How much of differences in cancer survival can be explained by variation in stage at diagnosis: An example from breast cancer and melanoma in the East of England

Mark J. Rutherford¹, Gary A. Abel², Sally R. Wilkes³, Lucy Ironmonger⁴, Nick Ormiston-Smith⁴, David C. Greenberg^{2,5}, Paul C. Lambert^{1,6}, and Georgios Lyratzopoulos^{2,7}

> ¹Department of Health Sciences. ²Cambridge Centre for Health Services Research. University of Leicester, UK.

University of Cambridge, UK. ³Centre of Evidence Based Dermatology. ⁴Statistical Information Team.

University of Nottingham, UK.

Cancer Research UK.

⁶Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Sweden.

National Cancer Registration Service. Public Health England, Eastern Office. Cambridge ⁷Health Behaviour Research Centre. University College London, UK.

mark.rutherford@le.ac.uk

NAEDI Conference. 27th March, 2015.

Motivation

Impact of variation in stage on survival

Background

 It has been well established that stage at diagnosis varies across population groups (e.g. deprivation groups, age-groups, gender) for some cancer sites.

 It is also well known that survival heavily depends on stage at diagnosis.

Question:

What would happen to survival at a population level if we could remove these inequalities in stage at diagnosis?

This is a different question to how many lives would be saved if differences in relative survival across population groups could be completely removed.

Three studies

Impact of variation in stage on survival

Background

Methods

Melanoma

Deprivation

Breast - Ag

Conclusions

- Melanoma investigate the impact on survival of variation in stage at diagnosis for:
 - (a) Sex: Males vs Females.
 - (b) Deprivation quintiles: 5 groups based on postcodes (1 least deprived, 5 - most deprived).
 - (c) Combined effect of sex and deprivation.
- Breast Cancer investigate the impact of stage variation by deprivation groups across age (30-99).
- Breast Cancer investigate the impact of stage variation by age-groups for those aged 70+. Four age-groups (70-74, 75-79, 80-84, and 85+).

Impact of variation in stage on survival

Background

 ${\sf Methods}$

Melanoma

Deprivation

Dieast - Age

Conclusions

Referenc

- Use data from the East of England with good stage completeness (during 2006-2010) for both melanoma and breast.
- Diagnoses over a 5-year calendar period; with follow-up on mortality until early 2012.
- We use region- and deprivation-specific lifetables provided by the Cancer Research UK Cancer Survival Group at LSHTM.
- We use a reweighting approach to approximate the relevant estimates for England as a whole - taking into account differences in age, sex and deprivation distributions between the East of England and the rest of England.

4 / 17

General Approach

Impact of variation in stage on survival

Background

Methods

Melanoma

Deprivation

Breast - Age

Conclusion:

Reference

 Calculate the stage distribution observed in each of the relevant groups.

- ② Define an "improved" stage distribution by selecting the "best" group's stage distribution.
- Calculate the standardised survival under the two different stage distributions.
- Report the difference as the number of deaths avoided within a given timeframe.

Note:

We model relative survival using a flexible parametric excess mortality model.

Necessary to convert to all-cause survival to report the number of avoidable deaths.

Methods Example - Sex Melanoma: Stage Distributions - Age 60-69, Least Deprived

Impact of variation in stage on survival

Background

Melanoma

Melanoma

Deprivation

_ . . .

Reference

Males

Stage	Number (%)
at Diagnosis	
Stage I	135 (64.6%)
Stage II	46 (22.0%)
Stage III/IV	28 (13.4%)
Total	209 (100%)

Females

Stage	Number (%)
at Diagnosis	
Stage I	104 (76.5%)
Stage II	18 (13.2%)
$Stage\;III/IV$	14 (10.3%)
Total	136 (100%)

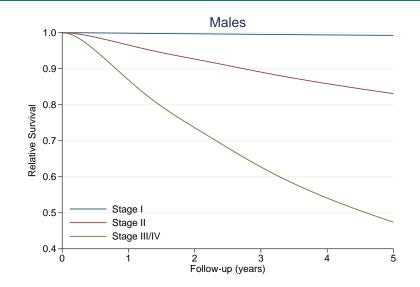
6 / 17

 The stage distributions vary between males and females, with females having a higher proportion diagnosed at an earlier stage.

