
BUILD THE RESILIENT

Creating a culture of reliability

Site Reliability Engineering @ VictorOps

By Jason Hand

FUTURE FASTER

Build The Resilient Future Faster
Creating a culture of Reliability

Site Reliability Engineering @ VictorOps

By Jason Hand

Build The Resilient Future Faster
By Jason Hand

Copyright © 2018 VictorOps, Inc. All rights reserved.

Printed in the United States of America

Published by VictorOps, Inc. 1401 Pearl St., #300 Boulder, CO 80302

Online edition also available at
https://victorops.com/build-the-resilient-future-faster/

Editor: Kelsey Loughman
Copy Editor: Dan Holoran
Cover and Interior Designer: Rachel Stern

Special Thanks to:
Jonathan Schwietert
Brandon Barrett
Maggie Gourlay
Garrett Dawson
Eric Wagner
Andrew Fager
DeAndre Carroll
Sean Grady
Greg Frank
Alex Wellock
Sean McBride
Dan Jones
Dan Hopkins
Tom Hart
Jerry Pommer
Beau Christensen
Sean Grady
Mike Merideth
Benton Rochester
Jason Roth
Brandon Zarrella
John Egan
Summer Wollin
Courtney Kissler
John Allspaw
David Blank-Edelman
J. Paul Reed
Baron Schwartz
Charity Majors
Cindy Sridharan

Table of Contents

Part One: Expectations and Dependencies 1

Expectations and Dependencies of Modern Society 	 1

Part Two: The VictorOps SRE Journey 5

Building A Resilient Future Faster	 5

What Do We Mean by Reliability?	 8

What is SRE to VictorOps?	 15

The SRE Council	 15

Process 	 19

What Do We Do First?	 29

Monitoring & Alerting	 34

Business Reliability Engineering	 36

Measuring For Progress & Success	 40

Modernizing On-Call	 43

Why Chaos Engineering?	 48

Chaos Day	 50

Part Three: The Next Steps 57

Conclusion	 57

Your Journey	 58

Expectations and Dependencies

PART ONE

dmoaeofn aofaeofn acnsa oaj

dmoae ofn aeofn acngrsa orraj

dmoae ofn acngrsa orerearaj

jeo aneo ngfin anfawin faincie

jeo aneo nnfawin faincie

jeo aifnepoinf ainfcaiwnf

nf ainfcai wnf

d
m
o
a
e

o
fn

a
e
o
fn

a
c
n
g
d
ho
e
a
in
a

r
s
a

o
r
r
a
j

a
in
a

r
s
a

o
r
r

r
a
hc
l
e

a
j

or
r
a
j

dmoaeofn aofaeofn acn eee aheisa oaj

eonew a aoe

dmoaeofn aofae I am the Best peron everofn acn eee aheisa oaj

This Is A Rocket

a
in
a

r
s
a

o
r
r
a
j

1

Expectations and Dependencies
of Modern Society

For most of us, our day begins with a few routine tasks. We turn on the
lights, brew a pot of coffee, and warm the shower—a common series of
events for anyone’s morning.

As we move from task to task, there are expectations. We expect the
lights to turn on when we flip a switch. We are confident turning the
appropriate knob will cause warm water to come from the shower
head. In fact, we expect the same experience each and every time.
Consistently. Reliably.

Rarely do we stop to question or understand how these services are
delivered to us on demand. Admittedly, there is very little reason to give
much thought to the underlying complexity that delivers on-demand
electricity, gas, water, or even the internet. These services “just work,”
and we rely on them to accomplish goals in other aspects of our lives.
Simply put, these services enable us to achieve expected outcomes; we
come to expect and depend on them.

But it’s not just the electricity and hot water we have come to rely on.
In fact, availability and accessibility are of equal importance, playing a
significant role in assessing reliability and quality of service.

When we flip a switch, light doesn’t just emerge from nowhere. It
came from a provider and is delivered through a complex network of
components, each with their own opportunity to fail. We rely on both
the end-result service (i.e., electricity) as well as the way in which it is
made available to us.

Digital services work in a similar way. Because the same provider builds
and operates the application and infrastructure, functionality and
reliability are part of the same value proposition. Energy companies can
produce electricity, but if users can’t access the service (electricity or
gas), the value of the energy and business is diminished.

2

In most parts of the world, an immense and growing spectrum of
digital services and technology influences nearly every aspect of our
lives. To some degree, each of us rely on digital resources provided by
businesses, governments, individual contributors, and more—and that
reliance is steadily increasing.

Let’s take travel as an example. For any given business trip, I personally
rely on a variety of digital services. My airline alerts me to check in for
my flight through the mobile app. I hail a ride-share to the airport using
both my phone and another mobile application. The driver takes me
to the airport in the most efficient way thanks to GPS and live-traffic
updates. I scan my boarding pass at the TSA podium using my watch.
While I wait to board my flight, I listen to a podcast streaming from
my tablet. Suddenly, just as we are about to push back from the gate,
I remember my mortgage payment is due this week, so I execute the
transaction from my banking app.

It’s part of the “Digital Transformation” changing the way we interact
with the world around us. There are certain expectations the end user
has regarding reliability. Accordingly, organizations are evolving in order
to hold up their end of the agreement. The transformation is changing
the way we set our expectations around quality and reliability of these
digital services.

Access to this growing digital functionality and information is expected
to be available and operating at all times. Much like the pipes that
deliver water to our homes, the complex inner-workings of delivering
a service to the end user is both critically important to the overall
quality (read: reliability) of the service, yet intentionally abstracted away
from the end user, and to some degree, the organization providing
the service. We encounter layers upon layers of abstractions meant to
simplify everything, including software, keeping it healthy, and getting it
to the person who needs it.

With the shift towards always-available digital services, the need to
provide reliable and improved access to these services has increased. As
a result, innovative engineering practices across nearly every industry

3

have emerged to meet the modern world’s demand for access to digital
services whenever, wherever, and however they want.

In fact, this “reliability” expectation has given birth to services and tools,
VictorOps included, while also supporting entirely new approaches to
building, operating, and iterating on software and infrastructure.

VictorOps, much like a utility company, provides services to enable its
end users. Specifically, we empower the makers of the world to build
resilient systems.

This is accomplished by designing, building, operating, and improving
the VictorOps software as a service including the underlying physical
and virtual infrastructure. Our constant pursuit is to explore new
methods for delivering both quality software sooner and receiving faster
feedback from real usage. Continuing to develop better methods of
delivering software as a service to meet the changing needs of our user
base is at the heart of our own journey into site reliability engineering, or
“SRE.”

4

PART TWO

The VictorOps SRE Journey

5

Building A Resilient Future Faster

Trust is the foundation upon which we reach just a little higher and
stretch a little further. Without trust, there are no risks taken, which
means no exploration, experimentation, or advancement of the system
(or society for that matter).

The advancement of the VictorOps service is largely based on trust.
Trust and confidence in the process of building, deploying, and operating
software and services. Trust in the development process. Trust the
way in which software and services are deployed to customer-facing
production environments. Trust that even when something goes wrong,
we can recover extraordinarily quickly.

We must constantly explore new ways to maximize and meet
expectations on reliability while simultaneously innovating and
improving our service. We are a data-driven rocket ship, constantly
swapping out components, experimenting with processes and tools.
Iteratively learning and exploring more about the system’s “knowable”
properties—all while the ship is in flight.

How We’ve Been Doing It

The status quo for building and operating systems has long been for
developers to hand off code to release engineers or operations teams to
deploy and manage. Monitoring and alerting were afterthoughts, only
bolted-on in the Production environment, if at all. Operations engineers
and system administrators were paged for problems at any time, day
or night. Taking a reactionary approach when it comes to reliability no
longer met our needs.

There are more modern methods and approaches to increasing
reliability available today that are better suited to how software and
infrastructure are designed, built, and operated. Changing our posture
from reactionary to proactive was the first thing we needed to change.

6

In April of 2017, VictorOps kicked off official SRE exploration and
documentation of our internal efforts and discussions regarding both
reliability and scalability. Our documentation of this process would
serve both as historical records for VictorOps as well as a resource to
customers, prospects, and the greater IT community. For VictorOps,
SRE and the associated efforts are ongoing. This text includes four key
assignments or exercises that helped VictorOps establish footing and
move forward with confidence on our own journey towards building
a highly available, resilient, and reliable system and service that is
constantly improving and bringing more value to end users.

Assignments:

•	 Identify “What Keeps You Up At Night?”

•	 Determine Value to Effort for Observing What Keeps You Up At Night

•	 Establish Blackbox Metrics and Service Level Expectations

•	 Make the Case For Chaos or a Game Day Exercies

What is SRE?

In many organizations, Site Reliability Engineering (SRE) is the
responsibility of very specific teams or individuals, typically those
familiar with operations-like engineering efforts. They keep the critical
infrastructure and applications up and running. Think of them as the
keepers of “Production”. System Administrators. The IT Operations, SRE
Team, or individual engineers (i.e. SRE’s) typically own this responsibility.
In some cases, individual reliability engineers are embedded with
development teams, while in other cases, there’s a central SRE team.

