
THE INCIDENT MANAGEMENT

BUYERS GUIDE

In order to stay competitive in today’s market, businesses are expected to
innovate—quickly. Many engineering teams feel pressure to build, deploy,
and operate services with increasing speed. High performing teams
innovate faster and maintain their sanity because they’re able to quickly
recover from incidents.*

As we move from agile development to rapid deployment, teams need to
think beyond a reactive operations center. That’s why choosing the right
incident management solution is more than just icing on the cake to a
successful DevOps culture; it’s the cornerstone to engaging
high-performing engineering and ops teams who champion uptime and
own on-call—instead of fear it. Ultimately, rethinking—and
retooling—your approach to DevOps and incident management is
imperative to delivering the world-class customer experiences that keep
businesses relevant.

The purpose of this buyer’s guide is to discuss why progressive,
high-performing teams choose to invest in high-performance incident
management software. From the challenges across the SDLC to specific
incident management product features, we’ll lay out everything you need
to consider when choosing an incident management solution.

The ChallengesYour Guide to
Incident Management Issues Commonly Faced by Organizations without an

Established Incident Management Process

Incident: a problem, represented by an alert, that could negatively
impact customers, your employees, and/or the stakeholders inside
or outside of your organization.

“Reliability is the single most important feature we provide.”
- Dan Jones, CTO, VictorOps

Alert Noise
and Fatigue

Wrong People
Being Alerted

Unprepared
for Crisis

Disconnected
Workflows

Repeating
Previous Mistakes

Disorganized
Communication

Poor Alert Flow from
Disparate IT Systems

Siloed
Communication

High availability is essential to business success—an issue complicated by the
increasing deployment demands of a highly competitive market. Accordingly,
investing in processes to ensure near-zero downtime alongside rapid
deployment is mission critical for the entire engineering and IT department.

Here, we break down how incident management is key to maintaining a culture
of availability without slowing down the innovation process—and how DevOps
is the essential piece for successfully executing this shift.

The Negative Economic Impact of Downtime

BUILDING A CULTURE
OF URGENCY AND
AVAILABILITY

is theno awooe

we go Nfew Words

isheno awooe

we go feords

VictorOps is the best Option AROUND

VictorOps is the best Option AROUND

VictorOps isthe

best OptionOND

is theno awooe

we go Nfew Words

is theno awooe

wefew Words

Victo
efowo

Victo
efowo

Victo
efowo

VictorOs thtdshe bes

VictorOps is the ion AROUND

$1.25B
to $2.5B

$100,000
per hour

56%

Hourly cost of an infrastructure failure

M
en

tio
ned revenue impacts as the biggest negative result of downtime

Total cost of unplanned application dow
ntim

e

$500,000
to $1MIL
per hour

Average cost of a critical application failure

* DevOps and the Cost of Downtime: Fortune 1000 Best Practice Metrics Quantified, IDC
**Postmortem of database outage on January 31, GitLab

More advanced companies use historical incident data to proactively prepare
teams to resolve events faster, and to prevent those events in the first place.
This in turn becomes a competitive advantage as highly functional “on-call”
teams help protect revenue loss, maintain brand reputation, and drive
customer satisfaction.

Recent research demonstrates these high performers are deploying 46x more
frequently, with 440x faster lead time from commit to deploy, all while
maintaining a mean time to recover (MTTR) that’s 96x faster. And change
failure rate? It’s 5x lower, so changes are as likely to fail*

The traditional Information Technology Infrastructure Library (ITIL) model
was developed in the late 1980s, a time when people were shipped physical
disks for application updates. And while not every company then was in the
business of selling software, almost every business now relies on running
software and delivering online services. Software is disrupting every
industry—entertainment, agriculture, finance…* This is where ITIL falls flat.
ITIL separates duties and process approvals in an effort to support
standardization and reduce duplication of work. This siloed and
process-laden approach inherently slows down change. Nevertheless, many
organizations still rely on this model, expecting to adhere to SLAs and
maintain near-zero downtime despite incredibly rapid deployment demands.

