

http://victorops.com/chatops

Jason Hand

ChatOps
Managing Operations from Group Chat

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-96230-5

[LSI]

ChatOps
by Jason Hand

Copyright © 2016 O’Reilly Media Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Brian Anderson and
Virginia Wilson
Production Editor: Kristen Brown
Copyeditor: Rachel Head

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

August 2016: First Edition

Revision History for the First Edition
2016-08-12: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. ChatOps, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Foreword. ix

1. Introduction. 1
What’s in the Report 2
What’s Not in the Report 3
The Author 3

2. The Culture Challenge. 5
Benefits of ChatOps 5
Champion of Change 6

3. Team Collaboration. 9
All of Us Are Smarter than Any of Us 9
Don’t Repeat Yourself 10

4. Roles and Responsibilities of DevOps (or Ops) Engineers. 11
Goal Alignment 12
Spreading Institutional Knowledge 12
Learning Organization 13

5. Common Uses and Tasks. 15
Pushing Context 15
“Read-Only” Retrieval of Data 16
Bidirectional Interactions 17
Third-Party Integrations 18
Custom Scripted Tasks 19

v

6. Existing Technology. 21
Chat Services 21
Additional Open Source and Commercial Options 23
Third-Party Integrations 24
Bots 25
Instructing Chatbots 29
Bot and Language-Agnostic Libraries 30
Syntax: Command Versus Natural Language 31

7. Getting Started and Examples. 35
Proof of Concept 36
Low-Hanging Fruit 36
Without Chatbots 37
With Chatbots 41

8. A World Connected by API. 45
A New Interface 45
A Growing Ecosystem 47

9. Infrastructure as Conversation. 49
Managing Infrastructure as a Collaborative Process 50
Empowering Engineers 50

10. The Convergence of Conversation, Context, and Action. 53
More Informed, Responsive, and Efficient 53
Real-Time Awareness 54

11. Make Work Visible. 55
Leverage a Bot 56
Spread Tribal Knowledge 58
Familiar and Predictable 58
Building Empathy 58

12. Security and Safety. 61
Security Through Obscurity 62
Community to the Rescue 63

13. Importance of Persistent Data. 65
Logs 66
Compliance 66
Wikis 66

vi | Table of Contents

Onboarding 66
Postmortems, Retrospectives, and Learning Reviews 67

14. Signal Versus Noise. 69
Alert Fatigue 69
Make Adjustments 70
Set the Tone 71

15. Reliance on Third-Party Chat Service. 73
Run It On-Premise 74
Single Point of Failure 75

16. Selling ChatOps to Your Boss. 77
Redesigning IT’s Role and Purpose 77
Exposing Conversations and Collaboration 78

17. Beyond the Horizon: The Future of ChatOps. 81
Advancements in Technology 82
Final Thoughts 82

Table of Contents | vii

Foreword

Marc Andreessen famously opined that “Software is eating the
world.” His premise is that software companies are disrupting indus‐
try incumbents by outcompeting them as those industries increas‐
ingly deliver their value via online services—effectively, that all
industries are moving online. This statement was a little bit contro‐
versial in 2011, but you’d be hard-pressed to find someone who disa‐
grees with it in 2016.

These new companies are winning because they deliver a better
experience to their customers and provide services faster and
cheaper than the incumbents in their industries. Since their services
are driven by software, they’re able to apply the knowledge they gain
from their own metrics, customer feedback, and market trends very
quickly. Ultimately, they succeed because they’ve built organizations
that are focused on collaboration and adaptability.

Over the last decade or so, the velocity at which applications are cre‐
ated, updated, and deployed has increased at an almost unbelievable
rate. This acceleration is supported by significant improvements in
the technology that we use to build applications and the processes
we use to manage software development. I’ve been fortunate
throughout my career to have been involved with a number of com‐
panies on the forefront of these changes.

I started working at 37signals (the creators of Basecamp and the
Ruby on Rails application framework) in 2006, and saw firsthand
how transformative Rails was in its ability to quickly deliver new
applications and features. Since then, we’ve seen many of the ideas of
early Rails adopted and expanded upon, and development velocity is

ix

now taken for granted. New applications frequently go from idea to
minimum viable product in the span of weeks rather than months.

There have also been huge advancements in the infrastructure that
supports these applications. I joined Heroku and later DigitalOcean
because I believe in the vision that they both have for empowering
developers to move quickly from idea to production deployment.
The growth of cloud computing and the advancements in areas like
configuration management, containerization, and orchestration (to
name just a few), means that building physical infrastructure is no
longer a barrier to delivering applications.

Later, when I worked at GitHub, our tagline was “Work better,
together.” This focus on collaboration is another cornerstone that
enables the shift to a software economy. Development practices like
Agile, which emphasizes collaboration between developers and
product stakeholders, have become the norm. Text chat, which was
once reserved for engineers talking to one another, is becoming a
primary communication channel for more and more companies.

We’ve seen tremendous improvements in our ability to quickly and
cheaply build and deploy applications, but our ability to manage
these applications after deployment has not advanced as rapidly.
Many organizations have learned a tough lesson: our previous mod‐
els of IT, particularly the focus on mitigating risk rather than deliv‐
ering value, can be debilitating to our ability to move quickly.

Over the last few years we’ve seen the DevOps movement emerge,
with the goal of improving collaboration between software develop‐
ment and operations and an emphasis on automation. Organiza‐
tions that embrace DevOps nearly universally report improvements
to their deployment processes and increased ability to quickly
deliver new applications and features. In many cases, though, even
DevOps implementations don’t go far enough and the collaboration
stops once an application is deployed. Organizations often fall back
on more traditionally siloed IT operations practices around issues
like incident management, troubleshooting, and remediation.

ChatOps delivers on the promise of collaboration that the DevOps
movement promotes, and extends it throughout the entire lifecycle
of the application. It brings the workflows that your teams already
use when building, deploying, and managing applications and infra‐
structure to the place that your organization already collaborates—
your chat client.

x | Foreword

At GitHub, we were on the leading edge of this movement and
nearly every technical interaction could be driven from and collabo‐
rated on directly in chat. For example:

• Software and operations engineers could deploy applications,
balance storage clusters, mitigate DDoS attacks, and more.

• The support team could investigate, and often even resolve, cus‐
tomer problems.

• Product managers could review metrics to understand usage of
features to make prioritization decisions.

The value of visibility in terms of shared context is obvious, but
there are a number of other benefits. Instead of teaching a new
developer how to deploy applications or referring them to docu‐
mentation that is invariably out of date, they can see how deploy‐
ments happen on their first day. Product managers don’t have to ask
if a new feature has been deployed yet, because they can see when it
happens for themselves.

Jason has been at the vanguard of the ChatOps movement for years,
and his excitement about the topic is infectious. He combines a
technical background that allows him to understand the details with
a broader industry view, thanks to frequent interaction with Victor‐
Ops customers and the DevOps community. This report does a
great job of setting the stage by describing why ChatOps is impor‐
tant, illustrating how it fits within organizations, and explaining the
factors that you should consider as you start your own adoption
journey.

I believe, like Marc Andreessen, that software is eating the world.
Organizations that collaborate better and adapt faster are well posi‐
tioned to take advantage of this trend; collaboration and adaptability
are what ChatOps is all about.

— Mark Imbriaco
Founder of Operable

Cog ChatOps Platform
August 2016

Foreword | xi

CHAPTER 1

Introduction

In recent years, there has been a movement within organizations to
become much more collaborative and open when it comes to com‐
municating about efforts, concerns, and projects, especially across
multiple teams and departments. When organizations place a high
focus on sharing more about what takes place throughout the day in
an environment that is accessible by all, higher efficiencies can be
achieved in a number of areas. Finding ways to increase the speed
and velocity of delivering software and services to end users is of the
utmost importance to all modern IT departments, but finding new
ways to accomplish our daily tasks more efficiently is something all
departments within an organization are examining.

Popular group chat tools such as Slack and HipChat have allowed
for greater transparency about what goes on throughout the day
within teams and organizations. By engaging in conversations in a
shared space where others can be part of the discussion, greater
awareness and efficiencies are provided to a larger part of the team.
Important information and discussions are shared and made avail‐
able across entire teams and organizations. Rather than artificially
blackboxing that information in one-on-one emails or instant mes‐
sages, it is disseminated to others, allowing for well-informed and
high-performing teams to take shape, as well as helping to drive
innovation within the company.

1

What Is ChatOps?
ChatOps is about using group chat tools to go beyond basic conver‐
sation, juxtaposing discussion with context and actions taken from
within the chat tool itself. By creating a unified interface for teams
to take action, view relevant information, and discuss all of it in line
with each other, ChatOps allows many benefits to be gained across
teams and organizations.

The goal of this report is to outline the benefits of ChatOps, as well
as concerns organizations and teams should consider as they begin
to roll out their own ChatOps efforts. I’ll touch on some of the exist‐
ing technology available today as well as how teams are using persis‐
tent group chat, third-party (native) chat integrations, and chatbots
to provide even more functionality and capabilities for teams man‐
aging varying aspects of IT operations and beyond.

Those who are considering their own ChatOps journeys and looking
to consume a high-level rundown of what is necessary to begin
should find the contents of this text a good starting point. Very little
of the text will be technical in nature. The important concepts of
ChatOps are not difficult to understand, nor are they unique to any
specific tool, framework, or programming language.

Facilitating a culture of increased sharing, shortened feedback loops,
automation of tasks, and cross-functional teams, ChatOps has been
central to many organizations as they begin to evolve toward a
DevOps model.

Throughout the report, I’ll cover some of the key concepts and tech‐
nologies that have emerged in recent years, in addition to the chal‐
lenges that one must consider. These ideas will set the stage for you
and your team or organization to begin planning out your own
ChatOps efforts, as well as providing the language needed to discuss
the potential benefits and concerns with leadership.

What’s in the Report
I think it’s important to point out that a ChatOps approach requires
a change in your company’s culture. I want to start off by discussing
that specific challenge in Chapter 2. By understanding the key bene‐

2 | Chapter 1: Introduction

fits associated with ChatOps, you and your team will begin to find
the language to use with senior management to win their endorse‐
ment. Examining benefits such as increased collaboration, dissolv‐
ing blackboxed conversations, and creating high-performing and
cross-functional teams will be the primary focus of Chapters 3 and
4. Then we will take a look at some of the common use cases of
ChatOps and the technology behind them in Chapters 5, 6, and 7.
We’ll round out the report by discussing more of the nuanced topics
behind ChatOps in Chapters 8 through 15. Security concerns, man‐
aging a good “signal-to-noise” ratio, and what to think about when
relying on third-party chat services are just a few of the things we’ll
take a closer look at.

What’s Not in the Report
The majority of this report focuses on the “why” of ChatOps.
Because so much of the “how” depends on the technology you
select, I won’t be covering technical aspects such as hosting and con‐
figuring any of the group chat tools or chatbots mentioned in the
coming chapters. The step-by-step procedures vary from tool to tool
and are beyond the scope of this report. Getting everything up and
running shouldn’t be much of a challenge, but fortunately every tool
that I highlight in Chapter 6 has great documentation and a growing
community to leverage for technical assistance if you run into prob‐
lems.

The Author
At VictorOps, I have led the adoption efforts of ChatOps internally.
For more than two years, the underlying concepts have often been at
the forefront of my responsibilities and efforts. Users of our “on-call
and incident management service” are early adopters of ChatOps,
whether they are aware of the concept or not. Acknowledging, triag‐
ing, investigating, and resolving incidents from the VictorOps inter‐
face or from a group chat tool via an API is a perfect use case of
ChatOps. Sharing information, taking action to address service dis‐
ruptions, and continuously improving are the byproducts and are
why I’ve grown passionate about the topic of ChatOps.

My intent is that by the completion of this report you’ll have a really
good starting point to begin your own ChatOps journey and explore

What’s Not in the Report | 3

the new levels of efficiency and other benefits it can offer your team,
your organization, and the products and services you provide.

4 | Chapter 1: Introduction

CHAPTER 2

The Culture Challenge

Many of the principles and concepts that have come out of the
DevOps conversation require organizations to examine their own
company culture and approach to work. ChatOps, a concept born
from the DevOps movement, is no exception to this. However, the
return on investment of ChatOps coupled with the broader benefits
that evolve as a byproduct are immediate and measurable.