However, an increasingly common approach to engineering where
roles such as development, operations, quality, security, and others
are combined into small, loosely coupled, yet highly collaborative
teams have empowered organizations to respond to problems much
faster when they inevitably arise. Perhaps more importantly, these
collaborative teams are able to deliver value (in the form of digital
services) to the end user much more quickly.

7

Terms such as DevOps have emerged to give a name to organizational
efforts to bring disparate conversations around building, deploying,
and operating applications and infrastructure into the same group.
Previously siloed conversations about responsibilities slowed the
process of delivering value as teams were essentially incentivized
against each other. Developers were encouraged to pump out
new functionality while the operations teams were incentivized on
maximizing the availability of the resources (i.e., uptime). Without
realizing it, competing efforts were in action to both introduce and
limit the one common cause of IT failure: change. Conflicting incentive
structures is a classic flaw in the makeup of many IT organizations.

As a company, VictorOps has an inherent passion for reliability. Founded
by software builders and systems architects who deeply relate to
those who are tasked with the pressures of maintaining uptime of
systems, a culture of high availability has always been strong within the
organization. It’s ingrained in the majority of our work and what we think
about each day.

Engineering teams and IT professionals around the world rely on us to
alert and assist in the mitigation of disruptions to services critical to the
business. As our CTO puts it:

“Reliability is our most important feature”.
-- Dan Jones - CTO VictorOps

If we are experiencing a problem impacting our service, the issue creates
a ripple effect, impacting our customers, and our customers’ customers,
and so on.

The value we, as a business, deliver is not only in the rapidly improving
service itself (on-call and incident management) but also the ability to
rely on services to work as expected when customers need it most—
during their own high-stress service disruptions.

8

What Do We Mean by Reliability?

Protecting the VictorOps customer experience AND increasing our
ability to deliver value more quickly is ultimately what we are attempting
to tackle as a company-wide SRE effort. Still, associated responsibilities
and expectations around our SRE efforts need to be specific about which
problems we are trying to own and solve.

First, we began our efforts by defining and focusing on two primary
areas tied to the customer experience aspect of reliability:

Correctness and Availability

Correctness:

•	 Functions as expected

•	 Data is consistent

•	 Consistent, predictable performance

•	 Consistent innovation

Availability:

•	 Always on (24/7/365)

•	 Minimal downtime (planned or unplanned)

•	 Resilient to failure / fails gracefully

•	 Global accessibility

The relationship between correctness and availability demands a
balanced approach. Like efficiency and thoroughness, each can often
carry incentive structures, which are often at constant odds with each
other.

9

For most modern organizations, velocity is more than a “nice to have.”
Halting functionality work in order to focus engineering resources
towards improving only the reliability of a service doesn’t usually sit well
with product owners and management. We need to achieve a balance
between reliability and deployment speed.

Reliability from a Customer Perspective

VictorOps customers depend on us when there is an active problem
within their own system. Their experience with the VictorOps service
as they acknowledge, triage, collaborate, and resolve issues is far
more important than whether or not the VictorOps core servers are
experiencing high levels of CPU usage. Is VictorOps empowering them
to do their best work?

Metrics such as CPU and memory usage are important to have
observability around but do little to communicate the experience from
the customer’s point of view. Users don’t give a damn if we have our
own datacenter, a multi-cloud architecture, or a couple of hamsters on
a wheel plugged into a Raspberry Pi. They do give a damn about fixing
their own broken application or service. VictorOps enables them to
resolve service disruptions as well as retrospectively analyze incident
response efforts for deeper learning. They rely on us to enable them to
solve their own problems. Plain and simple.

Here’s a real question…

“What is the user experience while interacting with VictorOps during an
active incident?”

This is an observability question. This is where we need the highest
fidelity data if we want to accurately answer it.

10

More specifically, what happens (exactly) when:

•	 Someone interacts with the software we’ve built,

•	 Running on the infrastructure we’ve architected, and

•	 Delivered through the pipelines we currently have in place,

•	 Using processes and tooling that have been established over the 6-year
life of the service...

•	 During an active incident?

Do we know? Is it possible to find out? Is it “knowable”?

Some engineers have intimate knowledge around parts of the system.
Others haven’t been with the company long enough to share the
same mental representation of how the system actually works. What
data needs to be collected in order to begin attempting to answer the
questions above?

Scalability from a Customer Perspective

Consistent operability isn’t quite enough to satisfy today’s end users.
The tech world moves fast. When was the last time you installed
software from a disc and could operate it without a connection to the
internet? That’s rarely how things work today. We access services from
our phones or devices whenever and wherever it’s convenient for us.
And because access to the best and most innovative software is only a
“Sign up Now” button away, vendor lock-in isn’t quite as prominent as it
once was. That’s great news for consumers and end users. It’s a bit more
worrisome for companies realizing that functionality and differentiating
features quickly become commodities and the only real chance at
differentiating yourself in the market is by outpacing the competition on
feature releases and displaying dominance in reliable infrastructure.

Customers will educate themselves and choose the service that is, of
course, reliable, but they will also pay close attention to the manner in
which the service itself adapts to their own changing needs.

11

How innovative is the service? The answer reflects how empathetic the
vendor is to the always changing landscape of IT.

Scalability is of great concern to end users whether they explicitly make
the claim or not. It is directly related to the overall reliability of a service.
You must demonstrate the ability to keep up with and support them. If
you show the inability to enable them to succeed as things become more
complex and mission-critical, the end user will begin the search to find a
more suitable partner to explore the future of software.

We need to optimize for delivering improvements to our service safer
and faster. Our users expect that the tools they leverage today will grow
with them into the foreseeable future. They expect to influence and
shape the roadmap of the service by providing feedback to welcome
and eager product teams. We must be able to introduce changes to our
systems based on feedback from the customer’s experience. Finding
ways to improve our ability to scale was important enough for us to call
it out for the problem we are own and solve.

Our journey towards curating a specific culture of reliability is an
ongoing one. But what we’ve learned and where we are headed all
started with asking questions. Throughout this text, I’ll share with you
what those questions were, what kinds of conversations they generated,
and what new questions and discussions that led to. The final sections
of this text will conclude with the very first VictorOps Chaos Day
orchestrated under SRE. We will use chaos engineering to learn how our
system handles failure, then incorporate that information into future
development.

Embracing risk is a big part of the cultural change we are trying to bring
about not only in ourselves but in the rest of the tech community. It’s one
thing to say we embrace it, we need to mean it, as well as demonstrate
the critical relationship between this new embracing of risk and its
positive impact on the reliability and scalability of the VictorOps service.

12

There are no clear “best practices” to SRE. There is no official playbook.
Like DevOps, there is no one-size fits all approach to Site Reliability
Engineering. What works for a company like Google or Facebook
doesn’t make sense for us. What works for VictorOps likely won’t plug
and play into your organization without some adjustments.

Early Decisions

Very early, we evaluated two of the more popular approaches to SRE:
embedded and dedicated. After many conversations internally as well
as through interviews with reliability engineers from Twitter, Netflix,
Github, and others, we made the decision to resist the tendency of
hiring into the role of SRE. Likewise, we wanted to avoid unintentionally
creating a new silo by forming an “SRE team.”

Worried that a specific team might induce assumptions about who
owned our availability, we concluded that our approach to SRE was not
limited to a distinctive team. From our perspective, the responsibility
of building reliable systems is taken away from a majority of the
engineering team almost entirely when following the dedicated model
(i.e., a distinct site reliability engineer or team). We also weren’t in love
with the embedded model as that carried the same problem. It might be
a larger team with more context but we knew we wanted reliability and
scalability to fall on the shoulders of everyone.

We are building a culture of reliability.

Much of what we wanted to accomplish was going to require a shift
in the mindset of what we care about and how we accomplish goals
associated with that care. We wanted to communicate explicitly that
SRE was not a project. It’s not an initiative we will take on for a few
months until we have achieved some empirically measured goal, such
as 99.99% of availability. This initiative ought to align with a cultural
change in not only our engineering team but also the entire company—a
change to align the company with the objectives of the business and
the needs of the customer.

13

A growth mindset with a hunger for continuous improvement is part of
the company culture that is often hard to build and sustain. Something
like this doesn’t just emerge out of nowhere. It requires a change agent:
a champion to challenge the status quo (i.e., how we do things around
here).

Who Will Champion This?

We needed buy-in from management, from the Product team, as well
as from all corners of the engineering team. We needed everyone to
have a clear sense of responsibility and control over their role in our SRE
efforts. We also knew that someone needed to champion this effort.
Without a champion, it would be too easy for our SRE aspirations to get
lost in the day to day business.

We chose to look internally for an individual to lead our efforts and
create a company-wide focus. Someone who would serve as a coach to
our entire engineering team, supporting and enabling them to embrace
and own reliability in each of their own domains.

One platform engineer stepped forward and offered to assume this
role. Much of their work on the “Platfrastructure” team (Platform &
Infrastructure) was tied to these concerns already. Likewise, they were
becoming increasingly more curious about the principles of DevOps and
our own ability to get new functionality to users while also maintaining a
hardened system. It was a natural fit.