In order to drive innovation, maintain uptime, and support employee growth,
ITIL won’t hold up in the always-on, 24/7 IT paradigm. Accordingly, we
advocate for a DevOps model as a cornerstone of incident management.

DevOps is an approach to work where teams continuously look for methods
to evaluate and improve technology, process, and people as they relate to
building, deploying, operating, and supporting the value our organization
provides. It’s a broader shift in mindset that leads to addressing the needs of
the business through the lens of the customer. We accomplish this through
an increased focus on collaboration, measuring and improving processes,
getting customer feedback, and improved transparency.

Competitive Advantage
of Minimal Downtime

*Why Software Is Eating the World, Wall Street Journal, August 20, 2011

Shift from ITIL: DevOps and Modern IT

Victort Option AROUND

VictorOps is the best

Option AROUND

Victort Option AROUND

VictorOps iheseet

Victf

be

gtirgj

fwo eie

eiw aw

Bring DevOps Into
Your Life

Combining DevOps with a forward-thinking incident management tool
means the end of a sh*t on-call experience.

Benefits of DevOps + Modern Incident Management

For the Business: Increase Efficiency and
Boost the Customer Experience

Stay Ahead of the Competition

Limit Downtime & Improve Service Quality

Increase Productivity—and Happiness—of IT Staff

Drive Quality Communication across Teams

Increase Overall Organizational Velocity

For Ops: On-Call That Doesn’t Suck
Collaborate with Developers Behind the Code

Ditch the Shared Pager—Ack and Resolve from Your Own
Mobile Device

Integrate across Your Toolchain (Monitoring & More) for
Centralized Information

Access the Context You Need, Quickly—No Vague
2 a.m. Alerts

Move at the Speed of Development, without Sacrificing
Safety or Efficiency JUST

DO
IT!

1.

2.

3.

4.

5.

For Devs: Owning Your Code
Empower Development Teams

Create More Stable Operating Environments

Spend Time Building and Innovating—Not Fixing and Maintaining

Improve Overall Quality of Your Code

Support Ownership and Accountability, Regardless of Role or Title

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

How It Relates to Incident Management Software:

Simply put, detection is monitoring insights, looking for the signs and signals
of an incident.

However, in organizations with legacy monitoring configurations, actually
improving detection is tough. Environments are configured with broadly
applied, arbitrarily set thresholds. The impact on on-call teams is measurable:

For the above reasons, high-performing teams focus on two things in addition
to the basics. The first is time series analysis in their monitoring and detection
systems. For example, some progressive, in-market solutions offer a
time-series database, enabling wide adoption in both new projects and within
existing environments. Your incident management tool should be able to
seamlessly integrate with advanced monitoring tools to improve
measurement fidelity.

The second is an accurate feed of what’s happening in your environment. In
VictorOps, we call it the “Timeline.” A timeline provides continuous data from
across your ecosystem as alerts flow through the system, providing a broad,
holistic picture for the size, scope, and urgency of any given alert at any given
moment in time.

Stage 1: Detection

Definition: Detection is the observation of a metric, at certain intervals,
and the comparison of that observation against an expected value.
Monitoring systems then trigger notifications and alerts based on the
observation of those metrics.

How It Relates to Incident Management Software:

There are a few key features to ensure the response happens effectively.
You can think about these features as on-call essentials or, depending on
how thin the feature set is, “basic alerting.” Thus, the leading incident
management tools in market will offer:

Dynamic scheduling

Team-specific rotations

Automated escalation(s)

Scheduled overrides

These feature sets are essential, yet in isolation, they’re simply not robust
enough to support a true DevOps culture. High-performing DevOps teams
tend to focus on less reactive environments, investing in the people,
process, and tooling to ensure teams are proactively preparing,
minimizing, and preventing incidents. Accordingly, every second during
response provides an opportunity for improved reliability and uptime.

