

These are longitudinal statistics that, ideally, are gathered by following the life courses of 
many people who have the disease. 

In equation  (1.39) it is understood that the disease is contracted at age 0a  and that the death 

probabilities are the successive probabilities of dying from the disease in the first year - 

( )0 1p a + , the second year - ( )0 2p a + , and so on. These are disease survival statistics, 

closely connected to but not the same as disease mortality statistics.  

1.1.1.1.3 Mortality statistics 

In any year, in some population, in a sample of N people who have the disease a subset N  will die 

from the disease. 

Mortality statistics record the cross sectional probabilities of death as a result of the disease – possibly 

stratifying by age   

 
N

p
N


 =   (1.40) 

Within some such subset N of people that die in that year from the disease, the distribution 

by year-of-disease is not usually recorded. This distribution would be most useful. Consider 
two important idealised, special cases 

Suppose the true probabilities of dying in the years after some age 0a  are 

 0 1 2 3 4, , , ,p p p p p    
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The probability of being alive after N years is simply that you don’t die in each year  

 ( ) ( ) ( ) ( ) ( )0 0 1 2 11 1 1 .. 1survive Np a N p p p p    −+ = − − − −   (1.41) 

1.1.1.1.4 The microsimulation’s survival models 
There are three in use (they are easily extended if the data merit): 

Survival model 0: a single probability of dying  0p  

0p  is valid for all years 

Survival model 1: two different probabilities of dying  0 1,p p 
 

0p  is valid for the first year; 
1p thereafter. 

Survival model 2: three different probabilities of dying  0 1 5, ,p p p  
 

0p  is valid for the first year; 
1p for the second to the fifth year; 5p thereafter 

Remember that different probabilities will apply to different age and gender groups. Typically 
the data might be divided into 10 year age groups. 

1.1.1.1.5 Calculating survival from incidence and mortality 
When a person (of a given gender) dies from a disease they must have contracted it at some 
earlier age. For Survival model 2, this is expressed 

 

( ) ( )

( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )( )

( )( )( ) ( )

0

0 1

0 1 1

2

0 1 1

3

0 1 1

4

0 1 5

4

0 1 5 5

ˆ 1

2 1

3 1 1

4 1 1

5 1 1

6 1 1

7 1 1 1

...

mortality inc

inc

inc

inc

inc

inc

inc

p a p a p

p a p p

p a p p p

p a p p p

p a p p p

p a p p p

p a p p p p



 

  

  

  

  

   

= − +

+ − − +

+ − − − +

+ − − − +

+ − − − +

+ − − − +

+ − − − − +

+

  (1.42) 

The three probabilities 0 1 5, ,p p p  
 are estimated by minimising  

 
( ) ( )( )

2

2

ˆ
mortality mortality

a AgeGroup

p a p a
S



−
=     (1.43) 

When the longitudinal probability of the disease incidence at age a satisfies the recursion 
relation 

 ( ) ( )(1 (0))(1 (1))..(1 ( 1))inc i i i ip a p p p a p a= − − − −   (1.44) 

 

The probabilities of being alive after 1, 5 and 10 years are  
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( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

4

0 0 1

4 5

0 0 1 5

1 1

5 1 1

10 1 1 1

survival

survival

survival

p a p

p a p p

p a p p p



 

  

+ = −

+ = − −

+ = − − −

  (1.45) 

1.1.1.1.6 Rates 
It is common practice to describe survival in terms of a survival rate R, supposing an 
exponential death-distribution.  In this formulation the probability of surviving t years from 
some time t0 is given as 

 ( ) 1

survival

0

1

t

Ru Rtp t R due e− − −= − =   (1.46) 

For a time period of 1 year   

 

( )

( )( ) ( )

1

ln 1 ln 1

R

survival

survival

p e

R p p

−=



= − = − −

  (1.47) 

For a time period of, for example, 4 years, 

 ( ) ( )
4

41 4

survival

0

4 1 1Ru Rp t R due e p

− − −= = − = = −   (1.48) 

In short, the Rate is minus the natural log of the 1-year survival probability. 

For any potentially terminal disease MIDRIF can use any of three survival models, numbered 
{0, 1, 2}. The parameters describing these models are given below.  

1.1.1.1.7 Survival model 0 
Given the 1-year survival probability ( )1survivalp  

The model uses 1 parameter {R} 

 ( )( )ln 1survivalR p= −   (1.49) 

  

1.1.1.1.8 Survival model 1 
The model uses two parameters {p1, R} 

Given the 1-year survival probability ( )1survivalp and the 5-year survival probability ( )5survivalp  
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( )

( )

( )

1 1 1

51
ln

4 1

survival

survival

survival

p p

p
R

p

= −

 
= −  

 
  (1.50) 

1.1.1.1.9 Survival model 2 
The model uses three parameters {p1, R, R>5} 

Given the 1-year survival probability ( )1survivalp and the 5-year survival probability ( )5survivalp  

 

( )

( )

( )

( )

( )

1

5

1 1

51
ln

4 1

101
ln

5 5

survival

survival

survival

survival

survival

p p

p
R

p

p
R

p


= −

 
= −  

 

 
= −  

 

  (1.51) 

The cost module developed for this study includes both direct and indirect cost calculations. 