For SRE to succeed, our engineers needed to see and feel that the value
of their engagement was valuable. Above all, we wanted to know the
truth about our systems, including the human components. As such,
we valued transparency and feedback in pursuit of genuine inquiry and
continued learning; we saw (and see) this as a hunger to expose more
and develop a greater sense of the system (including the people).

14

This new hunger led teams across the entire organization to begin
talking about a common challenge. A challenge of increasing velocity
and maximizing uptime, which, when reframed from reactive to
proactive, now seems a whole lot more interesting. A whole lot more
like an engineering problem that, with the support from the rest
of the company, we can prepare for trouble (i.e. unplanned work)
by engineering ways to shorten feedback loops and expedite the
remediation of service disruptions. That’s something everyone from
upper management to technical support can get behind. We’ll all play a
role in solving for it.

Start With Questions

“Monitoring tells you whether a system is working,
observability lets you ask why it isn’t working.”
- Baron Schwartz, CEO VividCortex

Asking questions was the most important step early on for us, and in a
really generic sense, observability is just that—asking and answering
questions, any question. Filling in the blanks on what is known, or
even knowable about our systems. If someone has a question about
any aspect of our system, we want to be able to get an answer we feel
confident about. Because we are going to make some really important
decisions based off of those understandings of reality.

In order to reliably answer questions, you need to have access to
information. Not only that, but you have to be able to make sense of
it. No matter what question you have about your system, you should
be able to answer it. It’s about moving closer and closer to a clearer
understanding of the reality of our systems. To us, this is what we mean
when we speak to the topic of observability. We can’t improve what we
can’t measure. We can’t measure what we don’t see. And, we’ll never
even know what to look for if we don’t know what is important. What’s
important to VictorOps can help us shape what SRE is to VictorOps.

15

There are many great explanations on what observability is and is
not. I suggest reading anything from Charity Majors, Baron Schwartz,
Cindy Sridharan, or Jonathan Schwietert on the subject. Each has a
deep understanding that goes beyond the scope of this book but is still
super important. I definitely recommend giving their work a read.

What is SRE to VictorOps?

For VictorOps, the SRE mentality would need to be central to the culture
of our entire organization. The responsibility of owning the scalability
and reliability of the product (VictorOps) from a customer experience
point of view doesn’t rest solely on an SRE team or individual engineer.
Rather than assigning the SRE role and responsibility to a specific
team or individual, we chose to assemble a cross-functional panel of
engineers, support leads, and product representatives referred to as the
SRE council.

The SRE Council

The council would be made up of at least one representative from each
of the core teams with an immediate stake in reliability and scalability
(i.e web client, mobile client, platform, QA, IT Operations, etc.). Our SRE
Champion would facilitate discussions during scheduled meetings and
serve as the main point of contact for SRE outside of council gatherings.
Continuous improvements to reliability in the customer experience
will continue to advance, as would scaling the speed and confidence of
deployments. But, how can we sum this up into specifics? We were able
to get buy-in from management on SRE efforts by communicating that
we are most focused and empathetic toward the end user’s experience.
From the end users perspective, SRE would create a unified vision,
mission, responsibility, and goal for the continued reliability of our
product (i.e. VictorOps). The quality of our service when it comes
to reliability must always be examined with true care towards the
expectations of the end user. Empathy is necessary.

16

From: SRE Champion

We need your mind & creativity to attack these goals
in innovative ways.

We can only accomplish as much as we put in.

You are the most familiar person in this group for your area.

We can only achieve buy-in as much as we inform
others and represent the need of SRE.

Your teams will only choose the work if they understand
why they should choose it.

Make it obvious.

Culture

You’ve no doubt heard many times that changes like these aren’t
accomplished solely with adjustments to tooling and process. And they
definitely aren’t accomplished by hiring an individual or even an entire
team to “implement SRE” (or DevOps). There must be a cultural shift of
some kind within the company.

In order to move quickly and in unison we must all maintain a sense of
empowerment and freedom for engineers to explore and “own” their
SRE efforts. The council will serve as the main point of contact for SRE
but engineers are encouraged to take ownership and make proactive
decisions based on data.

17

Facilitating the culture of SRE:

•	 Empower each engineer’s “reliability feels,” so they can take

ownership of improvements

•	 Proactively expose dependencies across systems starting with dialogue
and data

•	 The council would serve as the point of contact for reliability
conversations

Taking ownership of something means empowering engineers to do
what they think is right. We would encourage each engineer to engage
their “reliability feels”. In other words, if something feels like a concern,
bring it up to the council and assume ownership for improving it.

Ordaining engineers with “you are empowered now” rarely works.
In many cases, dependencies, as well as system and team dynamics,
prohibit teams from actually being able to make much of a difference.
Because of this, we made it clear that removing barriers and any
resistance to the flow of value needs to be made an actual priority to
accomplish early on.

When the council meets, each member was responsible for bringing
concerns related to SRE from their respective domains. As a group, we
would aggregate and vet concerns in order to begin adding work to our
engineering backlog. Representatives would present before and after
improvements once concerns had been addressed and supported by
data. As a unit, they would provide input to the future SRE roadmap and
efforts. We’d all decide together.

Along with a concise mission statement, we felt that formalizing the
responsibility of the council as it relates to the mission statement made
sense. Because we were attempting to formalize and legitimize SRE (at
VictorOps), explicitly spelling these out felt appropriate, especially if we
planned to share our journey outward.

18

Mission

Provide an avenue to direct VictorOps’ hunger for reliability.

Vision

What’s the big picture here? What are we trying to achieve? What
will the SRE council own and solve? Formally, we established and
communicated to the company that the official vision of SRE was:
SRE will maintain and continuously improve reliability and scalability in
the customer experience.

Goals

Aiming for buy-in across our entire organization, there were a few
conversations that surfaced early on around establishing some clear
goals. We want to monitor and improve the customer experience
in order to achieve an optimal balance between high reliability and
scalability as it relates to deployment speed.

From a high level, this was broken down into:

•	 Bring visibility to the system’s reliability and scalability through

instrumentation

◦◦ R&D for unknown concerns

∙∙ Load testing (API & benchmark)

∙∙ Game day exercises to uncover unknown aspects of the
system in a controlled environment

•	 Address and facilitate a resolution to current reliability and scalability

concerns

◦◦ Tackle existing known concerns

19

•	 Focus on proactive actions (demand forecasting/capacity planning)

◦◦ Proactively pursue future concerns

∙∙ Capacity & Saturation metrics

∙∙ Anomaly detection

∙∙ Product and Management team input to understand where
we’re going

•	 Operate with transparency and genuine inquiry

◦◦ Open council meetings

◦◦ Communicate vision and roadmap to VictorOps

Process

Creating an efficient streamlined process to raise, discuss, and affect
improvements to the reliability and scalability of VictorOps was the
high priority early on and we wanted to build a first-class development
workflow to address it. To achieve this, council members would regularly
collect SRE concerns & improvements from their teams. These concerns
would then be vetted together in front of the council in order to build
an SRE backlog. This includes breaking work down into team-specific
stories as well as epic level work. During subsequent program planning
sessions, teams would then pull work into sprints. On a regular cadence,
teams would present before and after improvements once a concern has
been addressed. The combination of these efforts would help to shape
and provide input to the SRE roadmap.

Formal Submission Process

We wanted to standardize what would be needed for all future
submissions. This would allow us to evaluate and prioritize them
accordingly. As a result, we established a formal process and outlined
a few basic guidelines each concern would be evaluated against. Once
a concern was identified, it would be raised in the following council
session. The council has three initial criteria that each concern must
address.

20

Required criteria to raise concerns to the council:

•	 Why is this SRE?

•	 Why is this important?

•	 What is involved?

Collectively, the council would evaluate each and either accept or
reject the concern. If a concern was accepted, we would create an
“epic” together ensuring all relevant details are captured in our project
planning tool.

If the council deems the epic to be properly vetted, a story would then
be submitted by the council member who raised it. From here, it follows
the path of any other engineering effort. Work is assigned during sprint
planning, engineers follow their normal routine of building, testing, and
deploying to the pre-production environment, at which point we begin
gathering results from instrumentation that has just been added. This
gives us more visibility into the health of a system.

Discussions of instrumenting applications earlier in the SDLC will
begin taking place as a result of trying to understand the reality
of the systems better. Once engineers realize that they will be the
ones responding to problems in production environments, it begins
to make a lot of sense to instrument earlier on. Engineers become
familiar with the monitoring and alerting tools. They get to craft their
own alerts, ensuring that when they are woken in the middle of the
night for a problem, they know with greater certainty that this is
indeed an actionable alert and, because they’ve seen this before in
pre-production environments, they know exactly what kind of detail,
context, and tools they will require in that sleepy-eyed moment. It’s
like helpful engineers from the past... traveling forward in time to help
out during an outage!

21

SRE Concern Submission Framework

1.	 Team representative submits a concern to the council

2.	 Council assesses concern using the following guidelines:

a.	 Why is this SRE?

b.	 Why is this important?

c.	 What is involved?