Impact of variation in stage on survival

Background

Methods

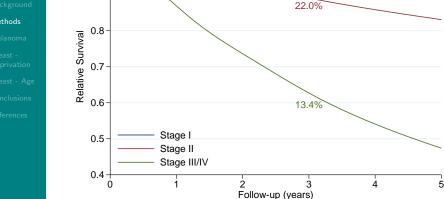

Melanom:

Proact

Deprivation

Dicast - Ago

Conclusions


Males

64.6%

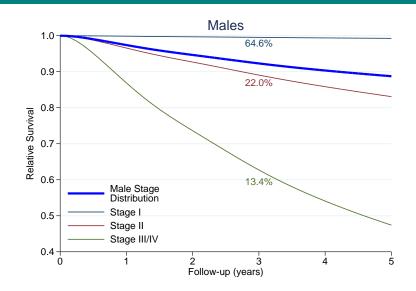
Impact of variation in stage on survival

0.9

Methods

Impact of variation in stage on survival

Background


Methods

Melanom

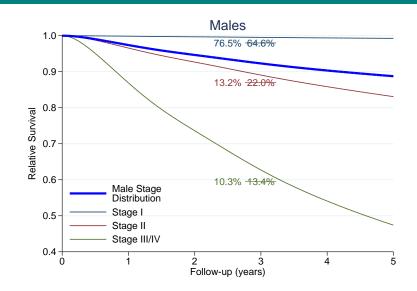
Deprivation

Dreast - Ag

Conclusions

Impact of variation in stage on survival

Background


Methods

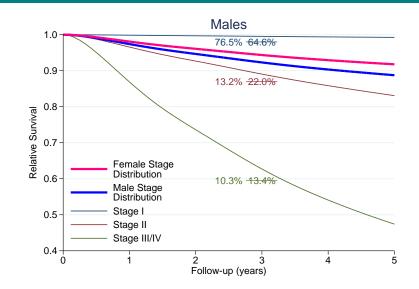
Melanom

Breast

_ .

Conclusions

Impact of variation in stage on survival


Background

Methods

Melanom:

Dicast - Ago

Conclusions

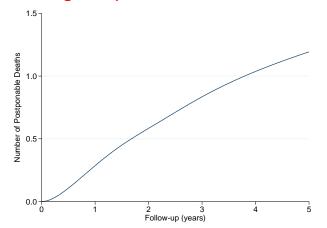
Avoidable Deaths - Age 60-69, Least Deprived. Males having female stage distribution

Impact of variation in stage on survival

Background

Methods

Melanom:


Breast -

Deprivation

Dreast - Aş

Conclusion

- Approximate annual incidence: $\frac{209}{5}$. (Number of males in this category and 5 years of incidence data.)
- Accounting for expected survival.

Melanoma Study

Impact of variation in stage on survival

Background

Melanoma

vielanoma

Deprivation

Breast - Ag

Conclusion

Melanoma - investigate the impact on survival of variation in stage at diagnosis for:

- (a) Sex: Males vs Females.
- (b) Deprivation quintiles: 5 groups based on postcodes (1 least deprived, 5 - most deprived).
- (c) Combined effect of sex and deprivation.
- 5,122 individuals with Melanoma diagnosed in the East of England with complete stage information (2006-2010).
- Combined Stage III/IV into a single group because of small numbers and because both are metastatic (regional/distant).
- Large differences in stage distribution across both gender and deprivation.

Stage Distribution Example - Age 60-69

Impact of variation in stage on survival

Background

Melanoma

Melanoma

Deprivation

Dieast - Age

Conclusion:

eferenc

Females - least deprived

Stage at Diagnosis	Number (%)
Stage I	104 (76.5%)
Stage II	18 (13.2%)
Stage III/IV	14 (10.3%)
Total	136 (100%)

Females - most deprived

	•
Stage	Number (%)
at Diagnosis	
Stage I	15 (55.6%)
Stage II	8 (29.6%)
${\sf Stage\ III/IV}$	4 (14.8%)
Total	27 (100%)

Males - least deprived

	out aspiriou
Stage	Number (%)
at Diagnosi	S
Stage I	135 (64.6%)
Stage II	46 (22.0%)
Stage III/I\	
Total	209 (100%)

Stage	Number (%)
at Diagnosis	
Stage I	13 (50.0%)
Stage II	8 (30.8%)
${\sf Stage\ III/IV}$	5 (19.2%)
Total	26 (100%)

Stage Distribution Example - Age 60-69 Stage Standardisation by Sex

Impact of variation in stage on survival

Background

Melanoma

ivielaliollia

Dunnat Am

Dicase / ige

Conclusion:

Reference

Females - least deprived

Stage	Number (%)
at Diagnosis	
Stage I	104 (76.5%)
Stage II	18 (13.2%)
Stage III/IV	14 (10.3%)
Total	136 (100%)

Females - most deprived

	•
Stage	Number (%)
at Diagnosis	
Stage I	15 (55.6%)
Stage II	8 (29.6%)
${\sf Stage\ III/IV}$	4 (14.8%)
Total	27 (100%)