Stage 2: Response

Definition: The response phase is the delivery of a notification to an
incident responder via any means and the first steps the responder takes
to address the alert. Thus, a detection threshold is passed, an
email/SMS/chat/phone call is sent (notification), and someone
acknowledges receipt (response).

This is an important point: Developers will not positively respond to (read:
adopt) a highly-reactive on-call management tool. The tool needs to offer
context, collaboration, and visibility.

Many high-performing teams have found success through ChatOps tooling
and workflows that centralize communication andsetup the first responder
for success. While receiving a basic notification in Slack/Stride/Mattermost is
great, a contextual alert with a visual indication of the current state, plus links
to relevant runbooks or dashboards, saves the responder valuable time
digging into the error.

When purchasing an incident management tool, buyers should look not only
for bidirectional chat integrations and ChatOps functionality, but also the
ability to configure alerts to fit team needs—any information present in the
alert payload can be used to provide additional details to the on-call
responder. Straightforward contextual details attached to each alert will
reduce the stress of on-call and provide a next-level technique for resolving
incidents faster.

How It Relates to Incident Management Software:

A variety of factors impact the length of the remediation stage, often a

combination of severity and unknowns. However, the severity of the incident is, of

course, often the most direct correlation to MTTR. This “severity” factor may

leave teams feeling like the overall time to repair is outside their control; however,

there are a variety of ways the combination of incident management software,

processes, and team can put the control back in their hands.

The first piece depends on contextual alerts: what data does the team have access

to and, perhaps more importantly, do they have the ability to understand the

real-life implications of the data. Contextualization of data allows teams to turn

metrics into actionable insights that provide a higher fidelity picture of the

incident.

Incident management software can act as a black box for time-series systems (e.g.,

InfluxDB), log analytics systems (e.g., Splunk), and changes to production (e.g.,

Jenkins, GitHub).

Regardless of your specific approach to these metrics, your incident management

ought to support a holistic picture of your systems and data. Robust integrations,

contextual alerts, and runbooks attached to alerts serve as a collective knowledge

base for dealing with a variety of issues, no matter your role or tenure.

Stage 3: Remediation

Definition: Remediation is the true “firefighting” stage of incident
management, where teams aim to quickly diagnose and solve the problem.

Learn More About Remediation Here!

Stage 4: Analysis

Definition: The analysis phase, often referred to as postmortem or
post-incident review, is the learning process after an incident is resolved.
While the historic approach to this phase has relied heavily on Root Cause
Analysis (RCA), increasingly complex systems have led progressive teams away
from relying only on single causal entity analysis. Instead, teams are
increasingly looking towards models that address system complexities, e.g.
Cynefin, to better understand the wholistic, multi-faceted cause of an incident.

When we discuss analysis, there are a few key pieces necessary for Incident

Management Software to support a healthy Post-Incident Review (PIR).

The first is the the Incident Dashboard or Timeline, which is helpful for providing

a quick view of misbehaving systems before and during the incident; who

shipped something to production; who was taking action; what actions was that

individual taking; and what communication was happening throughout the

incident. All of these pieces serve as critical data for an effective PIR.

The second is also reporting related: Mean time to acknowledge (MTTA) and

mean time to resolve (MTTR). MTTA/MTTR reporting allow your teams to

visualize and uncover the underlying trends regarding a team’s ability to

respond to and resolve incidents. By wholistically analyzing the impact of

incident volume—and your teams use of the incident management

software—you can determine levers to lower MTTA/MTTR specifically and

minimize the cost of downtime.

The third is a Post-Incident Review—different than the actual process of an

internal PIR, this PIR is a tangible report where individuals, including

Leadership, can quickly pull a timeframe of data (no more manual aggregation

of emails, Slack, SMS, and monitoring systems) for key learnings. This report

facilitates a PIR, or “retrospective”, and documents long-term action items.