3.	 Council determines if the concern is valid

4.	 If valid, an “epic” is created

5.	 If the epic is vetted, a story for the work is submitted by the
council member

6.	 Sprint planning

7.	 Development

8.	 Gather results

22

Tools

Of course, in our efforts to create an observable system, conversations
around tooling surfaced. The council would direct the team to useful
and powerful tooling for instrumenting the system and serve as a
unified resource for toolset decision making. Architecture reviews and
decisions would be a social, group effort.

In the fall of 2017, VictorOps rolled out significant changes to several
key components of our systems. We also launched a new website
and two new mobile apps all in the same week. A lot of changes and
improvements were being made to the system at the same time the
council was forming. This provided a great opportunity for team
representatives to collaboratively review architectural decisions
including systems that served internal “customers” such as support,
sales, marketing, and management.

As we continue our journey we want to make sure that all new tooling
MUST be data-driven. If any existing tooling is polluted or is inhibiting
effective usage, let’s correct that. When we don’t have accurate data
and telemetry on the flow of value through our system. (Reminder: The
value is the service VictorOps offers AND the underlying infrastructure
on which it is provided.) Then we have a very limited scope of reality.

A tangible result of our SRE efforts should be that we have empirically
reduced the unknowns and increased what is now “knowable”. You
don’t know what you don’t know... And that’s a problem when it comes
to reliability. We need to operate with realities, not hunches. We need
to be able to prove that work is important and the benefits should be
measurable.

SRE aims to alleviate overhead in all other teams affected by this
problem domain.

23

Meeting Frequency and Format

Sixty-minute meetings would be held every other week. All meetings
were (and are) open to anyone in the company interested in either
contributing to reliability conversations or learning more about how the
system currently works and proposed improvements.

The Council was opt-in and until efforts were more formalized, SRE
work was not to interfere with existing planned sprint work. There were
no obligations to contribute to SRE conversations, yet everyone was
encouraged to. The experience shall remain collaborative and engaging
rather than a top-down “project”. Let’s create ownership that helps to
move the needle on feeding our own culture of reliability.

Responsibilities

Most of the key responsibilities of the council became obvious very
quickly. However, to formalize them, we established that the SRE council
was at least initially responsible for the following:

Bring Concerns From Your Team

In order to encourage our entire engineering team to embrace and own
reliability in their own domains, the council coaches and stimulates
individuals to raise any concerns or ideas. Improvements would be
continuously made to process and tooling to improve the system from a
holistic point of view. By diversifying our council, we had subject matter
experts from all corners of the business bringing ideas and concerns
that others would not have had any knowledge about.

Vet Concerns in Order to Build SRE Backlog

Coming up with ideas is one thing, but if work is never performed to
address the concerns, no improvements will be made. Functionality and
features are perceived as better use of engineering resources unless we
can make a bulletproof argument that our concerns and the associated
work is actually tied to improving the system from the customer’s

24

experience. We knew we needed a process to convert these concerns
into engineering work. We needed to provide a first-class workflow
to address reliability and scalability into our backlog and prioritized as
important engineering work. The council would help to break down
high-level work into detailed story-level representations as well as be a
representative during backlog refinement and sprint planning exercises.

Present Before and After Improvements Once a Concern is Addressed

To encourage accountability and acknowledgment for improving the
system, we asked that representatives present before and after results
towards improvements during the next program increment planning
week.

We want to regularly demonstrate to the organization how we
are continuously looking for methods to evaluate and improve the
technology, process, and people as they relate to building, deploying,
operating, and supporting the “value” of the VictorOps service—
including minimizing the disruption of services from these efforts.

Provide Input to SRE Roadmap

Along our journey, the council would provide input to the overall SRE
roadmap. By unifying an understanding of SRE and associated efforts
across the council and organization, we will produce a comprehensive
SRE roadmap with input from all teams and outline specifics on how we
will get there. This would be an ongoing effort as the need and objectives
of the business can and will change quickly and often dramatically.
Bringing value to the end user is the ultimate goal. What that value looks
like in the form of functionality may shift and change but reliability and
scalability will remain a constant priority.

25

The SRE Council is responsible for:

•	 Bring concerns from your team

◦◦ Vet concerns in order to build SRE backlog

◦◦ Form into epic level work - break into team-specific stories

•	 During program planning: Teams pull work into sprints

•	 Present before/after improvements once a concern is addressed

•	 Provide input to SRE roadmap

The SRE Council is NOT responsible for:

•	 Responding to immediate customer needs

•	 Discovering bugs in functionality and issues with user experience

•	 Exploring or defining creative user functionality

To dive deeper into the responsibilities of SRE, there are a few more things
our council chose to keep outside the scope.

According to the Support team, SRE was NOT responsible for responding
to the immediate needs of customers.

While attending to and communicating trends indicating future reliability
issues for customers is greatly appreciated, SRE was not part of an
escalation path for customer issues received by the support team.

When we asked our QA team, they let us know that discovering bugs in
functionality and issues with user experience was NOT the responsibility
of SRE.

SRE would instead look for ways to support identifying reliability problems
in the user experience through a number of approaches.

Not only did we solicit feedback from our different engineering teams, but
we also wanted to hear from members of the Product team. Invoking input
from many different perspectives should give us a more holistic approach
to what SRE means to VictorOps and align our objectives and incentives.

26

To the Product team, SRE was NOT responsible for work related to
exploring or defining creative user functionality. Ideas and feedback
pertaining to product enhancements are always welcome, yet SRE would
not own this as a core responsibility.

Assuring that new functionality is instrumented from a reliability
perspective means bringing multiple areas of expertise together to
inform improvements to the overall product faster and with fewer
service disruptions. Involving Product Owners in these discussions
surfaces effort that may be relevant to sprint planning and feature
work. Don’t forget to share findings that involve engineering resources
that may not only be feature work.

If you ask the front-end engineers where an SRE’s role ends, they will
make it clear that building out a new system and user functionality was
their domain—and outside of the expectations for an SRE. If SRE could
help ensure that new functionality is instrumented from a reliability
perspective, the front-end engineers would own the rest.

Our IT Operations team informed us that building and supporting
infrastructure that runs the product was NOT an expectation of SRE.
However, any help with forecasting demand and proactively triggering
automated scalability efforts would be greatly appreciated.

Last, we got together with our data team to gather their feedback
on what SRE should NOT be for them. Their answer was simply...
“Gathering business intelligence. That’s our specialty.” But they also
added, “If you could help us understand what kind of data we could
start collecting with regards to system reliability information, we’d love
to dive in.”

There were no real surprises with these conversations. Most teams are
clear on their role and responsibility in delivering value to the end user.
However, it did help surface talking points and suggestions around what
efforts SRE might be able to bring to the table to increase our overall
reliability, as well as increase our ability to deliver functionality (read:
value) to the end user faster.

27

When examining these expectations, we realized that when we start
to put ourselves in the perspective of the end user and empathetically
understand what problems they are solving for, it was clear that the ideal
customer profile, as they say, sounded a whole lot like ourselves.

VictorOps needs to be able to deliver value in the form of features
that enable customers to do what they love (build systems that enable
others) and we need to do it faster while still maintaining reliability.

This is a common challenge for many of our customers. While some
are just looking for better ways to reduce downtime, others are
experimenting with ways to introduce change (and therefore chances for
failure) faster and faster into their systems; continuously improving the
system with each release. Releases that used to go out to end users once
every three weeks are now taking place at the very least once a week
and, in some cases, even more often but with the intention of speeding
up even more over time.

Involving the Product Team

At first glance, from a product owner’s perspective, SRE might present
what appears to be a “competing” value stream. For product owners, it’s
about getting functionality out the door as efficiently as possible.

Example:
As a user .. I want to …

This is the language, and as a result, incentive structure product owners
are working in… a “user story”.

The user doesn’t see the relationship between functionality and
reliability. They do not necessarily know that they care about how the
service is brought to them. They just want to perform their own task
at hand.

Without an honest conversation with product owners about the
relationship of feature velocity and system reliability, opposing

28

incentives may cause dysfunction when prioritizing engineering
resources for functionality, reliability, or scalability.

Thankfully, our product owners care a great deal about reliability from
the customer’s perspective. And not only do they understand that
relationship, they and everyone on the engineering team can’t wait
to achieve greater confidence and speed in the delivery pipeline. As
data-driven decision-makers themselves, they believe that the council’s
data-driven approach supports effective prioritization and the best
approach to balancing reliability with scalability from the customer’s
perspective.

In order to achieve this balance, quantifiably measuring “reliability”
using instrumentation of the running system in production became
a top priority. Accordingly, we needed to find ways to examine and
verify correctness and availability while also tracking release frequency.
Measuring how often something goes wrong with releases is also
related and important. How quickly our team was made aware of and
were able to swarm to problems both right after changes to the system
were made (deployment) and during unplanned service disruptions are
metrics we watch closely. With an increase in deployment frequency, it
becomes even more critical to have metrics available. These data points
and observations would then inform a hypothesis for improvements—
rather than opinions or hunches. Delivering the greatest value to our
end user required us to challenge assumptions about how our system
behaved.