Benefits of ChatOps
The benefits of ChatOps can be broken down into two categories:
social and technical. Varying members of your team and organiza‐
tion are going to be attracted to some benefits over others. Manage‐
ment and members of non-technical teams may find the social
benefits reason enough to begin the journey.

Social Benefits

• Increased collaboration
• Increased sharing of domain knowledge
• Increased visibility and awareness
• Enhanced learning
• Improved empathy

Engineers and members of technical teams within an organization
will likely find greater value in the technical benefits. These more

5

closely address the concerns they are faced with on a day-to-day
basis.

Technical Benefits

• Increased automation
• Increased speed of actions and executed com‐

mands
• Improved security and safety
• Automatic logging of conversations and actions
• Synchronous communication
• Reduction in email

Identification of these benefits has led many who are beginning to
take notice of the success that DevOps has brought organizations to
look to ChatOps as a starting point. At its core, ChatOps is primarily
about increased sharing and collaboration regarding efforts and
actions taken each day. A higher focus on collaboration, automation,
context, and shared institutional knowledge is at the heart of what
DevOps has brought to teams and organizations.

With very little effort, teams that begin to move their conversations
out of email and private messages and into persistent group chat
tools (coupled with powerful chatbots and third-party integrations)
begin to see the benefits outlined above. As a result, the organization
begins to evolve into one that is efficient in its actions and inher‐
ently good at knowledge sharing. On top of that, previous friction in
the path toward adoption of DevOps may be a result of not knowing
where to start. As teams and management begin to see what auto‐
mating simple tasks from within group chat can do for them, teams,
departments, and entire organizations are able to begin focusing
more effort on improvements. It’s through that line of reasoning that
real learning and innovation begin to emerge.

Champion of Change
Every organization has its own unique culture, and the larger the
company is, the harder it is to change. Through adoption of
ChatOps techniques, teams will begin to see incremental improve‐
ments toward the culture they seek. It’s not easy, and it will take

6 | Chapter 2: The Culture Challenge

time. But including more and more individuals and teams in con‐
versations has a way of peeling away the bureaucracy and old-view
thinking that typically prevents any real change in a company’s cul‐
ture. Perhaps most importantly, every significant change in the cul‐
ture of an organization needs a champion. Someone who takes the
lead to be an agent of change. As demonstrated by your interest in
this report, it is highly likely that the champion is you.

ChatOps Helps to Facilitate:

• Increased sharing
• Shorter feedback loops
• Automation of tasks
• Cross-functional and high-performing teams

Champion of Change | 7

CHAPTER 3

Team Collaboration

ChatOps is about increased sharing and collaboration regarding
efforts and actions each day. Common across many organizations,
while also unique to your own internal environment and processes,
the specific actions that teams collaborate and execute on will vary.
In Chapter 5, I’ll outline some of the common actions many teams
are currently using to automate sharing of important information or
executing commands. I will also begin touching on more technical
considerations of ChatOps. Regardless of which actions you imple‐
ment, by placing a higher focus on open and shared conversations,
paired with related context, command execution access, and
increased awareness of all of it, you will find greater efficiencies
across the board.

All of Us Are Smarter than Any of Us
Innovation is the result of combining and recombining ideas over
and over. When collaboration occurs frequently and involves more
and more individuals, a great deal of learning and innovation are
realized.

Artificial siloing of teams begins to dissolve as institutional knowl‐
edge is made available to a broader part of the organization.
Increased transparency and conversations that are open to all voices
lead to highly efficient, cross-functional teams. Teams are enabled to
learn from one another. We want to create as many ideas as possible,
and as a result, brainstorming is encouraged. Good brainstorming
exercises are those built on other ideas from a diverse range of voi‐

9

ces and expertise in an environment where all members can be
heard.

Brainstorming Tip

Good brainstorming efforts avoid the opportunity for
“group think.” The more diverse and varying ideas that
make their way into the conversation, the better the
results of a brainstorming exercise will be. By allowing
teams to engage in conversations intended for brain‐
storming new ideas, group chat tools provide an envi‐
ronment for individuals to share their own viewpoints
and ideas. Those who may struggle to share or speak
up in physical meetings will be more inclined to partic‐
ipate in brainstorming sessions from the abstracted
comfort of a chat room.

Don’t Repeat Yourself
It is through this behavior that a team understands what is happen‐
ing throughout its codebase, infrastructure, and company. A deeper
understanding of what is happening and what has already taken
place means a team won’t take the next logical step along an unpro‐
ductive path. Because information, actions, and context is shared
and visible for all to see, duplication of efforts can be avoided. Indi‐
viduals and teams will find that the shared conversations provide
insight into what has already been done, what needs to be done next,
and what lessons have been learned by those already taking action.

An increase in collaboration is the most immediate positive benefit
from a ChatOps effort. This new approach to collaboration speaks
to the evolving roles of engineers within IT departments and
beyond.

10 | Chapter 3: Team Collaboration

CHAPTER 4

Roles and Responsibilities of
DevOps (or Ops) Engineers

Until recent years, the roles and responsibilities of IT teams were
made very specific and clear. However, through Agile software
development and DevOps, cross-functional teams are beginning to
demonstrate the effectiveness of tearing down the traditional divi‐
sions of labor. By making collaboration a priority, team members are
beginning to understand more than just their own unique roles
within their teams and organizations. Empathy between teammates
and even different teams begins to take hold, and a sense of owner‐
ship and accountability becomes central to all actions. That empathy
then bleeds over into the designing of services (both software and
infrastructure), and the end users’ needs are given the utmost con‐
sideration for all business decisions.

Build Empathy

Should your organization make the unfortunate deci‐
sion that teams should remain isolated and task-
specific, ChatOps still helps to create greater empathy
within the teams.
The visibility of work as it takes place helps to create a
shared context and understanding both within and
across individual teams. It’s easier to accept that your
own request cannot be completed immediately when
you have visibility into the work of others.

11

Goal Alignment
In previous software development and IT efforts, goals often varied
from one department to the next. Software developers were incen‐
tivized and rewarded for meeting metrics typically tied to quantity
of code “shipped.” IT Operations teams were incentivized for pre‐
venting outages, and their primary efforts centered around provid‐
ing maximum uptime of service to both internal and external
stakeholders or customers. Likewise, Security, Network, Database,
Support, and every other breakout team within Information Tech‐
nology all had their own concerns, goals, and efforts associated with
accomplishing their objectives. The problem was that rarely did
these goals align in a way that placed the needs of the end user and
business as the top priority.

Now, organizations are beginning to see the measurable gains made
possible by creating highly efficient, cross-functional teams where
more of the team members are enabled. For example, rather than
just the IT Operations subgroup assuming the responsibility of
being “on call” for service disruptions, more members of the team
(including developers and even management) are taking on this
responsibility. After all, they have intimate knowledge of and exper‐
tise on subject matter that could be directly related to problems.
More of the team can also be part of the planning, design, building,
and maintenance of software and the infrastructure on which it
resides.

Spreading Institutional Knowledge
A key component of these cross-functional teams is their ability to
collaborate effectively. By moving many of their conversations, as
well as records of actions and context, into a persistent group chat
tool, friction that previously caused delays in the development,
maintenance, and support of software and infrastructure is
removed. Institutional knowledge and awareness of many aspects
within IT and beyond are given the opportunity to persist and grow
over time. Live documentation on exactly how things are accom‐
plished is generated as it’s happening.

12 | Chapter 4: Roles and Responsibilities of DevOps (or Ops) Engineers

Live Documentation

Utilizing ChatOps is a great way of onboarding new
team members. Documentation on “how jobs get
done” is available in real time for all to see. By viewing
the conversations, actions, and more from within a
group chat tool, individuals can quickly learn how to
accomplish a great deal of work.

Documentation is and has always been an incredibly important part
of every role within IT. Keeping documentation up-to-date means
that teams always have the most accurate information available to
them. ChatOps provides a natural method of automatically and per‐
sistently maintaining up-to-date documentation. At any time, per‐
sonnel can review conversations and actions from within group chat
to consume the most recent information with regard to current sta‐
tus and procedures to accomplish a growing number of tasks.

Learning Organization
The role of IT Ops engineers is often consumed with efforts toward
prediction and prevention of service disruptions. ChatOps enables a
focus on sharing information, learning, improving, and innovating
to make services more resilient and reliable. The same focus on
learning should apply to all roles within IT.

Spreading the load and knowledge across larger groups and teams
affords deeper understanding and learning. This in turn provides
opportunities to experiment and innovate on the processes and
tools of both software engineers and those who were previously
labeled as IT engineers or system administrators. Much of this
comes directly as a result of treating persistent group chat as the
common interface for nearly everything that takes place within the
team.

In the following chapter, I’ll begin to outline some of the ways teams
are leveraging ChatOps in their own organizations to increase
awareness, simplify tasks, increase velocity, and more.

Learning Organization | 13

CHAPTER 5

Common Uses and Tasks

Much of what ChatOps provides teams and organizations is a com‐
mon interface to interact with a growing number of services and
tools. The benefits are clear, and with minimal effort, automation of
tasks (while preserving the conversations and context related to
them) can provide a great deal of value to not only the operators
executing commands and discussing the results, but additional
stakeholders as they review the timeline of events.

Aside from querying the weather or sharing random GIFs, what can
be done that brings immediate value to our teams and the business?
In this chapter, we’ll break tasks down into several categories and
discuss examples of what teams are currently doing with ChatOps.

Pushing Context
The easiest and therefore first step that many take on the path to
ChatOps is simply pushing additional context about events or
actions into the conversations. Without good context, team mem‐
bers don’t have the full picture of previous and present conditions.
It’s through extra and ongoing context that teams remain aware of
situations as best they can, shortening feedback loops and facilitat‐
ing quicker responses.

Many services that we use on a regular basis are able to “push” data
to modern chat clients in a variety of ways. Through the use of web‐
hooks or RESTful endpoints, chat clients can ingest data seamlessly
and with very little setup. The result is that as an event takes place

15

somewhere outside of the natural bounds of awareness, information
is passed along to the chat client for all to see and know about.

Example Notifications

• Infrastructure creation notifications
• Anomaly, incident, and outage notifications
• New or updated support tickets
• Version control repository changes
• Event or meeting reminders
• Social media engagement

As commits, pull requests, and additional actions are taken within
your team or company’s repository, information about those actions
is automatically pushed to a specific channel or room within the
chat client. This means when a developer executes a command to
commit new code to a repository, for example, that information is
instantly shared with others on the team. Note that in this example
the developer does not commit the code from chat. That action is
taken elsewhere, likely from the developer’s own machine. The
results, however, are immediately shared with everyone on the team
via the group chat tool.

“Read-Only” Retrieval of Data
For many teams, an early use is to set up the ability to query services
or databases in a safe manner. Providing a safe way for team mem‐
bers to retrieve information from a datastore without the risk of
manipulating data means that a broader group of people can have
deeper visibility into the data. By enabling people who do not (and
should not) have access to query databases from a command-line or
other tool to look at the data without bothering a person who does
have that access, you empower your team in a way that brings a
great deal of efficiency and knowledge sharing to the table.

16 | Chapter 5: Common Uses and Tasks

Example Queries

• CRM records
• Open incidents and on-call schedule in VictorOps

or PagerDuty
• Graphite or DataDog graphs
• Log data
• DNS and WHOIS records
• Infrastructure databases

It’s not uncommon for members of a non-technical team to have
questions about data that typically only members of the technical
team have access to. Compliance controls and regulations are put in
place to prevent unauthorized access to sensitive data. However,
some of that data is very relevant and helpful to those who don’t
have access to query a database containing that data directly. Ena‐
bling “read-only” retrieval of data from within a group chat client
allows those from non-technical teams to obtain the information
that they need without interrupting someone who has access. Users
can simply type a specific string of commands and, through the use
of a chatbot, obtain the information that they need in a safe manner,
without having to ask someone from the technical team to do it for
them. Additionally, others who may view the timeline can see who
queried the database, what the results were, and how it was done.
Documentation on how to obtain that type of information is built in
real time and an audit trail is generated as well.

Bidirectional Interactions
Pushing context and querying data are where many teams first start
exploring the possibilities of ChatOps. At some point, however,
deeper interactions will be desired or required. This is where more
advanced bidirectional interactions with services and tools prove
their usefulness.