The cost model used in the simulation is part of the economics module and, here, simply scales 
the aggregated individual disease costs according to the relative disease prevalence in years 
after the start year for which the costs are known.  

 

In any year, the total healthcare cost for the disease D is denoted CD(year). If the prevalence of 
the disease is denoted PD(year) we assume a simple relationship between the two of the form 

 ( ) ( )D DC year P year=   (1.52) 

for some constant . 

 

For each of the trial years, the microsimulation records the prevalence of each disease call it 
PD(year|trial) and the trial population size for that year, Npop(year|trial). Further assume that 
the prevalence in the whole population Npop(year) is a simple scaling of the trial prevalence, 
then  

 ( ) ( )
( ) ( | )

( | )

pop D

D D

pop

N year P year trial
C year P year

N year trial
 = =   (1.53) 

for some constant . 

 

By comparing any trial year to some initial year, year0, the total disease cost in any year is given 
as 
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( )

( )

( )

( )

( 0 | ) ( | )

0 0 ( | ) ( 0 | )

pop popD D

D pop pop D

N year N year trialC year P year trial

C year N year N year trial P year trial
=   (1.54) 

1.1.1.1.10 Premature mortality cost  
The premature mortality costs are calculated by considering the error generated from each 
age in each year. 

For each age a in a given year, 

a

( ) Rate of death at age a in a given year

d ( ) Number of inviduals at age a that die in a given year

N ( ) Total number of individuals at age a in a given year

( )
( )

( )

C ( ) The cost per case

a

a

a
a

a

a

p y

y

y

d y
p y

N y

y

=

=

=

=

=

1

 at age a in a given year y

C ( ) ( ( )* ( ( )))

Rate of death at age a in the whole population in a given year

( ) Total number of individuals who die in a given year

d ( )
R=

i LE

a

i a

a

y Income i discount y i a

R

D y

y

D

= −

=

= + −

=

=



( )y

  

 
(1 )

95% CI per 100,000 costs at age a=1.96 * *100000a a
a

a

p p
C

N

 −
  
 

  (1.55) 

Where the standard deviation (σ) is calculated as shown in equation 

 
(1 )a a

a

a

p p

N


−
=   (1.56) 

For each year the standard deviation for all age groups is calculated as shown in equation. A 
weighted average of the variance from each age group is calculated. 

 
1

2 2

0

( )
a LE

a a

a

RC y 
= −

=

=    (1.57) 

The 95% CI for the premature mortality costs in a given year will be calculated from 

 PMC 95%CI per 100,000 1.96 *100000 =   (1.58) 

1.1.1.1.11 Premature morbidity costs 
The premature morbidity costs refer to the loss of potential earnings incurred when an 
individual contracts a disease which impacts their productivity. The productivity of an 
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individual represents the amount of working time the individual actually spends working. It is 
estimated as a function of the patient’s age, sex and QoL. The output of this estimate is a 
measure of the proportion of working time spent actually working.  Note that this 
encompasses all possible reasons for not working, including unemployment, retirement, not 
being of working age, as well as ill health.  This effectively allows the impacts of factors such 
as retirement and unemployment to be automatically reflected in the estimate of paid 
production as a function of age, sex and QoL. Estimation of productivity as a function of age 
and QoL uses a model developed by ScHARR, based on the Understanding Society dataset.  
This dataset includes information on the respondents’ productivity (questions below), and 
their health (measured using the SF12 instrument), as well as their age and gender. 

Premature morbidity costs are calculated annually and are related to an individual’s age and 
quality of life (QoL). The quality of life is related to the type of disease a person may acquire. 
Each disease in the simulation has a quality of life associated with it. If an individual has multiple 
diseases it is assumed their quality of life is calculated from the product of the quality of life of 
each disease. The physical capability (PCS) and mental capability (MCS) are shown in equations 
(1.2) and (1.3). 
 

 0 * /10 *PCS Age QoL   = + + +   (1.59) 

 0 * /10 *MCS Age QoL   = + + +   (1.60) 

 
The parameter values for these equations are displayed in Table 2. 

Table 2 Parameter values for the equations representing physical capability (PCS) and mental 
capability (MCS) as described in Equations (1.59) and (1.60). 

Variable MCS PCS 

Age/10, β 1.0383 -1.0443 

QoL, β 5.0122 25.918 

Constant, β0 32.5459 31.0231 

 
Equation (1.4) is used as an estimate of the logistic function of productivity (L(p)). The 
parameter values are shown in Table 3.
 

2 2 2

0( ) * /10 *( /10) * * * * *L p Age Age Sex PCS PCS MCS MCS        = + + + + + + + +  

 (1.61) 
 

Table 3 Parameter values for the equation representing L(p) as described in Equation (1.61). 