Armed with this hypothesis, we could now take a data-driven approach
to improving the underlying infrastructure of the system along with
the application and experience of the customer. For any organization,
knowing where to focus resources is essential. In our experience,
when the data tells you where you have the biggest problems or where
you’ll get the largest return on engineering effort, resource allocation
decisions become much easier. Access to high-fidelity data helps to
create a well-informed and proactive engineering team.

29

What Do We Do First?

We want to see and analyze what’s happening before much planning
or effort is enacted. Shortened feedback loops are achieved simply by
placing more emphasis on observability.

“[Accelerating the releasing of code] and the formation of the
SRE council are big inflection points for when we started to really
observe and measure things in our system. The visibility increase
since we began has been like coming out of the dark ages.”
- Jason Roth, Senior Platform Engineer, VictorOps

We want to turn high fidelity data into information that fuels changes
to the system. Improvements to the reliability, enhancements to
our delivery pipeline, shortened feedback loops to engineers, and
faster deployments of features, as well as improvements in human
performance, can all be driven by data.

In working closely with other teams and using this information to
collaborate on solutions, we would need to begin not only collecting
more data to enhance our observability into the system but we’d also
need to establish baselines to establish our expectations of what a
healthy system looks like (to us). What is “normal”?

Concluding each council meeting, action items were established for
the group. The first four assignments kicked off some of the deepest
discussions we’ve had around the reliability and resiliency of our
service—not to mention what types of things we can’t currently answer.

30

What Do You Worry The Most About?

One by one, we went around the table and asked each representative on
the council to share their list of concerns. What really keeps them up at
night?

Our IT Operations representative pointed out some blind spots in
monitoring that were recently uncovered. Scalability was a growing
concern as our customer base has exploded recently as well.
For our Data team, not having enough good data in pre-production
environments was proving to be problematic for testing effectively.
Monitoring was often too noisy and, as a result, alerts weren’t always
that meaningful or even actionable. Third-party tooling use was
beginning to sprawl and we felt that we had poor visibility into the things
that are touching our system.

When you talk to the representative from the Web client team,

Assignment One: What Keeps You Up At Night?

We asked each member to go back to their teams and return with a
list of the most obvious concerns you can think of when it comes to
reliability of the VictorOps service. Something that has always bothered
you and is easy to determine if you have the ability to confirm the
concern or not using data. Is “that thing” that’s bothering you something
we can actually see in the system using data?

These early conversations pointed out obvious blind spots in our
own system. The truth is you don’t know what you don’t know about
systems. When it comes to reliability, the last thing you want to do is
make decisions based on emotions or anecdotes. All efforts should be
aimed towards exposing the knowable and amplifying the known. The
importance of observability (a superset to monitoring, logging, tracing,
etc.) is increasing significantly as it allows you to learn and know more
about your systems.

31

exception monitoring was at the top of their list. This held the largest
area for opportunities for improvement. They also mentioned that there
is no tie between exception tracking and deployments; another blindspot
that was becoming more and more worrisome.

Scalability issues of the UI and UX were brought up as well. We need
to get the design team involved sooner and get them better data to
make informed decisions before our web client isn’t able to meet user
demand and expectations. They also felt that the deployment process
could use some tweaks.

We asked the council members to provide a short list of top concerns.
Dozens of ideas were presented. Once we had a list of solid concerns,
the next meeting would be to discuss methods of observing data
related to them. In order to build and test theories around how certain
aspects of the system work under certain circumstances, we would
need greater visibility.

What did we learn?

We needed more data. This would require engineering time. But, we
are in a pretty good spot to make significant positive impacts in a very
short period of time. Although the running system may not be well
understood by all, engineering cares deeply about reliability. Especially
when discussed in regards to VictorOps scaling to meet the needs of our
customers who themselves are experiencing fast growth and demand.
We have a lot of input on SRE concerns so far, but no way of prioritizing
or assessing the risk of individual concerns.

32

Assignment Two: Value To Effort Analysis

Now that we have a list of concerns to address, we needed to begin
breaking them down further so we could prioritize. We need to
understand what is involved with making data related to these concerns
obtainable. For each concern, we want to determine the value, effort,
and blockers involved in adding instrumentation specifically addressing
the concern. Additionally, if they could advise the council on the
complexity, risk, and any supporting evidence as well. This should help us
sort in a few ways.

Each council representative was then asked to begin researching the
following information as they relate to each concern:

•	 Value

•	 Effort

•	 Blockers

If possible, provide the following as well:

•	 Complexity

•	 Risk

•	 Evidence

For the IT Operations representative who had previously mentioned
monitoring coverage and scalability were at the top of their list of
concerns, they informed the council of the following:

•	 Monitoring coverage:

◦◦ Value: High

◦◦ Effort: Low - Medium

◦◦ Blockers: More of a time commitment than it	 	 	
should be.

33

•	 Scalability:

◦◦ Value: High

◦◦ Effort: High

◦◦ Blockers: Time is a large blocker on this one. Spinning 	 	
up new servers takes a cross-department effort. IT 		
needs to create and provision the server, dev needs to 		
deploy to it.

For our Data team that said not having enough good data in staging was
proving to be problematic, as was noisy monitoring and alerting and Saas
tooling sprawl, they came up with:

•	 Monitoring of ETL processes:

◦◦ Value: High, we will actually know if ETL is broken, on-fire, or

just working

◦◦ Effort: Moderate, we have some tooling in place with Sumo, but

that is it

◦◦ Risk: ETL breaks silently

◦◦ Evidence: Count the SE’s

•	 Tests (all levels):

◦◦ Value: High, we really have no testing in ETL, making it fast-
fail impossible, and all validation manual

◦◦ Effort: High, nothing exists right now.

◦◦ Blockers: Data Volume issues. ETL is heavily influenced by db
size, production has had a number of issues that can’t be seen in
other testing environments.

◦◦ Risk: Continued bugginess and unreliability of ETL/reporting,
customer churn

◦◦ Evidence: (See above)

34

What did we learn?

This exercise helped us to better understand the lift involved with
efforts associated with these concerns. As a collaborative team, we all
had a much clearer picture of the risk involved when contrasted with
the reward it would provide. With this information, as a group, we could
make decisions moving forward on how we prioritize SRE-related work.

Within just two 60-minute sessions (and some research outside of the
council meetings) we had generated nearly 200 legitimate questions,
hypothesized how we could collect data to answer them, and began
analyzing them in order to prioritize them.

Monitoring & Alerting

“If you can’t monitor a service, you don’t know what’s happening.
You can’t be reliable.“ (Site Reliability Engineering: How Google Runs
Production Systems)

A subset of observability, monitoring, plays a key role in engineers
knowing when acceptable thresholds have been breached—provided
established service levels and steady methods of system health data
collection. Or, if something is moving the current state considerably
away from the pre-established baselines. So long as monitoring is
instrumented early on during the SDLC, engineers can decide very early
what types of problems engineers should be alerted to.

•	 Monitoring of SaaS tools:

◦◦ Value: Moderate, we have minimal monitoring of our third-
party tools, causing a lack of visibility into current state, failures,
and bugs

◦◦ Effort: High, most of these tools provide minimal options for
alerting/monitoring so in most cases the monitoring/alerting we
have is very noisy

35

We want to avoid unactionable alerts that lead to not only burnout but
future inaction. When everything is urgent—nothing is urgent. It’s too
much noise and impossible to know what’s actually important (from the
customer’s perspective). So many critical issues are often incorrectly
ignored.

As we began establishing various metrics and going deeper into our
discussions around monitoring and alerting, the council turned its
attention to two distinct ways of looking at monitoring—Black Box and
White Box.

Black Box & White Box Monitoring

When you hear the terms Black and White Box monitoring, there are
a couple ways to speak to the ideas. One aspect is to think of Black
Box as “pull-based” monitoring where White Box is “push-based”.
James Turnbull’s book, “The Art of Monitoring,” gives one of the better
explanations of these two types of monitoring from this perspective.

However, another explanation of Black (and White) Box monitoring
exists. If we abstract away all of the inner workings of VictorOps
and purely look at the expectations of the service from a customer’s
perspective, this is Black Box monitoring. Is it working? What “it” is can
vary but the idea is binary. It’s either good or bad. It’s either working or
not. We are monitoring externally visible behavior as a user would see
it. How does the “value” look?

Going deeper takes us to White Box monitoring in this model. This
is monitoring based on metrics exposed by the new internals of the
system, including logs, interfaces like the Java Virtual Machine Profiling
Interface, or an HTTP handler that emits internal statistics. (O’Reilly).

Our SLIs will likely contain a mixture of both Black and White Box
metrics. The next assignment for the council will be to discuss and record
possible Black Box metrics. We established a vision and goal to keep in
mind when suggesting metrics.

36

To keep in mind when selecting black-box metrics:

Vision:
Catch issues before customers reach out and reduce time to notify for
customer affecting issues.

Goal:
Page the most applicable team—not necessarily the team who’s product
caught the issue.

Business Reliability Engineering

In engineering and ops, we can quickly forget about our secondary
“customer”—our internal departments. At VictorOps, our sales, support,
marketing, and success teams rely on access to our digital resources
from our top-level domain. Outages to digital services often impact
entire teams relying on those services to do their job.