Bidirectional Interactions | 17

Example Two-Way Interactions

• Manage incident notifications in VictorOps or
PagerDuty

• Manage a project board in Trello
• Facilitate daily “stand-up” meetings
• Shorten URLs using Bitly or Google’s URL

shortener
• Perform language translations using Google

Translate
• Poll groups
• Save and retrieve bookmarks

Third-Party Integrations
Most of the popular group chat tools discussed in the next chapter
provide some type of “app directory,” allowing an easy method to
connect and configure third-party tools and services. The use of
these integrations avoids the need of a bot, as the third-party service
connects directly to your chat application.

The upside of this approach is that it’s extremely easy to integrate
applications as well as manage them. Non-technical team members
can browse the growing list of services and select the ones that they
use. In most cases, an admin user of the company or team’s chat
application will need to authorize the integration, but it’s typically as
simple as clicking a few buttons.

The downside is that customization of how to interact with the ser‐
vice and how the data is returned is limited. In many cases this is
not a deal-breaker, but some teams prefer to customize their interac‐
tions with the third-party tool or service. In those cases, using a
chatbot (and the associated development) is required. Nevertheless,
many teams set up these integrations as an easy way to get started
down the path of ChatOps. Both HipChat and Slack make it easy to
turn on, try out, and turn off integrations with very little effort. This
allows teams the ability to explore simple interactions with the tools
and services they use without having to dedicate technical resources
to their efforts.

18 | Chapter 5: Common Uses and Tasks

Native Third-Party Integration Examples

• Create Google Hangouts
• Create Calendar events
• Share Google Drive documents
• Share Dropbox documents
• Interact with Salesforce
• Receive pull requests, commits, and comments in

BitBucket and GitHub
• Create, manage, and close Wunderlist to-do lists
• Interact with support ticketing systems such as

Zendesk and Desk.com
• Create and update status pages

Custom Scripted Tasks
One of the most powerful aspects of ChatOps is the ability to daisy-
chain actions together. In other words, separate actions can be auto‐
mated individually, then those separate actions can be processed in a
specific sequence. In many cases information returned from the first
action will be used to decide the next step of the process. This, how‐
ever, requires the use of a chatbot as it steps through multiple
actions within a script or library of scripts. For many actions taken
from within a group chat tool, a simple call and response is all that is
desired. In others, we just want the context provided to us automati‐
cally and in real time. But there are many circumstances where
interactions with services need to be stepped through in sequence
and with different services or tools. In those cases, scripted tasks can
be executed through the use of a chatbot.

The instructions that your chatbot will execute contain all of the
actions in a specific order. They also contain the necessary applica‐
tion programming interface (API) calls and authorization informa‐
tion required to trigger the actions. Everything is executed in a
specific order. If a certain amount of time is required to pass before
the next step is executed, that “wait” syntax is included in the
instructions. If certain information is required for a step to take
place, a previous step will query a service and provide that informa‐

Custom Scripted Tasks | 19

tion so that the sequential steps can execute once it has the informa‐
tion it requires.

Custom Script Examples

• Updating configuration files
• Submitting a support ticket to an outside service

(such as an internet service provider)
• Two-factor authentication
• Infrastructure provisioning and configuration

management operations
• Database migrations
• Managing Lightweight Directory Access Protocol

(LDAP) servers
• Managing virtual private networks (VPNs)

Now that we have an idea of the types of actions and context that
can be provided, let’s examine some of the existing technology that
teams and organizations are currently leveraging.

20 | Chapter 5: Common Uses and Tasks

CHAPTER 6

Existing Technology

While the term may be new to many, the concepts and technology
behind ChatOps have been around for quite some time. Persistent
group chat has long existed in a variety of forms. Chatbots, while
suddenly a hot topic, have been part of IT’s arsenal for many years.
For some, much of what you will find in this text may not sound all
that different from what you were doing using Internet Relay Chat
(IRC) many years ago. As with any technology, however, there have
been advancements and evolution within our tools and the ways
that we can utilize them. The concepts of ChatOps are not unique to
any one specific chat client or chatbot. However, understanding
what teams are currently using for their own ChatOps efforts may
help you frame where to start. Learning about existing technology
and what can be accomplished with it will help you form ideas and
provide a starting point for you and your team.

Chat Services
While persistent group chat has existed for quite some time and IRC
has been a staple of IT culture for many years, it wasn’t until more
recently that modern group chat tools began to evolve into some‐
thing much more user-friendly and valuable to a larger group of
users in the organization. 37signals’s Campfire application was one
of the first to provide much of the same functionality as IRC, but
with a cleaner and more user-friendly design. Additionally, the abil‐
ity to integrate third-party services and leverage APIs opened the
door to much more for teams to explore. When the term “ChatOps”

21

was coined by the team at GitHub in 2011, Campfire was the persis‐
tent group chat tool used at the time. While it’s still a popular
option, let’s take a quick look at some of the alternatives.

HipChat
Atlassian’s HipChat has gained popularity in recent years. Its seam‐
less integration with additional tools from the Atlassian suite makes
it extremely easy for teams to begin interacting and sharing context
from multiple tools and services from within their own persistent
chat client. By providing an open market for developers and tech
companies to show off their own native integrations with HipChat,
Atlassian also makes it possible for teams to find more tools outside
of its suite to leverage from within the chat client.

Atlassian has since released HipChat Server, an on-premise solution
for organizations that want to leverage group chat, regardless of
their ChatOps aspirations. Using a hosted chat solution has been
one of the largest barriers to entry for many organizations looking
to provide more collaboration, transparency, and efficiency. More
recently, Atlassian has released HipChat Connect, the latest incarna‐
tion of its group chat product. With this release, a focus has been
placed on deeper integrations with third-party services and tools to
provide even more functionality to HipChat users. It also provides a
“Glance” feature that allows team members to review what they may
have missed since they last used the tool. A high-level summary of
conversations, context, and actions is displayed in a separate pane,
making it easier for team members to get caught up and gain the
awareness they need without having to constantly be tuned into the
conversations taking place. This goes a long way in helping to deal
with noise and alert fatigue and is an attractive feature to manage‐
ment, who may not tune into the chat so often.

Flowdock
Rally Software (now CA Technologies) acquired Flowdock in 2013.
Much like HipChat, Flowdock seamlessly integrates with the Rally
product line, allowing teams to have better awareness of and visibil‐
ity into their data from the comfort of their chat client. One of the
biggest differentiators of Flowdock is its ability to thread conversa‐
tions. Despite efforts to maintain a sterile room or channel and
ensure that conversations stay on topic, multiple lines of thought or
sub-conversations naturally develop over time. Many people can be

22 | Chapter 6: Existing Technology

https://campfirenow.com/
https://hipchat.com/
https://www.flowdock.com/

in one room or channel discussing topics that are relevant to the
overall theme of the room, but there will likely be different sub‐
threads. It’s often hard to come back to a conversation and provide
extra context or valuable information to the conversation if others
have moved on to a new topic. Threading allows for teams to keep
specific conversations linked to one another so that those who may
review the conversations later have a better understanding of how
everything is related.

Slack
Slack has generated an immense amount of attention and admira‐
tion from teams large and small. Its user interface (UI) and user
experience (UX), including a quirky onboarding experience for new
users, have been the primary selling point for many. Functionally,
Slack provides the same features as nearly all other persistent group
chat tools on the market. The design aspects have primarily been
what has won over its customers from the competition. Much like
other tools, Slack provides an open market full of third-party inte‐
grations and hosted chatbots that can be integrated in with just a few
clicks, providing even more functionality to teams with very little
lifting or the need for technical staff to be involved beyond simply
authorizing an integration. The built-in “Slackbot” comes baked in
with a number of useful actions it can take on behalf of a user. With
nearly two million daily active users, Slack has caught the attention
of not only large businesses and startups, but just about any type of
community you can think of.

Additional Open Source and Commercial
Options
Additional group chat tools and services, some of which are open
source projects, are gaining in popularity as well. Grape, Zulip,
Rocket, Gitter, Grove, and Mattermost are just a few alternatives to
the group chat services mentioned above. The primary thing to con‐
sider when evaluating a group chat client is its ability to integrate
with a chatbot or its support for native integrations with third-party
services. Any chat tool that does not allow for interactions with
services will not provide the essential elements of ChatOps. A col‐
laborative environment where teams can discuss topics is just the
beginning. Being able to interact with more and more of the tools

Additional Open Source and Commercial Options | 23

https://slack.com/

and services that we use in our daily tasks is where the power of
ChatOps becomes much more apparent.

Third-Party Integrations
All of the popular group chat tools outlined previously have a vast
market of integrations and hosted bots that allow teams to begin set‐
ting up their ChatOps efforts with very little trouble (Figure 6-1).
The popularity of HipChat and Slack has drawn the attention of
developers as well as Software as a Service (SaaS) companies that
want to make it easy for their users to interact with their services
from within chat. The marketplace is divided into categories, mak‐
ing it fairly easy to browse and search for specific services or func‐
tionality. As more and more non-technical teams join the ChatOps
conversation, even more integrations are showing up in the market
for teams to integrate and leverage.

Figure 6-1. Using native third-party integrations

Through the use of third-party integrations, teams are able to begin
interacting with the tools and services that they use each day
without the need for a chatbot. This makes the barrier to entry for
ChatOps much lower for teams that don’t have the bandwidth or
technical expertise to set up and configure their own chatbots. Addi‐

24 | Chapter 6: Existing Technology

tionally, development of those integrations is handled by the services
and updates to functionality can be expected to remain consistent.
Support is available from the service providers as well, making it
much less of a burden on a technical team to manage and support
not only the bots but the definitions and instructions that are
required for the chatbots to interact with outside services.

Bots
Although many teams may not need to host, configure, and support
a chatbot, as a team’s ChatOps efforts get more advanced it may find
that third-party integrations do not provide the full functionality or
customization that it requires. It’s at this point that a chatbot may
become necessary to fully realize the capabilities of ChatOps and
allow teams to manage the interactions with tools and services in
the way that works best for them (Figure 6-2).

When the Integration No Longer Cuts It
It’s time for a chatbot when the third-party integrations are:

• Not available
• Not flexible enough to work with your special “snowflake”
• Not feature rich or missing core functionality your team needs

Currently there are several well-known chatbots available, with
more and more popping up all of the time. However, much of the
media attention and conversations online about chatbots are more
focused on the business-to-consumer (B2C) style of chatbot devel‐
opment.

Facebook and Twitter have been testing out a variety of chatbots
from within their services, attempting to add more functionality and
touchpoints for their users. Retail companies are also experimenting
with bots that integrate with their ecommerce stores, allowing cus‐
tomers to interact from within chat. While this discussion around
chatbots and the related development targeting social media and
retail is interesting and gaining much attention, these are not the
types of bots that we are referring to when we talk about ChatOps.
Much can be learned and gained from understanding these bots and

Bots | 25

how they work, but for our purposes we are primarily focused on
chatbots that help our teams manage their day-to-day work lives
rather than facilitating interaction with consumers.

Figure 6-2. Using a chatbot

26 | Chapter 6: Existing Technology

Hubot

The most well-known chatbot available today is Hubot. A Node.js
application extensible with CoffeeScript or JavaScript, Hubot was
originally developed by GitHub for internal use only. Later, GitHub
rebuilt Hubot from the ground up and open-sourced the project,
making it available to the public and allowing others to contribute to
its ongoing development. Because it has been around the longest,
the number of contributors to the core application as well as the
growing list of scripts that manage the interactions with third-party
services, the infrastructure, and the codebase is larger than for any
other chatbot available today.

Lita

As ChatOps has gained in popularity, a chatbot written in Ruby
named Lita has caught the attention of teams around the world. Def‐
inition files and instructions are written in Ruby in the form of
modules that allow much of the same functionality that Hubot pro‐

Bots | 27

https://hubot.github.com/
https://www.lita.io/

vides. With a strong and growing community consistently contribu‐
ting to the source code and modules, this chatbot has become very
popular and easy to implement.