Males - least deprived

	•
Stage	Number (%)
at Diagnosis	
Stage I	135 (64.6%)
Stage II	46 (22.0%)
Stage III/IV	28 (13.4%)
Total	209 (100%)

	•
Stage	Number (%)
at Diagnosis	
Stage I	13 (50.0%)
Stage II	8 (30.8%)
$Stage\;III/IV$	5 (19.2%)
Total	26 (100%)

Stage Distribution Example - Age 60-69 Stage Standardisation by Deprivation

Impact of variation in stage on survival

Background

Melanoma

ivieianoma

Deprivation

Dreast - Age

Conclusions

Reference

Females - least deprived

Stage	Number (%)
at Diagnosis	
Stage I	104 (76.5%)
Stage II	18 (13.2%)
Stage III/IV	14 (10.3%)
Total	136 (100%)

Females - most deprived

Stage	Number (%)
at Diagnosis	
Stage I	15 (55.6%)
Stage II	8 (29.6%)
${\sf Stage\ III/IV}$	4 (14.8%)
Total	27 (100%)

Males - least deprived

	•
Stage	Number (%)
at Diagnosis	
Stage I	135 (64.6%)
Stage II	46 (22.0%)
${\sf Stage\ III/IV}$	28 (13.4%)
Total	209 (100%)

	•
Stage	Number (%)
at Diagnosis	
Stage I	13 (50.0%)
Stage II	8 (30.8%)
$Stage\;III/IV$	5 (19.2%)
Total	26 (100%)

Stage Distribution Example - Age 60-69 Stage Standardisation by Sex & Deprivation

Impact of variation in stage on survival

Background

Methods

Melanoma

Deprivation

Dreast - Age

Conclusions

Reference

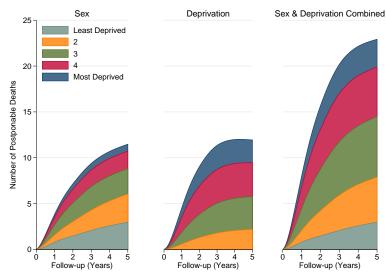
Females - least deprived

Stage	Number (%)
at Diagnosis	
Stage I	104 (76.5%)
Stage II	18 (13.2%)
Stage III/IV	14 (10.3%)
Total	136 (100%)

Females - most deprived

	-
Stage	Number (%)
at Diagnosis	
Stage I	15 (55.6%)
Stage II	8 (29.6%)
Stage III/IV	4 (14.8%)
Total	27 (100%)

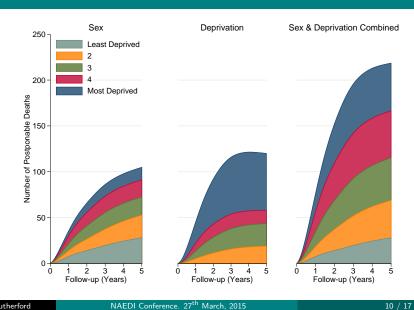
Males - least deprived


Stage	Number (%)
at Diagnosis	
Stage I	135 (64.6%)
Stage II	46 (22.0%)
$Stage\;III/IV$	28 (13.4%)
Total	209 (100%)

	•
Stage	Number (%)
at Diagnosis	
Stage I	13 (50.0%)
Stage II	8 (30.8%)
Stage III/IV	5 (19.2%)
Total	26 (100%)

Results Melanoma - East of England (stacked)

Impact of variation in stage on survival


Melanoma

Results Melanoma - England (stacked)

Impact of variation in stage on survival

Melanoma

Breast Deprivation Study

Impact of variation in stage on survival

Background

Methods

Melanoma Breast -

Deprivation

Breast - Ag

Conclusions

- Breast Cancer investigate the impact of stage variation by deprivation groups across age (30-99).
 - 20,738 women with breast cancer diagnosed in the East of England with complete stage information (2006-2010).
 - Notable differences in the stage distributions across the 5 deprivation groups.
- Women from more deprived areas more likely to be diagnosed with advanced stage disease.
- Relative survival also varies hugely across stage at diagnosis; those diagnosed at Stage I have very little excess mortality.