More and more, systems are being plugged together through
cooperative APIs and automation. Marketing and Sales teams rely on the
flow of accurate data from customers and prospects as their sensitive
(and often difficult to obtain) information is moved between various
customer relationship and business analysis systems.

Visitors to the site are encouraged to download digital resources to
further educate themselves on the most advanced methods of on-
call and incident management. As I’m sure you are perfectly aware, in
exchange for these digital resources, potential customers (hopefully) will
share with us their information so that we can keep them updated on
what’s going on at VictorOps and the world of building scalable systems
faster and safer. Love it or hate it, this is business and it’s something
nearly all organizations rely on to operate. VictorOps is no different.
We need to make sure that aspects of the website that are marketing
and “top-of-funnel” focused are also behaving as the customer (i.e.
Marketing) expects.

37

For example, when a visitor to the site downloads our Post-Incident
Report Book, their information is stored in a number of systems, pushed
all around through automation—automation that we don’t know much
about. The process of obtaining this information safely and correctly
relies on several steps and tools. Unless someone reaches out to us,
how do we know if it’s NOT working?

Measuring For Normal

We now have a list of top concerns as well as a better idea of how much
effort and reward is involved with prioritizing related work. However,
along with getting better visibility around potential worrisome areas, we
also need to establish what a “healthy” VictorOps system looks like.

There were several suggestions regarding the specific scenarios we
should be watching for and measuring. For instance, when a connection
between the web client and back-end system are experiencing trouble, a
bright gold bar displays at the top of the screen so users are aware that
something is wrong.

What we sometimes forget is that WE also know about it, but are we
watching for it? Thankfully the problem is rarely something on our end
when the gold bar appears. There are many stops along the way in the
complex system in which the alerts are delivered through. From shoddy
WiFi to a DNS problem on the customers’ end, numerous reasons exist
as to why the web client and the back-end aren’t talking to each other.

“A user on a 99.9% reliable smartphone cannot tell the difference
between 99.99% and 99.999% service reliability. With this in mind,
rather than simply maximizing uptime, SRE seeks to balance the risk of
unavailability with the goals of rapid innovation and efficient service
operations, so that users’ overall happiness—with features, service,
and performance—is optimized,” (Site Reliability Engineering: How
Google Runs Production Systems).

At least for the moment, we don’t care what specific possible
disconnection scenarios exist and how we can protect ourselves from

38

them. For now, we only need to determine what is acceptable. What is
“normal”? We know disruptions happen. We can point fingers as to who
is to blame or what is the cause, but the point is to discover what is the
expected behavior? This will be our baseline.

Obviously, we know when the gold bar is displayed. Multiple logs can
tell us that part of the story. But how often is the gold bar displayed?
When it is displayed, on average how long does the user see it? Are
many users experiencing it simultaneously or is it sporadic? What kind
of information is in between the lines of the gold bar data that we have
been (or can begin to) start collecting?

One tip we learned from our friends at Netflix was that they have a
single metric that they watch very carefully. That being PPS (Plays
Per Second). In other words, how many times does a customer press
or click the “Play” button on Netflix? This single metric would act as
both an overall health check but also a leading indicator of trouble
on the system. Once a healthy “plays per second” baseline has been
established, setting a reasonable threshold, in one way or the other,
means that teams can be alerted to possible trouble early on.

What might be our own version of the PPS metric? What about how long
it takes for information to be displayed to the user? In what way could
we more closely measure how long it takes for information to display in
the incident timeline. Could this be our PPS or is there something else
that might be even better to look at?

Ideally, the population of data into the timeline is so fast that humans
would never know or have reason to think, “This seems to be taking
longer than I expected.” If it is slow, how slow exactly? And what
threshold is deemed too slow? In order to really know how fast (or slow)
it was, however, we would need instrumentation to measure it, a data
store to collect it, a dashboard to visualize it in real-time, and, of course,
alerts should established thresholds be breached. Find something. Try it.
Adjust.

39

Another suggestion was to closely watch the response time for
searching for users within the system. One of the most powerful
features during a firefight is the ability to quickly pull in additional
responders and collaborate in real-time.

Getting everyone up to speed on what is known about the incident
speeds up the recovery efforts. To do this, much like social media,
“mentioning” individuals and teams are achieved in the incident timeline
by typing “@” in the chat field. This triggers a search module to display
potential matches as the user begins typing. How fast (or slow) is this
response time, and what value should trigger cause for alarm?

Clearly, we were going to need to not only roll out new instrumentation,
we were going to need to collect data over time, establish thresholds,
and build actionable alerts to contextually inform first responders
what is broken and where to start looking. Not only do we want better
observability on these things, we also want to learn more about how
new code needs to be instrumented, as well as what makes for an
actionable and helpful alert.

The engineers who wrote the code are likely the ones responding to it
in our production environment. They should decide and establish the
right types of metrics and alerts to provide in an incident related to
their code and functionality. Engineers become much more familiar with
the tooling earlier in the software development lifecycle.

Duplicating monitoring, alerting, and on-call rules in a development or
staging environment mean the engineers responding to the problem
in production are already well-versed in the tools used during real-life
response and remediation efforts. Also, they are likely the ones that
established the monitoring thresholds, on-call policies, and (hopefully)
actionable alerts. If the information provided regarding a problem isn’t
helpful in reducing the time to detection or resolution, it’s easier and
less expensive to spot that in pre-production environments. Should
the problem rear its ugly head in production, the proper metrics are in
place to spot it, the right teams or individuals are contacted, and they
are immediately familiar with the current status through helpful context

40

appended to an alert that has already been confirmed as “actionable”.
What about the round-trip interactions when a user triggers a new
incident? There are multiple things that take place during some of the
most important pieces of functionality. For instance, when a user has
been alerted to an incident, their first action is to acknowledge the
incident. How long does it take for the user to press “ACK” on their
mobile device, for VictorOps to receive and process this request, and
for the user’s confirmation to be displayed as an action? Specifically,
how long does that take? While it should be extremely small, how small
exactly?

Once our new instrumentation was capturing higher granular data and
we started averaging out various metrics of the system, we were ready
to start setting targets to both maintain or to achieve. It was time for
us to establish Service Level Indicators, Service Level Objectives, and
Service Level Agreements. This helps us determine what “normal” is.
The baseline then serves as our early indicator that something is no
longer “normal”.

Measuring For Progress & Success

Measuring for outcomes is always at the top of our mind when
approaching goals. While we do have specific targets we may be
aiming for, circling back to confirm that the resulting outcome is in fact
what you were after is extremely important. Small course corrections
are required. Outcomes may be more general but often attract the
attention and support of decision makers earlier.

Key measurements and thresholds to hold us accountable for our
efforts as well as communicate expectations across the entire
organization needed to be established.

Nearly every resource you find regarding site reliability engineering will
talk about key metrics used to establish high-level objectives, indicators
of the movement toward or away from those objectives, and ultimately
what agreements are in place should objectives be unfulfilled.

41

SLIs will help us know how we are performing against our SLOs and
our SLA will outline the consequences (good or bad) of meeting those
objectives.

Once we have data to observe, we will begin orienting ourselves to it and
establish what we believe our SLIs and SLOs to be.

Service Level Indicators (SLI)

Empathetic understanding of customer needs and expectations will help
to inform indicators. And at first look, there are many possible indicators
that could be measured. However, we found that landing only a handful
of indicators that really matter was the right choice. Finding a good
balance of indicators is important to help teams accurately examine and
understand important aspects of the system.

Service Level Objectives (SLO)

Service Level Objectives (SLOs) are established measurements to inform
Service Level Agreements (SLAs). This measurement establishes a
target value (or range of values) for assessing the overall trajectory, and
eventually, accuracy of your objectives.

Service Level Agreements (SLA)

What happens when SLOs are breached is what SLAs address. The
council does not accept ownership of constructing SLAs because SLAs
are closely tied to business and product decisions typically managed
higher up the chain of command. The council will, however, be involved
in helping to avoid the consequences of missed SLOs.

42

What Did We Learn?

Once we returned for the next council meeting, engineers had already
begun plumbing in new instrumentation such as the Grafana “OpsDash”,
building dashboards, and cleaning up existing murky data collection. This
lead to creating and socializing deployment dashboards (also in Grafana)
for the company to have available any time they wanted.

Assignment Three: Establish Blackbox Metrics and Service Level Expectations

Our next assignment was to begin establishing our own Black Box
metrics and expectations regarding service levels. This included coming
to an agreement on thresholds, how we should address violations, what
should we make visible right away, and what types of alerts should go to
engineering?

As a group, we determined that we would collaboratively define SLIs
and SLOs with interested parties (e.g. Engineering, Product). We would
assure that all teams are in agreement on what constitutes violations. We
determined that metrics we had surrounding service level expectations
should be made visible through dashboards.

An assortment of various dashboards related to service expectations
began circulating within our Slack groups. We also put in place alerts to
reinforce the importance of our new metrics.As a group, we would address
violations and aim to achieve SLO’s with near perfection, allowing us to
maximize change velocity without violating an SLO.