Errbot

Errbot is an open source project written in Python. It has a number
advantages over both Lita and Hubot, the most notable one being
that the application does not need to be restarted each time a new
script is added to the library. Errbot is able to recognize new Python
scripts and begin running them on behalf of users as soon as they
have been placed in the correct directory. Following its nearly com‐
plete redesign a year ago, Errbot has a gentle learning curve and
intriguing features to consider. These include:

• Ability to “pipe” commands, automation, and conversations
• Ability to manage the bot through chat
• Built in ACLs for security

Cog

Cog is another new player in the ChatOps space, but it’s much more
than simply a bot. Cog is engineered to be more of a framework that

28 | Chapter 6: Existing Technology

http://errbot.io/
http://operable.io/

addresses a number of concerns many teams have, such as security.
With built-in access control and audit logging functionality, Cog
allows teams to collaborate on sensitive tasks with higher confi‐
dence. Taking inspiration from the command-line interface, Cog has
a “pipe” operator that allows users to run a command and use that
output as the input for another command in a process.

Yetibot

Recently a new chatbot named Yetibot has caught the attention of
some. A self-proclaimed “communal command line,” Yetibot is writ‐
ten in Clojure. This chatbot has a few features that may pique the
interest of technical teams looking to piece together strings of com‐
mands. Similar to Cog’s piping functionality, Yetibot allows users to
chain together complex and flexible commands as well as letting you
embed the output of one command into an outer command. Com‐
mands can be nested as many levels deep as you like.

Instructing Chatbots
When it comes to instructing your bot to take action on your behalf,
the scripts, modules, or files that contain instructions will vary
depending on your choice of bot. Hubot is a Node.js application and
therefore requires instructions and definition files to be authored in
either CoffeeScript or JavaScript. Ruby is the language of Lita, and
for those who wish to instruct their bots using Python, Errbot may
be where you start. Yetibot, of course, is instructed using Clojure
files, and Cog is extensible in any language.

Instructing Chatbots | 29

https://github.com/devth/yetibot

1 And has been—see for example https://stackstorm.com/2015/12/10/
chatops_pitfalls_and_tips/.

Bot and Language-Agnostic Libraries
Coming to a consensus on which bot and (as a result) programming
language to use is often difficult, especially for larger organizations
with many teams. There is another approach that enables leveraging
the power of disparate services and bots. A strong argument can be
made1 that it is much better to build a library of automation scripts
written in any language that can be accessed via not only a group
chat tool, but also an API, command-line interface, or graphical user
interface (see Figure 6-3). Because there are multiple ways to inter‐
act with a library of scripts, teams can focus more on building small,
decoupled automation scripts that can be peer reviewed, version
controlled, and made available across the organization. Fine-grained
access control can be put in place to ensure those who should have
the ability to execute commands can and those that shouldn’t can’t.

This adds a level of abstraction away from the complex inner work‐
ings of the automation scripts. Actions can be exposed to teams with
complete disregard for the programming language or chatbot in use.
Teams are less likely to become dependent on any particular bot or
programming language and thus can focus more on building small
yet powerful scripts in their languages of choice. Any chatbot men‐
tioned in this text or any other that may surface and evolve in the
future will be able to execute these scripts regardless of the language
it’s developed in.

30 | Chapter 6: Existing Technology

https://stackstorm.com/2015/12/10/chatops_pitfalls_and_tips/
https://stackstorm.com/2015/12/10/chatops_pitfalls_and_tips/

Figure 6-3. Using bot-agnostic automation libraries

Syntax: Command Versus Natural Language
One of the more interesting discussions surrounding chatbots and
the future of their development is around the use of natural lan‐
guage versus command language. At present, all the chatbots we’ve
looked at here require a very specific syntax in order to execute
commands. Much like when inputting commands with variables,
triggers, and flags from the command line, the bots will only execute
your commands if they are typed or pasted into the chat client in a
very specific way. Typing errors, missing variables, or an errant
space will prevent the bot from executing anything. I’ll touch on this
more in Chapter 12, but the gist is that a basic layer of security is
built into your interactions with the chatbots. Accidents are reduced

Syntax: Command Versus Natural Language | 31

because the bots will only respond and act on your behalf if a com‐
mand is provided with complete accuracy.

With that said, some teams are experimenting with ways to create a
more “human-like” interaction with their preferred chatbots. Natu‐
ral language processing (NLP) and the development of associated
APIs to allow more natural interactions with applications (such as
chatbots) is an area of technology that is gaining more and more
attention. With the surge in interest in chatbots that interact with
social media services such as Facebook and Twitter, developers are
seeking out ways to make the “back and forth” conversation between
a chatbot and a human more natural. This requires enhanced algo‐
rithms that can take in many considerations. Additionally, it
requires that that the algorithms are able to learn and optimize the
experience over time for the end user.

Until operators familiarize themselves with the required syntax
understood by their bots, interactions are less fluid and conversa‐
tional. Also, context is not carried and disseminated throughout a
conversation. However, by allowing the bot to store and maintain a
history of previous conversations, a scenario arises where clarifica‐
tion on interactions is available. For example, if an operator
attempts to execute a command but leaves an important piece of
information out of the syntax, the bot can respond asking for fur‐
ther clarification.

Let’s say I want to restart a service on a host. I may run a command
such as:

>Jason @bot restart apache
>bot: I do not understand

In this example, I failed to pass along an important piece of infor‐
mation to the bot. I did not tell it which host or IP address I wanted
to restart the apache service on. As result, the chatbot’s only possible
response was “I do not understand.” If I engineer in logic so that the
bot can ask a follow-up question, however, the interaction feels
much more natural. An example of this would be:

>Jason: @bot restart apache
>ChatBot: @Jason on which host would you like to restart
 apache?
>Jason: @bot 192.168.0.24
>ChatBot: Restarting apache service on host 192.168.0.24
>ChatBot: The apache service has been restarted

32 | Chapter 6: Existing Technology

This allows for a much more pleasant and intuitive interaction, but a
great deal of engineering is required to build in logic that can
address the vast number of possible scenarios.

As ChatOps continues to evolve, the ability to use natural language
processing with the chatbots to make the interactions more seamless
and “human-like” will continue to improve. Operators will be able to
interact with bots as though they are real-life members of the team.
Through the use of natural language, users can begin carrying on
conversations with bots rather than simply instructing them. Of
course, this brings up the topic of artificial intelligence and what is
likely to be the not-so-distant future of bots. We aren’t quite there
yet with regard to ChatOps, but the conditions are here to begin
exploring ways to leverage NLP to open up even more functionality
and benefits. Being able to immediately begin interacting with a
chatbot, not knowing anything about the correct syntax, lowers the
barrier to entry and provides exciting possibilities for what ChatOps
may look like in the coming years.

Syntax: Command Versus Natural Language | 33

CHAPTER 7

Getting Started and Examples

While evaluating and choosing the right tools for your situation is
an important early step, you must first ask yourself and your team:
“What is it we are trying to accomplish?” ChatOps was born out of
DevOps principles. Because of that, teams must realize that it’s
important to use business objectives to prioritize efforts even with
ChatOps.

Understand the “Why” of ChatOps

Before choosing a group chat tool, teams need to be
informed of the “why” of ChatOps and its relationship
to the company’s objectives.

The idea of continuous improvement should always be in the minds
of those trying to implement change—particularly when it comes to
cultural change, which is what ChatOps represents. Increasing col‐
laboration and sharing of information and knowledge is not a top-
down initiative. It is something that must evolve over time. Tools
and processes can be put in place to facilitate change, but it doesn’t
happen overnight.

There will be some within the team or organization who feel that a
ChatOps effort is “just another project.” They may not initially see it
as creating a new and valuable way of managing the codebase, infra‐
structure, and more if business objectives are not made the clear pri‐
ority. This situation is even worse if the capabilities and benefits of a
ChatOps approach aren’t made clear. Begin by understanding what

35

is best for the company. Then communicate it clearly to the team
and organization, and go from there.

Immediate benefits can and should be outlined to the team as you
get started. In many cases, just the idea of reduced email interactions
and pointless IM interruptions will be enough to win over those
who are resistant to ChatOps.

Proof of Concept
It is often best to establish timelines to roll out a “proof of concept”
for a number of chat clients and (if necessary) chatbots. I have men‐
tioned a few of the popular tools and services available today, but by
no means is this an exhaustive list. Each piece of technology has its
strengths and weaknesses, and it’s best to try a number of options
before settling on one. Make it a team or organizational choice so
that everyone feels invested in the direction things are moving in, or
at the very least, make sure everyone’s voices are heard.

Low-Hanging Fruit
Increased collaboration will naturally occur as teams move away
from email and IM in favor of more synchronous conversations.
Seek out tasks and processes that can be automated. Start where the
changes will have the quickest or most immediate benefits. Tasks
that address repetitive actions that can easily be automated are a
great place to begin. Once those tasks have been reduced down to
repeatable steps that can be assigned to a bot, move on to problems
that are more challenging to address.

To figure out what to enable through ChatOps first, look for the
“low-hanging fruit” of your work—that is, places where changes will
be easiest to implement. By asking yourself a few questions, you can
quickly come up with a list of things to tackle first.

36 | Chapter 7: Getting Started and Examples

Ask Yourself:

• What is something I commonly have to look up?
• What is a process that I do manually more than

3–5 times a day/week/month/year?
• What are questions people ask me frequently?
• What tasks do people often ask me to do for

them?

Now, let’s take a closer look at some of the more popular applica‐
tions of ChatOps and possible good starting points for your team.
Some of the examples outlined will require the use of a bot. Others
are possible simply through the use of third-party plug-ins and your
chosen chat client.

Without Chatbots
In Chapter 5, I pointed out that the types of interactions ChatOps is
used for fall into a number of categories. There are push, pull, and
bidirectional interactions. Pushing context is often where many
teams begin their journeys, as it does not require the assistance of a
chatbot. Rather, an integration of the service you are using with the
chat tool of your choice handles the actions. Notifying teams or
individuals of information that is relevant to them is the main goal
here. At any given time, individuals may be interested in the status
of a number of systems or activities. Rather than constantly check‐
ing on statuses manually, a simple integration with the service that is
being used can allow for information, be it critical or informational,
to be delivered to the appropriate person or teams in real time.
These integrations are easy to set up and generally provide function‐
ality that is simple yet helpful.

Repository Notifications
What better place to start with as an example than where the term
ChatOps was born—GitHub? Many teams use this popular service
to version-control and store their codebases. Throughout any given
day, a lot of actions take place and information is made available on
a variety of branches and projects. In many cases, engineers need to
be made aware of those actions and changes quickly and effectively.

Without Chatbots | 37

One way teams have found to ensure that relevant information is
provided to them in the most efficient way is to notify engineers
through group chat of activity in GitHub (see Figure 7-1).

Figure 7-1. GitHub notifications

By providing real-time context on activities throughout teams and
departments, a greater awareness and understanding is reached.
Less effort is needed to communicate critical information across an
organization because the integration manages providing that infor‐
mation on your behalf.

Continuous Integration (CI) Notifications
Another popular use of third-party integrations for software and
infrastructure engineers is to provide real-time “continuous integra‐
tion” information regarding actions to build infrastructure. Each
time code is checked into a repository, it is then verified by an auto‐
mated build. This allows teams to identify and be notified of prob‐
lems earlier in the development process. Tools and services such as
Jenkins and Travis CI are used in cases like this (see Figure 7-2), and
by allowing the integration to provide notifications to engineers, not
only is relevant information shared beyond just those executing the
actions, but the status updates are made available to everyone who
needs to be aware of them in real time.

38 | Chapter 7: Getting Started and Examples

Figure 7-2. Travis notifications

Incident Management Notifications
Some notifications are nothing more than information that should
be shared across teams. However, others are intended to alert indi‐
viduals or teams to critical issues. Service disruptions and infra‐
structure outages are just part of the game when it comes to
technology. Reducing the time it takes for the necessary people to be
made aware of issues means a reduction in the time it takes to
address and resolve problems. And when more people are made
aware of situations and they are able to collaborate to investigate and
solve those problems, services become much more stable and resil‐
ient. Thus, sending these types of alerts to a group chat provides a
great deal of value to teams who are supporting and maintaining
infrastructure and code.

Services like VictorOps provide actionable alerts directly to the right
individuals and teams in a variety of ways, including via group chat
(see Figure 7-3). When all timeline activity of the “on-call” team is in
a shared chat environment, problems can be resolved in real time
faster than ever. Because information about what is taking place
during an incident is shared amongst a larger group, awareness
increases and the “Time to Repair” (TTR) decreases.