Variable L(p) 

Age/10, β 2.95 

(Age/10)2, β -0.35 

MCS/10, β 1.19 

(MCS/10)2, β -0.09 
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PCS/10, β 1.37 

(PCS/10)2, β -0.09 

Constant, β0 -13.2 

 
The productivity (C) is calculated in equation (1.5).  
 

 
exp( ( ))

1 exp( ( ))

L p
C

L p
=

+
  (1.62) 

 

The total premature morbidity cost of an individual for each year of the simulation is calculated 
using the mean yearly income of the individual for a given age (B); the productivity of the 
individual at full health i.e. QoL=1.0 (Cy); productivity of the individual with the disease (Cz); and 
overheads associated with employment (D; constant rate of 30%) (1.6). 

 ( )Morbidity cost (year) ( ) ( ) ( )y ZDiscount year B C D B C D=    −     (1.63) 

 

Annual costs of primary care consultations per smoking-related diseases were required. 
However,  this was only available for COPD for which GP surgery contact costs were extracted 
at patient level. That is, the estimated average patient-level cost of contact with primary care 
over one year (includes multiple visits per patient).  Total annual primary care costs (GP 
consultations plus all other primary care costs) for stroke, Type 2 diabetes (T2D), Coronary 
Heart Disease (CHD), Colorectal cancer, Lung Cancer were available in the literature, so were 
used in this analysis. Annual primary care costs for all of the other conditions were not 
available, so only a subset of conditions are included.  The processing of these data is described 
in detail below. 
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Figure 3: Productivity curve, by age and QoL 
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COPD primary care costs data were published by stage for 2009 – to estimate overall cost-per-
case a simple average of costs at each stage was estimated.5 This cost average was then inflated 
to 2019 (described below).  

All other diseases 
Total population primary care costs for each condition were extracted from the literature, in 
Euros (apart from T2DM which was in GBP), for the most recent year available. Costs in Euros 
were converted to GBP (described below) and inflated to 2019 (described below). These 
inflated costs were then converted to costs-per-case by applying estimated prevalence, by age, 
to the estimated 2019 UK population in order to estimate the total expected number of cases 
in the UK at that time. The total population costs of each disease were then divided by this 
estimated expected number of cases to estimate costs-per-case for each condition. 

Cost per case estimate sources 

Disease Reference 

Colorectal 
cancer 

Luengo-Fernandez, R., Leal, J., Gray, A., & Sullivan, R. (2013). Economic burden of cancer 
across the European Union: a population-based cost analysis. The Lancet Oncology, 14(12), 
1165–1174. doi:10.1016/s1470-2045(13)70442-x  

Lung cancer 

Luengo-Fernandez, R., Leal, J., Gray, A., & Sullivan, R. (2013). Economic burden of cancer 
across the European Union: a population-based cost analysis. The Lancet Oncology, 14(12), 
1165–1174. doi:10.1016/s1470-2045(13)70442-x  

COPD 

Punekar YS, Shukla A, Müllerova H. COPD management costs according to the frequency of 
COPD exacerbations in UK primary care [published correction appears in Int J Chron 
Obstruct Pulmon Dis. 2014;9:247]. Int J Chron Obstruct Pulmon Dis. 2014;9:65–73. doi:10.2147/COPD.S54417 

CHD 

British Heart Foundation, Heart & Circulatory Disease Statistics 2019. 
https://www.bhf.org.uk/what-we-do/our-research/heart-statistics/heart-statistics-
publications/cardiovascular-disease-statistics-2019 

Stroke 

British Heart Foundation, Heart & Circulatory Disease Statistics 2019. 
https://www.bhf.org.uk/what-we-do/our-research/heart-statistics/heart-statistics-
publications/cardiovascular-disease-statistics-2019 

T2DM 

Hex, N., Bartlett, C., Wright, D., Taylor, M., & Varley, D. (2012). Estimating the current and 
future costs of Type 1 and Type 2 diabetes in the UK, including direct health costs and 
indirect societal and productivity costs. Diabetic Medicine, 29(7), 855–862. 
doi:10.1111/j.1464-5491.2012.03698.x  

 

Currency conversion 
Estimates extracted from the literature in Euros were converted to GBP using an estimated rate 
of 1.11 for all 2009 estimatesi based on average published exchange rates for December 2009 
and an estimated rate of 1.38 for all 2015 estimatesii based on average published exchange 
rates for December 2015. 

Cost inflation 
Costs were inflated from the year of the extracted estimates to 2019 using annual CPI inflation 
rates.iii 

 
5 Relative prevalence by stage would be needed in order to weight these average costs by 
prevalence at each stage. 
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i https://freecurrencyrates.com/en/exchange-rate-history/GBP-EUR/2009/cbr 
ii https://freecurrencyrates.com/en/exchange-rate-history/GBP-EUR/2015/cbr 
iii https://www.rateinflation.com/inflation-rate/uk-historical-inflation-rate 

 

https://freecurrencyrates.com/en/exchange-rate-history/GBP-EUR/2009/cbr
https://freecurrencyrates.com/en/exchange-rate-history/GBP-EUR/2015/cbr
https://www.rateinflation.com/inflation-rate/uk-historical-inflation-rate