43

We updated metrics to Jenkins jobs, as well as annotations for said
jobs in Grafana, and we added a number of new metrics for deployment
health and general health. This is all the result of simply establishing
a few key metrics and processes that we felt were important to get
visibility around.

Engineers added Prometheus to our bootstrap process, making metrics
collection and experimentation accessible to any developer who is
interested. We also implemented a new abstraction for collecting
metrics in our platform. We determined healthy “golden signal” metrics
around our socket traffic in the browser and established thresholds for
all three visible panes (people, timeline, incident).

Initial golden signals:

•	 Alerts Received / Processed

•	 Incidents Created / Resolved

•	 WebSocket Connections Connected / Disconnected

These would serve as a starting point and we are already exploring more
signals such as “Time to First Notification” (TTFN) as our best leading
indicator. Could this possibly be an even better Netflix-like PPS metric?

Modernizing On-Call

One of the most important ideas we evangelize at VictorOps is that we,
as software makers and digital service providers, must start thinking of
our systems in a more holistic, “Systems Thinking” way. VictorOps, just
like any other company is a socio-technical system. Aspects regarding
both technology and humans must be considered part of the “system”.
Because of this, we need to find new methods of incorporating human
considerations into our methods of building and operating services.

As good as we may be at software development and architecture, it
still takes humans to respond to problems when they inevitably break.
Some organizations are experimenting with self-healing systems but
these are mostly focused on infrastructure. There are far fewer of these

44

companies using self-healing systems than those of us out there who
rely on our subject matter experts and developers to restore service
whenever a disruption occurs.

Two sides of the same coin, on-call and reliability, are forever tied to
each other. As new instrumentation exposes new areas of the system
to pay closer attention to, we often forget the challenges of scaling and
improving our on-call practices.

It has become more and more rare for us to encounter customers who
are establishing Network Operations Centers (NOCs). The concepts
outlined throughout this book should highlight the shift in the
realization of urgency to service disruptions. Businesses can’t wait until
Monday morning when someone from IT gets into the office. Revenue,
reputation, and more are tied directly to the site and accompanying
digital services. If it’s down for even a few moments, that’s a HUGE
problem.

This is an urgency that most companies can’t outrun or ignore. Instilling a
sense of the seriousness to restore services whenever a problem occurs
is necessary for bettering the reliability of a service. Because of this,
companies are cutting out as many “middlemen” as possible and getting
the person or team who is ultimately most qualified in that moment to
address and resolve an incident.

Bouncing support tickets through a tiered-support group while
the clock ticks away is devastating to a company on its own digital
transformation, particularly if they are early on in the journey. The
stakes are often higher for a company with a big name but are still new
to this way of appeasing customers. Tech startups and Silicon Valley
garage projects can afford to experience some downtime. It’s the price
their users pay to ride the wave of innovation; as early adopters, they
are willing to take that gamble just to be one of the first to use the
service. But once a large, well-known organization has experienced
a significant outage, customers will have difficulty reconciling the
enormous company resources and any amount of downtime of the
service on which they have come to “rely.”

45

Modernizing the on-call practices should not involve the use of
outsourced or tiered-support, relying on tickets to be created, assigned,
or any other activity that further delays the restoration of service. When
the system is no longer “normal”, we have already deemed an associated
alert or incident to be actionable and, therefore, the person or team who
is most qualified to restore service (in that moment) should in all cases
be the first responder—not someone who is going to escalate.

First responders should rotate often and the experience and systems
knowledge will, of course, vary from engineer to engineer. While
a more senior architect on the team may appear to be the most
qualified, we never want to encourage a superhero mentality where
only specific individuals contain the “know-how” to solve our most
critical problems. Modernizing on-call rotations also includes bringing
in more of the team while making more of the system available to
all. With the right context alongside safe and accountable access to
the same tools as any other engineer, even the most junior developer
should be able to successfully respond to an incident first and begin
making a positive impact to restoring service. The moment will vary,
the “qualified engineer” should too. Transfer knowledge through your
on-call practices. Have empathy towards not only the customer’s
perspective but to the first responders as well. What would be the
most helpful when acknowledging an incident? How can I solve this
problem the fastest? What can I give “future me” to restore service as
quickly as possible?

How would we know the answers to these questions? How could I
possibly know what the future will need in a moment like this? As we
have become more familiar with our systems and the tools earlier in the
SDLC, engineers start to figure out what is going to be helpful. Being
alerted during office hours to issues in pre-production environments
based on new code means that problems can be caught much much
sooner. Not only that, but we’ve verified that we can catch (or see) what
we are looking for before it goes to production. Additionally, we have
gained an intimate knowledge of the monitoring and alerting tools that
are eventually used in production.

46

By the time this kind of problem has the opportunity to surface in
production, we should have instrumented the service better and
established only actionable alerts that contain whatever relevant
context may be helpful to the responding engineer. It’s all part of a bigger
effort of continuous learning more about our systems

Improving Mental Models

“Learning from Failure” has long been a message we repeat.
Strengthening and improving mental models of how systems actually
work versus how we think they work. A large gap between individual
realities of how systems behave almost always exsits; moreover, no
single perception of the system is correct. The more we isolate our
understandings of systems from each other and avoid exercises that help
us to create more realistic understandings of them, the longer and more
harmful a service disruption will be.

It is with this in mind that we determined our next assignment. A full-day
event to proactively poke at our systems to improve our understanding
of how they actually work, what we have visibility on, and ultimately
what can be done in the near-term to improve things.

Assignment Four: Make The Case For Chaos

To encourage teams to begin thinking about how they can learn more
about the system and be made aware of problems in the customer
experience before the customer notices—the council decided that
scheduling a Game Day exercise would help. With a date set on the
calendar, council representatives understood when indicators (i.e.
Black-box metrics) would need to be established and how they could
be observed. The Game Day exercise would require that those SLIs be
clearly defined and a method for triggering a breach of thresholds be
established.

47

What is Chaos Engineering?

“Chaos Engineering is the discipline of experimenting on a
distributed system in order to build confidence in the system’s
capability to withstand turbulent conditions in production.”
- Casey Rosenthal (CTO Backplane - Previously Eng. Mgr. Chaos Team /
Netflix)

To specifically address the uncertainty of distributed systems at scale,
Chaos Engineering can be thought of as the facilitation of experiments to
uncover systemic weaknesses.

These experiments follow four steps:

1.	 Start by defining ‘steady state’ as some measurable output of a
system that indicates normal behavior.

2.	 Hypothesize that this steady state will continue in both the control
group and the experimental group.

3.	 Introduce variables that reflect real-world events like servers that
crash, hard drives that malfunction, network connections that are

severed, etc.

4.	 Try to disprove the hypothesis by looking for a difference in steady
state between the control group and the experimental group.

The harder it is to disrupt the steady state, the more confidence we have
in the behavior of the system. If a weakness is uncovered, we now have a
target for improvement before that behavior manifests in the system at
large. (source: http://principlesofchaos.org/)

Why Chaos Engineering?

Contrary to what the name may indicate, chaos events are not performed
in a chaotic fashion. Ultimately, they boil down to a specific set of well-
planned scientific experiments. For VictorOps, SRE is a scientific practice
which aims to make data-driven decisions to improve a system’s reliability
and scalability—as observed by the customer.

48

We are actively pursuing more knowable information about our systems
in order to improve them while recognizing that this is a constant effort.

Several members of our engineering team have previously conducted
Game Day exercises and so an internal presentation was given to the
entire organization. This helped to set expectations and communicate
to the broader company what would be taking place, how, and most
importantly—why.

Before we could get too crazy with our Chaos Engineering aspirations,
we needed to get buy-in from everyone on the council and those
representatives needed buy-in from leadership. We needed a plan that
would outline the process, why we are doing this, what our goals are,
risk analysis, etc.

We knew that all simulated service disruptions were going to be taken
in our pre-production environment in order to increase our confidence
that it wouldn’t impact users. There’s always a small chance a customer
could experience something. Remember, we don’t know what we don’t
know. What if a service in our staging environment is actually talking
to something in our production environment? We are still learning
its reality. However, we need to “reduce the blast radius” as they say,
so our initial exercises will take place in our pre-production “staging”
environment.
This means that we need to ask questions about how we can make
staging behave (as closely as possible) to the customer-facing
environment. How do we want alerts to be delivered? It’s probably not
smart to co-mingle delivery methods in the event that a real incident is
triggered for a separate problem while engineers are rehearsing failure
in a simulated scenario. How long would it take us to figure out which
alerts were “real” and which weren’t?

As a group, the council discussed and came up with a formal test plan,
setup considerations, and preparation checklist.

49

Test Plan:

•	 Black-box Alerts

•	 Discuss test plans for each alert

•	 Meet with IT to evaluate RISK

Staging VictorOps org Cleanup: Discuss how close it should be to
production’s VictorOps org

•	 Special paging configurations because alerts will go off at any time a
failure is detected

•	 Check:

◦◦ Consider email-only for paging policies

◦◦ No employee should be notified on their personal device

◦◦ Teams/escalation policies/rotations?

◦◦ What should these look like?