Without Chatbots | 39

Figure 7-3. VictorOps notifications

Additional Third-Party Notification Examples

• New or updated support tickets
• Event or meeting reminders
• Planning and roadmapping activities
• Google Calendar notifications
• Security policy violations
• RSS feed changes
• Bug reports (created, closed, comments)

Call and Response
Many third-party integrations do have some sense of back and forth,
but typically they are single round-trip interactions. For example,
users can pass information along to Google to create a new Calendar
event, and Google will echo a “success” response back to a group
chat. Here are a few examples of this type of interaction:

• Language translations
• Establishing conference calls
• Creating Google Hangouts

40 | Chapter 7: Getting Started and Examples

• Creating Calendar events

By allowing the third party to do some of the work for us, we are
free to focus our attention and efforts on other activities or responsi‐
bilities. Still, there are certain limitations with simple integrations.
In most cases, they aren’t interactive beyond a single call and
response. Also, they may not provide all of the functionality we
desire or even provide the answers to important questions that we
need when we need them. This is where the need for chatbots
becomes a reality.

Chatbots are much more flexible and powerful. Regardless of which
bot you choose or whether you abstract all of the automation of
your infrastructure and codebase through a library of scripts, the
possibilities are boundless, and a chatbot can quickly become some‐
thing resembling a very important member of your team—one that
is always available and willing to do anything in its power for you.

With Chatbots
As you can see, there is some really great functionality that comes
baked right into many third-party native integrations with persistent
chat tools. However, limitations do exist, and teams may quickly dis‐
cover that while the additional context that is provided in real time
is helpful so long as it’s not too noisy, there are bounds to its useful‐
ness and flexibility. For some, the next logical step is to begin
exploring the world of chatbots and the deeper functionality that
can be provided through community-built scripts or ones engi‐
neered by the teams themselves. Once you have decided you are
ready for a chatbot, a great place to start is by using or creating func‐
tionality to query information in a “read-only” manner. You can
then move on as needed to the other CRUD (create, read, update,
delete) operations.

Read
A multitude of information is obtainable through API calls to serv‐
ices teams use each and every day. By invoking calls to those serv‐
ices, information can be queried and presented back into the
common chat environment. From there, operators can decide
whether to act further. Additionally, a wealth of information may
exist in local databases, logs, graphs, and more that are often diffi‐

With Chatbots | 41

cult to query or view, depending on user access, privileges, or
knowledge of how to obtain the data. By making this information
more easily available and widely readable (and removing the
dependency on others to unblock it), teams can become much more
aware and cross-functional.

Examples

• Customer records in Salesforce
• Graphite or DataDog graphs
• Upcoming on-call schedule
• DNS records
• WHOIS database
• Incidents in VictorOps or PagerDuty

Create
Reading records is the most advisable place to start when first intro‐
ducing a chatbot to your software and infrastructure management
practices, but having the ability to trigger actions often means need‐
ing to create new records with the service you are interacting with.
For example, you may need to create a new JIRA ticket or to-do list
item following a postmortem and learning review. This can be
accomplished right from the chat tool with the use of a chatbot and
related instructions on how to interact with the service via an API.
Team members will be able to (c)reate a record from chat (say, a
JIRA ticket) quickly and easily, and others on the team will be able
to see what was done and how. It’s also timestamped, providing an
accurate log and audit trail of what exactly was done and by whom.

42 | Chapter 7: Getting Started and Examples

Examples

• Create status pages
• Provision infrastructure
• Create new incidents in VictorOps or PagerDuty
• Create JIRA tickets
• Create to-do lists/items
• Submit new support tickets
• Alert on-call engineer(s)

Update
Almost as common as an activity creating a new record via a chatbot
and script is the need to update existing records in a database or file.
For instance, in order for an on-call engineer to acknowledge an
alert when notified of a service disruption, a call needs to be made
via an API to update a record on the service provider’s endpoint.

Examples

• Acknowledge and resolve incidents in VictorOps
or PagerDuty

• Update configuration files
• Update status pages
• Update Trello boards and to-do lists

Delete
It is not that common to find scripts to facilitate a simple record
removal. In most cases, data is stored indefinitely, and rather than
being removed from a datastore the record is changed to have an
updated status (i.e., flagged as deleted). Nevertheless, as long as the
API call to the service your bot is interacting with allows for record
deletion, there is nothing inherently preventing you or your team
from engineering a script for that sole purpose. One possible exam‐
ple of this type of action would be to “destroy” virtual or cloud infra‐
structure that is no longer needed.

With Chatbots | 43

Combination of CRUD Operations
For many teams, the full value of a chatbot is realized when several
actions take place in one executed command. For example, a script
might take an input from a user and (u)pdate a record, followed by
retrieving information from a datastore about the next step to dis‐
play back to the end user for a follow-up input. The user might then
provide new information to (c)reate a new record, and so on.

Examples

• Two-factor authentication
• Facilitating daily “stand-up” meetings
• Group polling
• Saving and retrieving bookmarks
• Configuration management operations
• Database migrations
• Managing LDAP servers
• Managing VPNs
• Shortening URLs using Bitly or Google’s URL

shortener

44 | Chapter 7: Getting Started and Examples

CHAPTER 8

A World Connected by API

The underlying technology of ChatOps relies heavily on the use of
application programming interfaces (APIs) to leverage the tools and
services many of us use in our daily tasks. Over the last decade, APIs
have become an integral part of both software development and
infrastructure management. Services and tools that many in the
software industry use commonly, such as GitHub, Jenkins, and Vic‐
torOps, provide API functionality to extend their usefulness beyond
their original design. This, along with the efforts and spirit of the
open source community, has allowed for further development and
enhancements by teams across many disciplines.

A New Interface
Simple yet powerful APIs allow teams to build an abstraction layer
as well as an entirely new user interface that better suits their or
their organization’s needs. Additionally, APIs allow distinct and dis‐
jointed applications to communicate and share information, further
integrating and enhancing the overall functionality of the applica‐
tions as a whole. Through the integration of separate systems via
APIs, ecosystems are created that can help a business on a variety of
levels. Disparate services that are commonly used independently can
be tied together to work in orchestration. One example of this is the
ability to automatically trigger infrastructure builds using a tool
such as Jenkins when engineers commit new code to a version con‐
trol repository service such as GitHub.

45

Within the context of ChatOps, we can interact with many services
and tools via APIs and utilize a persistent group chat tool or service
as the user interface. From within this collaborative environment,
diverse operators are able to achieve their tasks, be they creating,
reading, updating, or deleting (the CRUD operations mentioned in
the previous chapter), from a common interface. In many cases the
services behind the APIs can even interact with each other. When
one service provides contextual information as output to the chat
tool, another service can detect that output and take the desired
additional steps.

Just as the web browser has supplanted rich client
interfaces, the group chat tool is now the interface of
choice to view the work of others, accomplish your
own tasks, and communicate those efforts at the same
time with little to no extra effort.

Much of our work is visible from within a shared chat environment
(see Figure 8-1). As a result, awareness is distributed evenly. Context
about what is taking place provides real-time feedback to operators
and stakeholders. Sharing actions, results, and documentation
becomes an inherent part of the standard behavior. A user interact‐
ing with an API directly or via a chatbot can accomplish a vast and
growing list of actions, with the added benefits of natural sharing,
learning, and more.

46 | Chapter 8: A World Connected by API

Figure 8-1. JIRA ticket information shared with the team

A Growing Ecosystem
Throughout every organization, teams have come to rely on many
separate tools and services to accomplish their tasks. Some of those
tools are proprietary systems that reside internally, in an organiza‐
tion’s private network. Others are third-party services or offered by
SaaS providers. Still others may simply be open source applications
hosted either internally or externally, on a virtual machine or con‐
tainer, and are mostly immutable and portable. As mentioned in
Chapter 7, many of these services provide CRUD functionality via
an API. The result is that disparate systems that previously had no
means of exchanging data or interacting with each other are sud‐
denly part of a growing ecosystem and can be leveraged by more
and more parts of the company.

If we look at current search trends (see Figure 8-2), we can see that
interest in ChatOps has steadily increased in recent years. Following
the explosive adoption of Slack, HipChat, and other group chat
tools, teams have been able to leverage these services from an inter‐
face that already exists, is easy to understand, is familiar, and is not
an additional piece of software that needs to be maintained and sup‐
ported. More and more teams are turning to persistent group chat

A Growing Ecosystem | 47

tools, and through the use of chatbots as well as native chat integra‐
tions, they are beginning to realize increases in not only sharing, but
so much more.

Figure 8-2. Google search trends 2012–2016

48 | Chapter 8: A World Connected by API

CHAPTER 9

Infrastructure as Conversation

Much of the evolution of ChatOps started with software engineers
managing source code from the comfort of their chat clients. As
outlined in Chapter 5, these are still some of the most common use
cases. Originally dubbed “conversation-driven development” at Git‐
Hub, ChatOps has evolved well beyond the ability to keep teams up-
to-date on information regarding source control repositories. A
broad range of teams now manage a large and growing list of serv‐
ices and actions related to IT operations and more.

If you are at all familiar with the principles and disciplines that have
evolved from DevOps, you’ve likely heard the phrase “Infrastructure
as Code” (IaC). The term refers to the practice of engineers provi‐
sioning and managing infrastructure through the use of definition
files written in languages such as Ruby, Python, Java, and others.
With the widespread adoption of cloud computing and remote data
center usage, more and more teams and organizations are turning to
IaC for managing these processes.

Traditional “Ops” teams are now engineering scripts written in pro‐
gramming languages that have historically only been used by soft‐
ware engineers. Configuration management services such as Chef,
Puppet, Ansible, and SaltStack allow provisioning and management
of infrastructure through scripts, triggers, and event actions.

As teams begin to adopt DevOps principles and share more of the
roles and responsibilities, sharing becomes one of the key points of
focus. Group chat is where most of this sharing takes place, both
intentionally and inherently. Conversations about the development

49

of software as well as infrastructure begin to unfold naturally in a
space where everyone is part of the conversation. Thus, the creation,
configuration, and support of infrastructure are managed from
within a group chat interface.

Managing Infrastructure as a Collaborative
Process
Today, teams are managing the development of code, its transit to a
repository, and the ensuing notifications about what is taking place
with that code. They are also building infrastructure using tools that
allow for builds to be automatically triggered through commits to
repositories, by scheduling, or based on the results of other actions.
All of this is kicked off and managed from within group chat. And
all of it is surrounded by conversations that are related to those
actions, making the entire process much more collaborative.

Managing infrastructure as conversation brings the benefits of IaC
along with the context and collaboration that is happening within
group chat. The result is that more members of the team and the
organization are aware of what is taking place in real time. They
have the ability to learn from others how things get done, and can
see what questions may come up during those actions and what
countermeasures need to be initiated if something doesn’t execute or
behave as expected. The conversation about infrastructure provides
an image of higher fidelity for not only those who are involved in
the actions but also those who aren’t, both as it is taking place and
for review later.

Empowering Engineers
With the gain in DevOps adoption, many teams are beginning to
dissolve the segregated responsibilities and roles that were tradition‐
ally divided up between “developers,” “operations,” and others. Now,
those roles aren’t so isolated and pragmatically separated. Teams are
beginning to understand more about what takes place outside of
their roles. Those who were historically specifically software engi‐
neers now have a better understanding of the infrastructure on
which their software runs. As a result, they are more vested in mak‐
ing sure that the code they write and the infrastructure it will run on
in a production environment are designed and maintained correctly.

50 | Chapter 9: Infrastructure as Conversation

Developers now understand more about infrastructure than ever
before and are empowered to provision, configure, manage, and
even terminate servers.

This shared understanding by both groups means that developers
and operations teams are now more capable and therefore responsi‐
ble for much more than ever before. A deeper understanding of the
codebase and the infrastructure on which it runs makes way for a
more reliable and feature-rich service or tool.

Empowering Engineers | 51

CHAPTER 10

The Convergence of Conversation,
Context, and Action

As teams begin to move much more of their daily work into group
chat, a convergence takes shape. Not only are team members able to
gain insight into what is going on in other areas of the department
or organization (whether they absolutely need to or not), but they
are sharing more about their own actions and conversations for oth‐
ers to add to their ongoing and shifting snapshots of the situation.
This increased awareness helps make the pulse of daily actions avail‐
able to everyone.

It’s not uncommon for organizations to use a chat tool for quick
messages to team members, on topics that don’t warrant the time
and effort required for correspondence via email. In most cases,
these conversations are unintentionally, yet actively, isolated from
the rest of the team. Collaboration over a topic is difficult or impos‐
sible, simply because the tool in use or the culture of the teams and
organizations in question do not facilitate it.