Breast Stage Distributions Example: Age 60-64

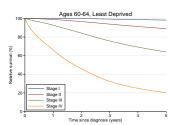
Impact of variation in stage on survival

Background

Methods

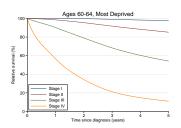
Melanoma

Breast -Deprivation


Breast - Ag

Conclusion:

Reference


Least deprived

Stage	Number (%)
at Diagnosis	
Stage I	443 (54.6%)
Stage II	294 (36.3%)
Stage III	52 (6.4%)
Stage IV	22 (2.7%)
Total	811 (100%)

Most deprived

	•
Stage	Number (%)
at Diagnosis	
Stage I	65 (45.5%)
Stage II	58 (40.6%)
Stage III	13 (9.1%)
Stage IV	7 (4.9%)
Total	143 (100%)

Breast Stage Distributions Example: Age 60-64

Impact of variation in stage on survival

Background

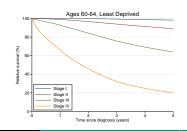
Methods

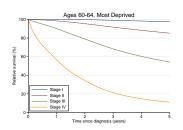
Melanoma

Breast -Deprivation

Breast - Ag

Conclusion:


Reference


Least deprived

Stage	Number (%)
at Diagnosis	
Stage I	443 (54.6%)
Stage II	294 (36.3%)
Stage III	52 (6.4%)
Stage IV	22 (2.7%)
Total	811 (100%)

Most deprived

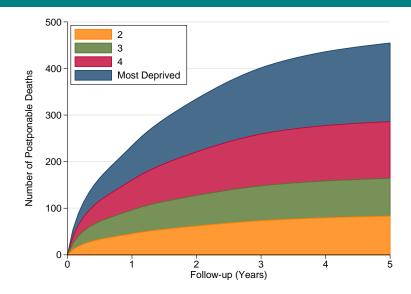
Stage at Diagnosis	Number (%)
Stage I	65 (45.5%)
Stage II	58 (40.6%)
Stage III	13 (9.1%)
Stage IV	7 (4.9%)
Total	143 (100%)

Results Deprivation Inequalities Breast

- England (stacked)

Impact of variation in stage on survival

Background


Methods

Melanom

Breast -Deprivation

Breast - Ag

Conclusions

Breast Older Age Study

Impact of variation in stage on survival

Background

Methods

Melanoma

Deprivation

Breast - Age

Conclusions

- Breast Cancer investigate the impact of stage variation by age-groups for those aged 70+. Four age-groups (70-74, 75-79, 80-84, and 85+).
 - 6,478 women aged 70+ with breast cancer diagnosed in the East of England with complete stage information (2006-2010).
- Use 4 age-groups to investigate stage variation in older women.
- We used 70-74 as the group with the stage distribution to match to - younger groups would have influence of screening on stage distribution.

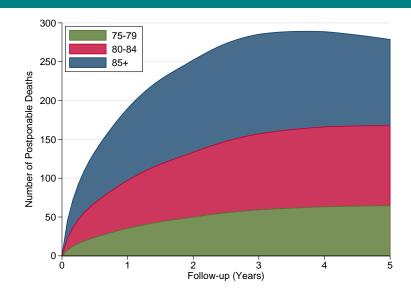
Results Older Age Inequalities Breast

- England (stacked)

Impact of variation in stage on survival

Background

Methods


Melanom

_

Breast - Age

2.0000 7.6

Conclusion

Concluding remarks

Impact of variation in stage on survival

Background

Methods

Melanoma

Deprivation

Breast - Ag

Conclusions

 Inequalities in stage at diagnosis across sex and deprivation for melanoma, and deprivation and age for breast cancer, partially explain differences in cancer patient survival.

- Interventions designed to target early diagnosis for certain population groups are likely to reap substantial benefit in terms of extending patients' lives.
- Clearly, further improvements in survival could be achieved by diagnosing cancer earlier across the board - here we consider the impact of removing inequalities to match the "best" population group.
- Increasing national completeness for information on stage at diagnosis will mean that this analysis will soon be able to be conducted at a national level.

Selected References

Impact of variation in stage on survival

Background

Melanoma

Deprivation

Breast - Ag

Conclusions

References

G. Lyratzopoulos, G.A. Abel, C. Brown *et al.* Socio-demographic inequalities in stage of cancer diagnosis: evidence from patients with female breast, lung, colon, rectal, prostate, renal, bladder, melanoma, ovarian and endometrial cancer. *Ann Oncol*, **24**:843-850, 2013.

P. Royston. and P.C. Lambert. Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model. *StataCorp LP*, 2011.

M.J. Rutherford, S.R. Hinchliffe, G.A. Abel *et al.* How much of the deprivation gap in cancer survival can be explained by variation in stage at diagnosis: An example from breast cancer in the East of England. *Int J Cancer*, **133** (9) :2192-2200, 2013.

M.J. Rutherford, L. Ironmonger, N. Ormiston-Smith *et al.* Estimating the potential survival gains by eliminating socioeconomic and sex inequalities in stage at diagnosis of melanoma. *BJC NAEDI Supplement*, 2015.

M.J. Rutherford, G.A. Abel, D.C. Greenberg *et al.* The impact of eliminating age inequalities in stage at diagnosis on breast cancer survival for older women. *BJC NAEDI Supplement*, 2015.