Out-of-the-box PIR reporting allows your team to quickly and easily access

monitoring data, system actions, and human remediation to better understand

the who, what, when, where, and why of an incident. All of this analysis is

essential for the preparedness and readiness required for teams to not only

quickly resolve incidents in production, but also improve the reliability of

systems to proactively address issues before they occur.

How It Relates to Incident Management Software:

Close readers may notice some nuances to words we’ve chosen (or avoided)
as we discuss incident analysis, namely “Post-Incident Review” and
“root-cause analysis” (RCA).

Post-Inicident Review is our replacement for post-mortems. You can learn
more about our approach to the Post-Incident Review, including why it’s so
essential for DevOps teams—here. The decision to not use RCA mirrors this
sentiment based on the current complexity of people and systems. You can
read more about our root-cause analysis philosophy in this blog post.

Stage 5: Readiness

Definition: Readiness, the next logical step, is the phase where teams take
action to enact improvements to people, process, and technology in order to
prepare and, as much as possible, prevent future incidents. Actions taken
during this phase vary from architecture and application changes, creating
and updating runbooks, or Game Days.

Readiness is the full package of incident management software. As you review

the various facets of your team, from systems to processes, does your software

enable your team to proactively, collaboratively, and seamlessly address

incidents to lower MTTA/MTTR—and minimize the cost of downtime?

In practice, this stage can be the most difficult. Despite a team’s best efforts,

action items are often left unanswered and day-to-day work supersedes

suggetions and improvements. While management often expects full

prevention of problems, high-priority projects somehow take the place of

supporting these fragile systems.

Of course, one of the best ways to be prepared is to integrate readiness into

the software delivery lifecycle (SDLC). Creating a culture where ownership

doesn’t end when something is shipped into production is an essential piece of

minimizing downtime. After all, what’s the point of DevOps if the dev team gets

to ship something into production at 5pm on a Friday only to leave a Ops team

firefighting all weekend long? While the two aren’t always complete

causational (let’s avoid RCA), software releases are the single biggest factor

contributing to downtime.*

Teams must find a way to incorporate reliability into releasing, and while you

How It Relates to Incident Management Software:

need the right people and process in place, tooling can help. Look for an incident

management solution that provides some visibility into the SDLC via developer

tooling integrations (e.g., Github, Jenkins). With this visibility, developers and ops

alike have a holsitic view of what’s happening across systems—including

shipments to production.

Additionally, you should take time to optimize your alert stucture, configuring

alerts to meet a teams and organizations needs. A noisy alert system or “paging”

system can leave teams fatigued and unaware of which alerts actually require

action. At VictorOps, our Transmogrifier is our unique alert rules engine,

empowering teams to set up a few processes essential to readiness in the face of

the most important alerts. Here are a couple key configurations:

Alert Rules: Match behavior to fields in alert payloads and create cascading

logic to meet often demanding automation needs.

Noise Suppression: Using suppression and classification (either critical,

warning, or info), unactionable alerts will be visible in Timeline and Reporting

but won’t disturb users. Alert aggregation further reduces noise by bucketing

related alerts into a single incident, adding even more intelligence to your

input stream.

Alert Annotations: Link alerts to relevant and helpful instructions, images,

graphics, data, notes, or wiki-based runbooks to help responders have

everything they need to quickly investigate and resolve the incident.

Routing: Set up unique escalation policies in line with team needs and

fine-tune. Kick off escalations based on rules you choose and escalate to a

secondary policy within your team, different team, or individuals.

To learn more about how you can build a culture of reliability in your
organization, without hiring a full-time SRE staff, check out this eBook.

1.

2.

3.

4.

* “How to Measure Release-related Downtime,” Plutora

VictorOps supports a full-stack approach to incident management.
Unlike our competitors, our system leans into the progressive vision of
DevOps—providing broad visibility, from deployments to production, to even
the noisiest systems.

We centralize user activity for next-level event transparency, so your team can
lean into the speed of DevOps.

Ready to see VictorOps end-to-end incident management in action?
Sign up for a personalized walkthrough with one of our product experts.

Why VictorOps