More Informed, Responsive, and Efficient
Chat applications and services have been around for quite some
time, and teams within many organizations use them and, in some
cases, chatbots to take tedious and repetitive tasks off of their plates.
In many cases, a question such as “When am I on call next?” can be
asked and responded to through a bot and API interaction in a frac‐
tion of the time it takes an operator to track down the information.

53

Serious work that requires more attention and cognitive load can
then be given the time it requires, allowing teams to focus on and
put more effort into learning, improving, and innovating.

Many of the ideas and principles that are labeled as “ChatOps” have
been around for quite some time. The standard protocol known as
Internet Relay Chat (IRC) has been leveraged since 1988 and is still
being used today by companies for their own internal group com‐
munication. Although private conversations are still popular
amongst users of IRC and modern persistent group chat tools, the
group “rooms” or “channels” are where most conversations take
place.

Real-Time Awareness
There’s a good reason for this. The conversations, related context,
and actions taken by team members are all captured in real time for
everyone to see. By pulling all of this information about what is tak‐
ing place and how, along with the results, into a single interface,
teams are able to realize multiple levels of benefits. Because every‐
thing is captured in one place, institutional knowledge is dissemina‐
ted across the team. A greater awareness is provided to all who are
part of the chat room. Actions and conversations are logged, creat‐
ing a real-time log of what took place while also detailing critical
information needed for postmortems, retrospectives, or learning
reviews.

When teams begin to take actions and move all of the related con‐
text to within a shared interface, organizations begin to see real trac‐
tion and velocity in their efforts to become highly effective and
cross-functional. It’s through this convergence that more and more
are able to get a pulse on what is taking place outside of their own
responsibilities. And it’s through this behavior that we begin to see
those artificially isolated conversations begin to move back into a
common space where a larger number of people can not only take
part, but also synchronize their awareness on exactly what is taking
place, how it was accomplished, and what the result is.

54 | Chapter 10: The Convergence of Conversation, Context, and Action

CHAPTER 11

Make Work Visible

ChatOps helps to combine and facilitate key principles of not only
DevOps, but Agile and Lean methodologies as well. By removing
friction and waste in our processes as well as making the actions
(automated or not) visible to more of the team from within group
chat, a clearer picture begins to emerge. Teams have access to a
record of not only how things get done, but the conversations that
are related to those actions.

Many teams have realized that much of their daily repetitive work
can be automated. Automation is one of the key principles of
DevOps. By automating as much menial and repetitive work as pos‐
sible, teams and organizations are able to free up more time to focus
on new or harder tasks that cannot be automated just yet. Addition‐
ally, opportunities for exploration, experimentation, and innovation
are made available when teams and their members aren’t spending
unnecessary time duplicating efforts. By making that automation
and the related conversations visible to more people, a number of
benefits emerge.

55

Benefits of Making Work Visible

• Create common frame of reference
• Expose friction and bottlenecks in processes
• See pain points together (i.e., create empathy)
• Reduce work in progress
• Swarm to problems together
• Generate multiple perspectives
• Document work in real time
• Uncover areas of improvement
• Create greater awareness for all

It’s likely that you or members of your team have already begun to
automate much of your work, especially in the context of informa‐
tion technology. There are many tools on the market today that help
teams automate specific portions of their work. Typically the auto‐
mation is executed manually, but it’s not unlikely that some of it is
achieved completely autonomously through the use of schedulers,
scripts, and triggers. This time-saving behavior is not a new
approach to work, but it is evolving.

Leverage a Bot
Through the efforts of a ChatOps approach, teams are able to take
automation even further. With the right setup and configuration,
existing automation that may have already been in place can now be
executed and made visible from within a persistent group chat tool.
For example, teams that are using “continuous delivery” practices
can configure a bot not only to assist in the committing of code to a
version control repository but to trigger the building of virtual
infrastructure when a new code commit has taken place, thereby
providing the ability to automate several steps that previously
required an operator to execute manually, wait for results, and then
proceed with the next steps in the process. Legacy automation can
be made available for authorized users right from within the same
location where teams are discussing topics relevant or related to the
automation and its results.

56 | Chapter 11: Make Work Visible

We’re now able to take the actual actions or specific syntax necessary
to complete a task and trigger it from within an interface where
everyone in the team is active and where everyone can stay
informed. The results of those actions are instantly made available
to the rest of the team (or organization), without any need for fur‐
ther action from the operator running the command. Feedback on
what took place, how it was accomplished, and the result is clear and
immediate. Even better, it’s available to all who are interested.

Through increased visibility into what is taking place and how, and
the outcome, more awareness is created. Information on how to
accomplish a task is removed from any possible single point of fail‐
ure with regard to people, and it’s all documented. Exactly who did
what and when is placed directly inline with the conversations
related to those actions.

Remote Work Force

Not all organizations have distributed or remote work‐
ers, but for those that do, ChatOps allows teams to
share the same context, awareness, and capabilities
equally, regardless of any individual’s physical location
and time zone.

Greater awareness of the status of systems and the actions being
taken by other members of the team helps spread the load as well.
This creates a scenario where operators within and across multiple
teams can not only gain a deeper understanding of subjects beyond
their core expertise, but also begin to gain a sense of empathy for
those with different responsibilities. As a result, more and more
members of the team or organization can come to understand how
to accomplish a task and what the expected results should be, and
will then be able to assist (whether by having access to additional
context or knowing exactly what needs to be done under specific
circumstances).

Once teams have a deeper understanding of the automation that is
used within their own infrastructure, codebase, projects, and more,
areas of improvement will be uncovered. It’s amazing to see mem‐
bers of a team seek out new actions to automate, further removing
bottlenecks and freeing up their own time to tackle harder puzzles
or more cognitively challenging tasks.

Leverage a Bot | 57

Spread Tribal Knowledge
A common trait of highly effective, cross-functional teams is the
ability to collaborate, sharing conversations, information, and
actions. Being able to do so quickly, easily, and in a way that feels
familiar and natural helps with adoption and leads to sharing more
of what takes place within teams and the organization as a whole. As
individuals move more about what they are thinking, saying, seeing,
and doing into a common space for more members of the team to
see, an interesting thing begins to take place: tribal knowledge on a
growing number of topics is spread beyond just a handful of indi‐
viduals.

As this knowledge spreads, more and more people become aware of
what is taking place throughout the workday in areas of the organi‐
zation that they typically had little to no insight into. Admittedly,
this isn’t always necessary or even desired. However, the awareness
brought to more of the team and management simply by abandon‐
ing email and instant messaging (IM) in favor of persistent group
chat for all internal conversations is what sets these highly effective
teams apart from the rest.

Familiar and Predictable
By moving conversations, actions, and context into an interface that
is familiar and predictable, standardization in how teams communi‐
cate and collaborate in real time begins to take shape. Through this
real-time collaborative interface, many teams have realized that
much of their daily repetitive work can not only be automated but
also executed and contextualized in a single familiar place: group
chat.

Building Empathy
Encouraging empathy between teams that are often at odds with
each other is at the heart of DevOps. Conflicting departmental or
individual goals and key performance indicators (KPIs) in many
cases cause unnecessary friction internally. Because isolated teams
have little to no knowledge of what takes place outside of their own
roles and responsibilities, it’s nearly impossible for everyone to be
on the same page with regard to the overall success of a project or
even the business as a whole. Instead, they focus solely on the tasks,

58 | Chapter 11: Make Work Visible

deadlines, and goals assigned to them with no regard for what is
going on elsewhere. The “it’s not my problem” mentality then begins
to become very prevalent throughout the company. Once that has
happened, any chance of becoming a highly effective team starts to
break down.

Later, I’ll discuss the importance of having captured snapshots of the
time at which something took place. Issues such as compliance and
tasks like post-incident analysis rely heavily on having accurate
timelines of actions and conversations that document in real time
exactly what took place (see Figure 11-1). Automation plays a big
role in the modern business world. Making it visible in real time as
well as capturing it for review later is a great way to create empathy,
uncover areas for improvement, and provide the necessary docu‐
mentation to those who need it.

Figure 11-1. Capturing actions for post-incident review

Building Empathy | 59

CHAPTER 12

Security and Safety

Before I discuss the benefits, challenges, and concerns regarding
security as it relates to ChatOps, I must point out that I’m not an
expert in this field. Cybersecurity and system safety compliance are
broad and dense topics far beyond the scope of this text. The spe‐
cific concerns will of course vary from organization to organization,
and you should make time for careful consideration and discussion
as you begin to roll out your own ChatOps initiative.

With that said, one of the many benefits of ChatOps is that, to a cer‐
tain degree, a soft layer of security is built in. Even the most power‐
ful custom actions that leverage a chatbot to execute commands,
query information, and more have restrictions hardcoded into the
instructions and definitions. When a user attempts to execute a
command using the incorrect syntax, the chatbot will inform the
user that it does not understand what it’s being asked to do. It will
only execute commands that are part of its coded instructions. In
the event that the user makes a mistake when inputting a command,
the same result will happen. Conversely, if a user were to execute
syntax from a command line and make a mistake, there could be a
negative outcome, and perhaps not something that can be recovered
from. Use of the command line combined with high-level access to a
system can lead to disaster when mistakes are made.

61

Security Through Obscurity
ChatOps creates an abstraction layer for end users to interact with
systems in a safe way while also teaching others how it’s done. It’s a
way for us to query and navigate sensitive data, build infrastructure,
and more without the need to request access to systems we may not
fully understand. Still, security is a much larger topic than simply
the concern of fat-fingering a command.

There are many security and safety concerns to consider as you
begin implementing ChatOps internally.

Ask Yourself:

• How do we authorize a user to execute a sensitive
command?

• How do we prevent provisioning of unnecessary
and expensive infrastructure?

• How do we ensure untrained individuals aren’t
able to cause service disruptions accidentally?

• How do we protect intellectual property (IP) that
resides on a hosted provider’s infrastructure?

• What if the hosted chat service is temporarily
unavailable? How do we get work done?

For some—especially larger organizations that have strict security
policies and a growing list of compliance concerns to deal with—
this is the deal-breaker of ChatOps. In some cases, the discussion of
even using a modern persistent group chat tool is where the conver‐
sation starts and stops. The idea of storing sensitive company data
on servers not owned by the corporation goes against company pol‐
icy. The only option for these organizations is an “on-premise” chat
solution. However, that means additional work supporting and
maintaining that internal chat service, which means additional
efforts and costs that must be considered.

But what about those who have decided that moving data to the
cloud really is safe and the direction that the company is headed in?
What happens if the service provider is compromised? It’s happened
before and is likely to happen again. What concerns are there for a

62 | Chapter 12: Security and Safety

1 See, for example, Michael Ansel’s blog post “Securing ChatOps to Enable DevOps”.

company in that situation? Obviously, the attack surface becomes
much larger if that information reaches individuals or groups with
malicious intent, but what else do they need to think about?

Community to the Rescue
Presently, there are many within the ChatOps community who are
discussing and engineering ways to address security concerns.1

Although many of the existing and widely used chatbots available
are open source, contributors to those projects are beginning to add
components that allow for interaction with authorization services or
internally hosted Lightweight Directory Access Protocol (LDAP) or
Active Directory (AD) servers. By establishing user-, group-, and
role-based rules regarding who can execute commands, many of the
existing security concerns of organizations can be addressed.

As mentioned previously, all commands are automatically captured
in real time from within the chat client, including details of who
executed the commands and timestamps. Additionally, a few chat‐
bots and ChatOps frameworks currently under development (such
as Cog) are providing access control functionality and logging for
audit and reporting purposes. This further addresses the compliance
control and safety concerns that prohibit many organizations from
exploring the opportunities and benefits that ChatOps may provide
them.

Security Tip

Two-factor authentication (2FA) is one method teams
have implemented to provide stricter security with
ChatOps.
Leveraging a tool or service such as Google’s Authenti‐
cator means users can confirm an action and ensure
that the executed command has been authenticated
properly.

Community to the Rescue | 63

https://www.box.com/blog/securing-chatops-enable-devops/

CHAPTER 13

Importance of Persistent Data

One of the important aspects of ChatOps is that the conversations,
context, and commands executed are stored indefinitely. Because
the data is persistent, topic-based discussions not only evolve over
time but are easily searchable and retrievable from any point in the
future. Because of this, participants of topic-based rooms or chan‐
nels can review the chat and command history at any time, allowing
them to easily get up to speed on recent or historic conversations
and actions and their context. Individuals who join the conversa‐
tions later can quickly get to the same level of awareness as those
who participated in the conversations as they happened.