Solid observability of the system is required before Game Day
testing can be successful. This was why so much emphasis was put
on determining our metrics in assignment three and then ensuring
we had visibility of them. A lack of structure for the day would be
detrimental to the Game Day efforts. Some sort of defined plan would
need to be established. All tests would take place initially in our staging
environment but future exercises would take place in the production
environment. Teams testing at the same time can and will collide with
each other. Be ready for this. Something else that was brought up due
to previous experience was that we needed to not only minimize the
blast radius of our efforts but we also need to limit the time the game
day exercise was supposed to take place. A 14-hour day (typically on
the weekend) was not the right approach. Engineers will lose focus
and interest if game day exercises go on too long. We would not be
“randomly unplugging shit”. This is not the best place to start nor is it part
of the principles of chaos.

50

Principles of Chaos:

•	 Build a Hypothesis around Steady State Behavior

•	 Vary Real-world Events

•	 Run Experiments in Production

•	 Automate Experiments to Run Continuously

•	 Minimize Blast Radius

Chaos Day

About a week prior to the event, our champion sent a company-wide
email on behalf of the council. The message outlined the agenda for
our Chaos Day event as well as offered a response to frequently asked
questions.

What is a Chaos Day?

A dedicated time of performing experiments on a system.

Chaos Day Schedule

9:00 am: Kickoff with training for the day

10:00 am: Experimentation begins

3:30 pm: Retro and Lean-coffee

What is the goal of Chaos Day?

Using the principles of chaos engineering we will learn how our
system handles failure, then incorporate that information into future
development.

51

What is the goal of our experiments?

This time around, we’re verifying our first round of Black-box Alerts in
our staging environment.

What is the scope of a single experiment?

Some experiments will affect only one or two web browser clients
where others could affect a major backend service, which would affect
many other services and, potentially, clients as well.

Who is involved?

All of VictorOps Engineering and anyone else that has the capacity and
would care to join and observe.

Will we be able to demo our product during this time?
Yes. These experiments are only in our staging environment.

Who will this effect?

The goal is to not affect production systems. However, it is possible we
unintentionally affect production. So, if something does happen that
is affecting or has affected production systems, we’ll communicate
that ASAP. We’ll have a dedicated Chaos Incident Commander in
communication with Ops Support.

How do we ensure it does not affect customers?

We’re doing our best to assure this but cannot absolutely ensure there
will be no effects. The test plan is being reviewed by the SRE Council
along with IT Operations.

52

What happens if there is a Sev 1 SE on that day?

Chaos does not take priority over production emergencies. The
appropriate people will be brought in and tasked per usual.

What happens if we actually break Staging in a way which takes longer
than a day to fix?

We’re aiming to avoid this with back-out criteria for experiments and
reset criteria for bad/overloaded data. If, however, a long recovery time
is needed, we’ll communicate this and make arrangements with affected
teams.

Roles
In our final council meeting before the Chaos Day, we discussed
and established well-defined roles for everyone. This would ensure
standardization to some degree on the make-up of teams during the
exercise. Documenting as much as possible was the first role we wanted
to assign—we needed a recorder.

Recorder

•	 Assure hypothesis and risk assessment have been created

•	 Record how the experiment unfolds

•	 Collect data (graphs, alerts, times, etc) while experiment is performed

•	 Time to know (from moment we trigger monitoring has identified)

•	 Time to detection (trigger time VictorOps has notified us)

•	 Note whether or not the Black-box alerts were triggered

•	 Gather information from mini-retro after the test

Someone should be responsible for driving the experiments as well.

53

Driver

•	 Perform experiment

•	 Provide all history of actions performed (command line, Jenkins jobs,
puppet modifications, etc)

•	 Verify alert was triggered

A technical lead (typically the council representative) would assume the
role of the incident commander to be the main point of contact and to
maintain a high-level holistic awareness for the experiments.

Incident Commander (Tech Lead)

•	 Assure back-out plan is defined

•	 Keep an eye on the back-out plan during tests

•	 In an incident, perform any communication with Chaos Incident

Commander for the day

In addition to team incident commanders, one engineer played the role
of the event I.C., communicating across all experiments throughout the
day.

Chaos Incident Commander

•	 Communicate with Ops Support & Incident Commander for the team
under test

•	 Update internal Statuspage & Slack channel

For each defined experiment, the following guidelines were provided.
Again, this helps to standardize the exercise across all teams as well as
serving as a checklist for engineers.

54

Step-by-step guide

•	 Describe test to group

•	 Develop a hypothesis for what is expected to happen

•	 Take a poll to gauge the group’s assessment of risk

•	 Execute test steps

•	 Once complete... Perform mini-retro on test

What did we Learn?

Having a dedicated time set aside that was well communicated in
advance helped on many fronts. Not only did it give us a kick in the butt
to determine SLIs and SLOs, it helped formalize the event. Collaboration
during the experiments was fantastic. In fact, digging into unexpected
problems together was fun. As a group, we learned much about the
process of Chaos Engineering. We learned a great deal about tools we
had in place and how we need to improve monitoring in a few places.
In terms of opportunities for improvement, the most obvious regarding
our Chaos Day event was how more people from different areas of, not
only the engineering teams, but the rest of the company can be involved
and participate. It became clear that some engineers felt left out even
though it was an open exercise. People wanted to contribute but we had
only defined a limited number of roles. In future exercises, more people
throughout the company will play a specific role in the day.

Suggestions were made to move the event to a different part of our
development cycles. Chaos Day might have been able to attract more
attention if it took place at a slower point in time for development
teams.

Inherently, the experiments individual teams chose affected only their
own services. This is not the reality of complex systems. In future chaos
events, we intend to group experiments by functional areas of the
product in order to test cross-functionally.

55

In general, there were several suggestions on how we could prepare for
the day a little better. Now that we’ve been through one, it has been
determined that:

•	 Test plans are much more important than we realized ahead of time

•	 Organization of the test plans would help divvy up work to more people

•	 Schedule focused time windows ahead of time for teams/groups of tests

Last, we intentionally left the human response questions out of these
experiments. For our next event, we’ll want to observe and capture
more around the elements associated with getting the right people on
the (injected) problem as quickly as possible. Ideally, engineers will have
established thresholds, paging policies, contextual alerts, runbooks,
and anything else the first responder would need. Not preparing first
responders with what they need in those moments is a weak spot for
most organizations.At VictorOps, we’ve learned a few things about
how to recover from failure quickly, but there’s always room for
improvement. So, we’ll begin adding these ideas to our future test plans.

56

PART THREE

The VictorOps SRE JourneyThe Next Steps

57

Conclusion

Designing, building, operating, and improving the VictorOps Software
as a service, including the underlying physical and virtual infrastructure
is critical to the future of the business. Exploring new methods of both
delivering quality software sooner and receiving feedback from real
usage faster is our quest. Continuing to develop better methods of
delivering software as a service to meet the changing needs of our user
base will be a constant journey. We expect our own internal SRE efforts
and philosophies to change dramatically, even by this time next year. The
path we took provided results for us. They may not for others, especially
large enterprise organizations distributed globally. The organizational
structure and culture are strong contributing factors to the success
and failure of these types of changes. As we grow, modifications to
our processes, our technology, and even people will be constantly
evolving. In fact, in just the last few months, changes to our SRE concern
submission process has changed.

Changes & Improvements

The formal process of submitting SRE issues has already evolved. Now,
engineers are identifying concerns on their own and taking the initiative
to begin establishing observability around them, as well as implementing
service level indicators and objectives. Conversations around concerns
still take place in council meetings but the process of vetting and creating
epics has shifted to the teams. They are empowered and responsible for
identifying concerns, instrumenting visibility, and prioritizing the work
on their own.

Company-wide minor improvements are taking place simply by asking
questions and having more conversations about reliability. Dozens of
large TVs have now popped up all over the office sharing anything from
the current health of the system to what work is in flight or coming up
related to SRE efforts and more. Links to various dashboards are passed
around in our group chat rooms. Awareness is amplified and individuals
are empowered to implement improvements, especially if they help to
explore more “unknown unknowns”.

58

Just by having more conversations about reliability and creating more
visibility, more confidence is generated on how things work, or at least
how we think they work versus, often times surprising, reality. This, in
turn, creates more questions. And so on. If you recall, our SRE journey,
much like others before us, started by asking questions.

There’s always more to discover. In complex systems, things are always
changing. You can never know all of it.

Your Journey

We hope that following the VictorOps SRE journey will spark questions
for you and your teams. Who is your customer? What are you doing
well (or not well) at enabling the customer? What keeps you up at
night about the availability of your systems? Can you quickly and safely
introduce changes to your system? Can you answer these questions?

Good luck on your journey towards SRE and always keep reaching,
stretching, and exploring. That’s where the good stuff is!

@jasonhand

59

Notes

60

61

Solutions for the Victors of Innovation
It’s time we do more than react to system outages and answer a page.

VictorOps is incident management software purpose-built for DevOps. From

fast forensics to rapid remediation, we empower engineering and operations

to work together, solve problems faster, and continuously improve in

high-velocity deployment environments.

Learn more about how

VictorOps can empower

your team to collaborate

and solve problems.

Start Free Trial