Topic-based discussions are easily separated by containing specific
types of content to their own unique rooms or channels. This means
that conversations, context, and actions regarding a service disrup‐
tion, for example, can and should take place only within the room
or channel that is associated with that topic. This helps to create a
sterile space for collaboration that is dedicated solely to that topic.
As the topics evolve over time, these unique yet specific spaces for
conversations provide an ideal location for team members to share
ideas, concepts, thoughts about improving processes and tooling,
and more.

Unlike with email and instant messaging, the conversations in group
chat are always available and searchable, and you can even create
rules so you are alerted only about specific topics or actions you care
about and aren’t distracted constantly by things that aren’t relevant
to your work.

65

Let’s take a look at a few examples of how persistent data from group
chat can help to facilitate more than just the ChatOps efforts of your
team.

Logs
Previously, I’ve mentioned the importance of security. Some aspects
of the security concerns and conversations are tied to our efforts
with logging. Logs provide a wealth of information both in real time
and after the fact, when we need reliable data with accurate time‐
stamps to make sense of something. Because the data contained in
group chat (including conversations, context, and commands) is
persistent, logging practices are effortless and ongoing. When the
logs from a snapshot in time are required to understand something,
there is great comfort in knowing that the data is stored safely and is
easily available.

Compliance
Closely related to logging, compliance control is another area where
persistent data can help teams and organizations. Auditors will need
to review logs in order to ensure policies and procedures are being
adhered to. Because in group chat, conversations, actions, and their
context are captured in real time and stored indefinitely, teams are
able to address any compliance concerns that are brought to them.

Wikis
Wikis are a great way to capture important company information
and make it easily available to everyone. Anyone who is tasked with
authoring a wiki article on a specific topic will be pleased to find
that much of the content they need is already stored in the persistent
group chat. They can simply synthesize the content and organize it
in a way that is easy for others to understand.

Onboarding
Some companies who have fully adopted ChatOps use persistent
group chat and the associated data as the primary method for
onboarding new employees. Because so much great detail about
what goes on within teams and organizations is stored in group

66 | Chapter 13: Importance of Persistent Data

chat, it’s very easy for new employees to join the rooms or channels
that are associated with their roles and responsibilities to quickly get
up to speed on “how things work around here.”

Postmortems, Retrospectives, and Learning
Reviews
Service disruptions are unavoidable. The complex IT systems and
services that we engineer and support for internal and external users
are going to have problems. The easiest way to improve these serv‐
ices and make them more reliable and available is to constantly and
consistently learn from failures and outages. Because of this, post‐
mortems (like the one in Figure 13-1) are essential to every IT team
and organization.

Figure 13-1. Sample postmortem report/learning review

Group chat can provide extremely valuable information for these
reports, from the initial alerting of a problem to what took place
throughout the investigation, triaging, and remediation. This gener‐
ates a very useful story, providing a record not only of the raw data
that was created during the incident, but also the conversations that
operators were having while trying to restore service. When these
back-and-forth conversations are placed in line with the additional
context from graphs or logs and the commands that team members
were executing, you have a very accurate snapshot of what took

Postmortems, Retrospectives, and Learning Reviews | 67

place during recovery efforts. Using that data, teams can then iden‐
tify areas for incremental improvement. Without the persistent stor‐
age of that data, building a postmortem would rely mostly on the
memory of those who were involved.

68 | Chapter 13: Importance of Persistent Data

CHAPTER 14

Signal Versus Noise

It’s important to note and discuss one common complaint about a
ChatOps approach: the potential overload of conversations and
alerts (i.e., noise). In smaller teams and organizations, the volume of
conversations, context, and commands that flows through a group
chat tool may seem manageable. As those teams grow, however, it
becomes much harder to find ways to take part in the conversations,
maintain awareness of what is taking place, and actually get your job
done. When chat rooms or channels are constantly updating with
new bits of information to ingest and process, it can actually become
more detrimental to productivity than it is helpful.

Alert Fatigue
Alert fatigue is a very real concern that should be addressed as
quickly as it’s recognized. A failure to properly deal with alert fatigue
can lead to not only a drop in productivity, but something much
worse—burnout. The result of many contributing factors, burnout
must be taken seriously and addressed immediately.

69

Alert Fatigue

Exposure to a high volume of frequent alerts, causing
desensitization to critical issues and leading to:

• Longer response times
• Anxiety
• Sleep deprivation
• Negative physical effects
• Employee dissatisfaction

Those who feel overwhelmed by their roles and responsibilities may
not even realize that they are nearing a burnout situation. Alert fati‐
gue is one of the contributing factors. At the end of the day it’s up to
each individual team member to decide how, how often, and on
what topics they should be alerted. If a conversation is taking place
regarding something that is specifically relevant to them and action‐
able, they will likely want to be notified about it. For conversations
that do not meet those criteria, team members should be able to
decide on their own whether to take part and if it’s important for
them to understand the context related to those conversations and
to know how to execute the relevant commands should the need
ever arise.

Make Adjustments
Finding the right signal-to-noise ratio is an ongoing effort. Adjust‐
ing alert settings, abandoning channels and rooms that you don’t
need to constantly monitor, and even temporarily shutting down the
group chat tool entirely are all acceptable ways to manage that ratio.
Group chat tools, chatbots, and anything else that has evolved out of
the ChatOps conversation is designed to make life (and work) easier
and more efficient. It provides several benefits that are hard to
ignore. However, if someone on your team begins to feel over‐
whelmed by the onslaught of information, the reverse effect begins
to set in.

70 | Chapter 14: Signal Versus Noise

Tips for Avoiding Alert Fatigue

• Make all alerts actionable.
• Reduce redundant alerts.
• Isolate alerts to appropriate rooms/channels.
• Adjust integration and anomaly detection

thresholds.
• Ensure the right people or teams are alerted.
• Customize personal notifications.
• Regularly revisit all of the above for continuous

improvements.

Set the Tone
For teams and organizations that are made up of hundreds or thou‐
sands of people, many in different time zones all around the world,
the idea of even a small percentage of those people carrying on con‐
versations, querying information, and running commands from
within group chat may be enough to cause reconsideration of the
wiseness of rolling out a ChatOps initiative. The most important
thing to remember is to start small. Over time, more and more will
join in the conversations. They will engineer new ways to interact
with the services and tools used each day. They will find ways to
keep the topics of discussion specific and on point. Casual conversa‐
tions should take place in a different, more appropriate channel, and
that self-imposed “rule of group chat” will start to take hold. In most
cases, teams will curate conversations and encourage adherence to
these concepts themselves, but for larger organizations it may be
necessary for upper management to communicate with the teams
and set the tone on how to properly manage conversations within
the proper channels or rooms.

Continuous Improvement

Continuously assessing and improving the conversa‐
tions, context, and commands used within group chat
should always be made a priority.

Continuous improvement is what DevOps has brought to the con‐
versation about IT operations and beyond. There is no concept of

Set the Tone | 71

“done.” It’s an iterative process, and one that demands constant anal‐
ysis in retrospect to identify areas for new and incremental improve‐
ments. ChatOps is no different. Chat clients will continue to evolve
and become more useful and powerful. Chatbots are quickly iterat‐
ing and improving. New programming languages and frameworks
are popping up all of the time. It’s part of the natural process of
innovation in technology, and you are part of that.

Group chat is now a common interface for many things. Conversa‐
tions about projects, issues, and planning take place there. Valuable
insights and alerts are available there. Chatbots that listen for our
commands and execute them on our behalf are always available and
eager to serve. Third-party integrations to a growing list of services,
all fighting for our attention, can be plugged into chat in mere sec‐
onds. In time, it will be possible for nearly every task in our daily
routines to be managed from group chat. Along with those interac‐
tions will be conversations and added information that we didn’t
know we needed until it was placed in front of us. As a result, there
will be a lot to deal with. Proper pruning and improving of the expe‐
rience is absolutely necessary and should be made a high priority
from the very beginning.

Pruning and Improving Suggestions

• Create topic-specific channels or rooms.
• Establish “sterile room” guidelines to stay on

topic.
• Assess third-party integrations regularly to review

usefulness.
• Regularly review channels or rooms subscribed to

and remove unnecessary noise.

72 | Chapter 14: Signal Versus Noise

CHAPTER 15

Reliance on Third-Party
Chat Service

In Chapter 12 we discussed some of the concerns of ChatOps
regarding security. In many cases, organizations are not able to uti‐
lize SaaS offerings due to company policy. On-premise installations
of any and all services leveraged by the company’s end users are
absolutely required to fall in line with security policies. Not being in
control of company data or intellectual property are concerns that
keep security officers up at night, and for good reason. There are
other concerns with using a “hosted” service as well.

The software and infrastructure on which all SaaS offerings operate
is extremely complex. As a result, occasional failure or disruption of
services is unavoidable. At some point, the hosted service that your
team or organization relies on is going to have some sort of minor
(or major) outage that impacts your ability to get work done. We all
hope that the entity hosting and managing the service will be able to
detect it, alert us, and repair the problem as quickly as possible, but
some times outages last far longer than hoped. How does that
impact your team and organization? In some cases it could mean lit‐
tle more than an extended coffee break until the status page of the
service gives the “service restored” update. In other cases it may
mean a loss of income. The possible ramifications are varied and
abundant.

Because of this, many companies are hesitant to rely on third-party
services. In the event that something very bad happens to a SaaS

73

provider that they rely on, it can have a huge impact on their own
business. In the not-so-distant past, an outage to a group chat pro‐
vider may not have caused much harm. However, for teams that
now rely on ChatOps as part of their software delivery pipeline, for
maintenance of infrastructure, and more, any kind of outage experi‐
enced by the provider could have a large impact.

Much of this speaks to the larger question of “hosted vs. on-prem.”
Again, in some cases company policy requires that all services and
tools used by the organization reside on the company’s private net‐
work and are managed either by the IT team or as part of a service
agreement from the software provider. Until leadership within the
organization has taken the time to truly understand the full picture
of both scenarios, there may be little that can be done if you are hop‐
ing to roll out a group chat tool that is purely SaaS.

Run It On-Premise
There are options for those that find themselves unable to rely on a
third-party service provider for chat. A few of the group chat tools
offer an “on-prem” solution. I’ve also discussed how some teams are
using IRC as their group chat tool. While it’s not nearly as slick and
user-friendly, there are many large and well-known companies using
IRC internally to manage their ChatOps efforts with great success.
Adoption of ChatOps beyond the technical teams could be a chal‐
lenge, but it may offer a good starting point.

Going with an open source chat tool may be a good path to take in
these situations as well. IT teams will still have to install, manage,
and support the software, but hosting all of the data internally will
ease the concerns of many who push back against relying on a hos‐
ted provider.

Once the organization has done its due diligence on whether or not
it makes sense to build, support, and improve a large, complex sys‐
tem, you may be able to look at a hosted solution. When deciding
which way to go, there are several questions to consider.

74 | Chapter 15: Reliance on Third-Party Chat Service

Hosted Versus On-Prem

• Does company policy prohibit the use of hosted
service providers?

• Do you have the resources to install and configure
an on-prem solution?

• Do you have the resources to support an on-prem
solution, including upgrades, security patches,
and remediating service disruptions?

• Will building, maintaining, and improving your
own internal chat solution bring value to the
business?

• Do you have the budget to absorb the associated
costs?

If you answered “no” to most of the above considerations, your best
option is a hosted group chat provider. Discussion of these items
should involve the whole team or organization, so that all stakehold‐
ers understand why the decision to use a hosted provider was made.

Single Point of Failure
The main thing to remember is that regardless of whether you
choose to use a hosted group chat service or host your own internal
group chat, outages will occur. Teams should be able to fall back to
alternative methods of managing code repositories, infrastructure
changes, incidents, and more. ChatOps is a way of making our work
easier and it provides a slew of benefits, but it relies on a chat client
to be operational. In the event that chat is not available, teams will
have to change course temporarily and manage their work in a more
traditional manner. Preparation for the unavoidable situation of
your chat service or chatbot being unavailable for an extended
amount of time should be something all teams consider. ChatOps
may be the “new” way of getting things done, but similar to a
department store whose point of sale (POS) system becomes tem‐
porarily unavailable, there must be an alternative way of accom‐
plishing all critical tasks. While it’s not as efficient or nice an
experience, just as a retail check-out clerk may have to use a carbon
copy machine to process a credit card transaction, your team should
have an alternate way of deploying code, acknowledging incidents,

Single Point of Failure | 75

or completing any other process that has been moved to a ChatOps
method.

Manual Labor
When we first began our own ChatOps journey at VictorOps, one
of the first things I wanted to simplify and automate was the pro‐
cess of extending trials for new users. By default, all new users
receive 14 days for free. However, two weeks isn’t always enough to
properly trial a service.

Myself or someone from our customer support team would regu‐
larly field requests to extend trials. Because a change like this would
be made on a production database, we would then request assis‐
tance from an engineer to safely make the change. We did this a lot,
and over time it became distracting and annoying to our develop‐
ers.

A simple script was developed that would allow an authorized user
(created specifically for this role) to execute a SQL UPDATE com‐
mand and change the expiration date field in the database. This
script was then made executable from within our group chat tool
via Hubot.

Any time someone requested a trial extension, myself or someone
from our support team could then run a simple command from
within Slack and report back quickly to the user that their trial had
been extended. Getting feedback to a potential customer that
quickly goes a long way toward earning their business.

These days, that process has been improved even further to provide
better assurances that authorized users are the only ones able to
execute the trial extension. This helps to enable more of our team
to take action in a secure way.

Most importantly, someone can always execute the commands
manually from the command line. Even when Slack is dealing with
a service disruption, we can still accomplish what we need to get
done simply by doing it an alternate, manual way.

76 | Chapter 15: Reliance on Third-Party Chat Service

CHAPTER 16

Selling ChatOps to Your Boss

In Chapter 14, I discussed the importance of managing the signal-
to-noise ratio. A busy chat room can become more of a liability than
an asset if the conversations, alerts, etc. become too much to keep up
with. For larger organizations the sheer number of team members
participating in conversations, pulling in additional information, or
executing commands can quickly become overwhelming. On top of
that, enterprise organizations have concerns and priorities that are
often different from those of small businesses or startups. Policies,
procedures, and bureaucratic behaviors often stifle the benefits that
something like ChatOps can bring to the table.

Despite these concerns, ChatOps is an extremely powerful and
effective way of getting work done. Finding the right language to use
with leadership is important in order to successfully begin your
ChatOps journey.

Redesigning IT’s Role and Purpose
Highly effective teams led by managers who understand the require‐
ment of continuous change will likely embrace the idea of ChatOps.
Today’s CIOs realize that their most important role is to lead IT
teams to redesign their own purpose. IT is no longer there to simply
maintain and support systems for other departments in the com‐
pany. IT is now the primary influencer in continuously improving
processes and tools on behalf of users, both internal and external.
The modern IT leader enables adaptation to change, recognizing the
importance of continuous incremental improvements and treating

77

the journey as the destination. The focus is on minimizing friction
and latency in systems in order to create more effective feedback
loops.

Group chat and bots, plug-ins, and third-party integrations are what
provide that feedback loop in a lot of ways. Teams have much higher
fidelity into the big picture of their systems and processes. They are
able to be made aware of situations faster than ever and react in real
time to the always-changing conditions.

Exposing Conversations and Collaboration
Nearly every large organization today has some sort of internal chat
tool that is used to communicate. However, in many cases, these
tools are not persistent and they do not allow for group conversa‐
tions. They are typically designed more for one-on-one text, audio,
or video interactions to facilitate closed discussions. The problem
with these kinds of interaction is that the conversation is isolated
from the rest of the team. Any important information that is shared
or discussed in a private chat, audio, or video conversation does not
make it to a wider audience. Granted, sometimes private conversa‐
tions are necessary, but by and large open and transparent discus‐
sions amongst entire teams provide far greater benefits.

Sharing is a key component of DevOps. Transparency,
building tribal knowledge, and gaining a greater
awareness are what lead to high-performing, cross-
functional teams. Isolating conversations to just a few
parties prevents the level of sharing that is necessary in
order to be effective and efficient.

An early step large enterprise organizations should take is to adopt a
tool that allows for large groups to collaborate and engage in con‐
versations in specific rooms or channels that are unique to the topic
at hand. This does not have to be rolled out to the entire organiza‐
tion all at once. In fact, it may prove to be more effective and easier
to implement by starting with smaller groups and over time bring‐
ing more and more teams and departments into the fold. Starting a
new group chat initiative with hundreds or thousands of users all at
once may turn out to be an exercise in chaos and hinder your efforts
to implement ChatOps throughout the organization. Allow the tech‐
nical teams to ease into including context with the conversations.

78 | Chapter 16: Selling ChatOps to Your Boss

Establish soft policies on what types of executions can be run from
within the chat client.

Exposing Conversations and Collaboration | 79

CHAPTER 17

Beyond the Horizon:
The Future of ChatOps

I hope that you have found this text to be informative and helpful in
your efforts to understand ChatOps and what it can bring to your
team or organization. IT departments are now sources of innovation
not only for their own efforts, but for the company as a whole. CIOs
and the teams that they manage are now tasked with much more
than just keeping the lights on and putting out fires as they occur.
They are the innovators, always seeking out methods to reduce fric‐
tion in the ways they deliver software, manage infrastructure, and
provide a reliable service to end users, be that internally or exter‐
nally.

ChatOps brings a new methodology to the table that many are find‐
ing great value in. Speeding up the way we get work done and deliv‐
ering many additional benefits without any extra effort is something
that can spark real organizational change—change that can lead to
big ideas and innovations that set an organization apart from others
in its market. DevOps has helped shed light on basic concepts that
have been lost over the years: simple ideas such as empathy, open
communication, aligned goals, and continuous improvement.

As ChatOps continues to evolve and mature, where will it go? Of
course, it’s all speculative at this point, but I believe it’s fair to say
that getting work done in chat is here to stay. With the surge of chat‐
bots recently and their effortless interaction with a growing list of
tools and services, more and more who are part of this movement

81

are finding really interesting ways of dealing with the tasks and chal‐
lenges that they face each day. Solving complex problems in creative
and innovative ways is what software and infrastructure engineers
dream about. ChatOps provides the space for them to realize new
possibilities, whether that is by designing and building the next great
persistent group chat tool, an extensible chatbot, or powerful APIs.

Advancements in Technology
When it comes to ChatOps, I believe we will continue to see great
advancements in all areas. Chat clients are becoming more powerful,
flexible, and user-friendly with each new version release. Chatbots
are beginning to take on more and more tasks that can and should
be automated, allowing engineers to focus their efforts on more
complex tasks and puzzles. Natural language processors and the
algorithms behind them are moving us closer to being able to inter‐
act with chatbots and the services that they interact with in ways that
seem like talking to another person.

As this evolution takes place, new concerns will arise. Security will
continue to be a concern as the technology matures and innovations
emerge. Companies will face new challenges and opportunities.
Continuously improving the way we get tasks done will start to
become the major focus of not only IT teams, but entire organiza‐
tions. With that focus, paths will unfold that aren’t possible yet
today.

Final Thoughts
ChatOps is a new way for us to get work done, particularly within
the context of software and IT operations management. DevOps has
brought forth many discussions about automation, sharing, remov‐
ing friction, and more. ChatOps is an extension of those concepts.
Finding new ways to do old tasks in order to enable more of the
team, create a broader and more accurate awareness, and speed up
tasks is at the heart of DevOps. ChatOps is one way teams have
begun exploring those ideas, and it’s exciting to see the innovation
that has come about in only a handful of years.

As with any significant change in the way we think about and
approach the work we do, it will take some time for your team or
organization to fully realize the benefits that can be gained through

82 | Chapter 17: Beyond the Horizon: The Future of ChatOps

a ChatOps approach. Throughout this report, I’ve outlined steps to
consider as you begin. However, there is no truly prescriptive
approach to ChatOps. Because so much of it requires a cultural
change within your team or organization, your efforts and experien‐
ces will vary from everyone else’s. Nevertheless, it’s nice to have a
handy step-by-step guide to use as starting point. Below, you’ll find
a synopsis of all of those considerations and steps to get you started
today.

10 Ways to Get Started Today
1. Discuss and align the goals of your ChatOps initiative.
2. Implement proof of concept exercises for group chat tools if

you aren’t already using one.
3. Commit to a group chat tool.
4. Browse the third-party marketplace for services your team uses

regularly and integrate them into the appropriate rooms or
channels.

5. Analyze your signal-to-noise ratio (i.e., actionable vs. non-
actionable alerts and context) and adjust accordingly.

6. Identify which third-party integrations are not providing suffi‐
cient functionality or context.

7. Implement proof of concept exercises for chatbots, including
existing scripts from the community.

8. Commit to a chatbot and discuss where the bot should be
hosted.

9. Extend the functionality of your chatbot by engineering auto‐
mation of repetitive or time-consuming tasks (note: start with
the low-hanging fruit).

10. Continuously review integrations and chatbot functionality for
improvements.

I wish you good luck in your efforts to bring ChatOps to your team
or organization, and I hope to find out one day that this report
played a role in generating ideas and motivation to help you realize
your own improvements!

Final Thoughts | 83

About the Author
Jason Hand is a DevOps Evangelist at VictorOps, organizer of
DevOpsDays–Rockies, author of ChatOps for Dummies (Wiley), and
cohost of the “Community Pulse” podcast about building commu‐
nity in tech. He has spent the last 18 months presenting and build‐
ing content on a number of DevOps topics such as blameless post-
mortems, ChatOps, and modern incident management. A frequent
speaker at DevOps-related events and conferences around the coun‐
try, Jason enjoys talking to audiences large and small on a variety of
technical and non-technical subjects.

	Cover
	VictorOps
	Copyright
	Table of Contents
	Foreword
	Chapter 1. Introduction
	What’s in the Report
	What’s Not in the Report
	The Author

	Chapter 2. The Culture Challenge
	Benefits of ChatOps
	Champion of Change

	Chapter 3. Team Collaboration
	All of Us Are Smarter than Any of Us
	Don’t Repeat Yourself

	Chapter 4. Roles and Responsibilities of DevOps (or Ops) Engineers
	Goal Alignment
	Spreading Institutional Knowledge
	Learning Organization

	Chapter 5. Common Uses and Tasks
	Pushing Context
	“Read-Only” Retrieval of Data
	Bidirectional Interactions
	Third-Party Integrations
	Custom Scripted Tasks

	Chapter 6. Existing Technology
	Chat Services
	HipChat
	Flowdock
	Slack

	Additional Open Source and Commercial Options
	Third-Party Integrations
	Bots
	Hubot
	Lita
	Errbot
	Cog
	Yetibot

	Instructing Chatbots
	Bot and Language-Agnostic Libraries
	Syntax: Command Versus Natural Language

	Chapter 7. Getting Started and Examples
	Proof of Concept
	Low-Hanging Fruit
	Without Chatbots
	Repository Notifications
	Continuous Integration (CI) Notifications
	Incident Management Notifications
	Call and Response

	With Chatbots
	Read
	Create
	Update
	Delete
	Combination of CRUD Operations

	Chapter 8. A World Connected by API
	A New Interface
	A Growing Ecosystem

	Chapter 9. Infrastructure as Conversation
	Managing Infrastructure as a Collaborative Process
	Empowering Engineers

	Chapter 10. The Convergence of Conversation, Context, and Action
	More Informed, Responsive, and Efficient
	Real-Time Awareness

	Chapter 11. Make Work Visible
	Leverage a Bot
	Spread Tribal Knowledge
	Familiar and Predictable
	Building Empathy

	Chapter 12. Security and Safety
	Security Through Obscurity
	Community to the Rescue

	Chapter 13. Importance of Persistent Data
	Logs
	Compliance
	Wikis
	Onboarding
	Postmortems, Retrospectives, and Learning Reviews

	Chapter 14. Signal Versus Noise
	Alert Fatigue
	Make Adjustments
	Set the Tone

	Chapter 15. Reliance on Third-Party Chat Service
	Run It On-Premise
	Single Point of Failure

	Chapter 16. Selling ChatOps to Your Boss
	Redesigning IT’s Role and Purpose
	Exposing Conversations and Collaboration

	Chapter 17. Beyond the Horizon: The Future of ChatOps
	Advancements in Technology
	Final Thoughts

	About the Author

