
The Dev and Ops Guide to Incident Management | 1| www.victorops.com

The Dev and Ops Guide
to Incident Management

Modern Theory, Process, Team Structure, & Roles[]

The Dev and Ops Guide to Incident Management | 2| www.victorops.com

Matthew Boeckman
Developer Advocate, VictorOps

Matthew is an 18-year veteran building infrastructure and leading engineering teams. Despite
his heavy Ops background, Matthew has been a longtime friend of Developers and considers
DevOps his primary passion and focus. Most recently VP of Infrastructure at Craftsy,
Matthew is now a Developer Advocate with VictorOps - providing focused consulting and
content for teams looking to expand their DevOps practice.

About the Author
*

The Dev and Ops Guide to Incident Management | 3| www.victorops.com

Table of
Contents

1

2
3

4

Introduction 4

Incident Management Theory and Practice 5
System Concepts 7
Concepts in Action 10
Building Trust 15

After Action Process 16

Actionable Alerts 18
Actionable Change 20
Alert Evolution 21

Team Structure and Roles 22
Team Mechanics 24
An Embarrassment of Helpers 25
A (Non) Hypothetical Example 26
Training Opportunities 27
Blameless Escalations 28

Summary 29

The Dev and Ops Guide to Incident Management | 4| www.victorops.com

What happens when things break down? Does anyone know? Does someone get called? Can
that person fix the problem? Is a fix even possible? These fundamental questions occur anytime
a system encounters a problem. Information Technology and Software Development are no
different. Indeed, with the rapidly growing costs of system downtime, how to manage Incidents
and Events is now an essential business focus. As the continued adoption of DevOps, System
Reliability Engineering, Agile, and related practices shows, traditional responsibilities are in
frequent flux.

Team members, traditionally unaccustomed to incident management processes, are now being
dropped into loosely defined on-call roles. This creates the risk that the first-line responders
are actually unprepared to address incidents quickly and effectively. To be successful in this
role, it is necessary to have a basic familiarity with the fundamental concepts of incident
management.

This guide provides all levels of teams with a framework and common vocabulary for
managing their incident management practice. It is a guide for Development and Operations
professionals alike, or anyone wishing to take a larger responsibility for systems. With the
increasing complexity of systems and applications; it’s not a question of if, but when, things
will break down. If ever you are faced with the question: “What happens when things break
down?”, this guide is for you.

Introduction.

“...how to manage Incidents and Events is now an essential
business focus.”

*

The Dev and Ops Guide to Incident Management | 5| www.victorops.com

Chapter 1

Incident Management
Theory and Practice[]

The Dev and Ops Guide to Incident Management | 6| www.victorops.com

“Effective treatment of Incidents requires a working
knowledge of the main concepts and phases, as well as

how they interrelate.”

Chapter 1
Incident Management Theory and Practice

Software and Infrastructure have a fascinating habit of breaking. They break in small ways, and
big ways. Sure, sometimes a tree falls in a forest and no one hears, but sometimes a simple
keystroke error results in a deafening roar.

Whatever the impact, it all begins with an Incident. An Incident is an arbitrary construct of
observational data into a system, and while most systems share common Incident patterns,
they tend to be highly application-specific.

Regardless of the specifics, it’s helpful to think of an Incident in a dynamic fashion. From this
view, Incident Management becomes as much about response as it is about monitoring and
analysis. A nice framework for understanding the full scope of the incident lifecycle is found in
these five main phases of Incident Management:

• Detection: monitoring, metrics, thresholds
• Response: alerting, on-call, escalations, access, diagnosis
• Remediation: tickets, deployments, dispatches, fixes
• Analysis: postmortem, how or why, understanding
• Readiness: feedback, improvement, learning

The concepts of Iteration and Empathy also underpin the success of modern Incident
Management. Iterative approaches implicitly seek improvement, and adaptation to patterns.
Empathy acknowledges that these things are stressful and humans, whatever their professional
background, don’t operate well under stress.

1

The Dev and Ops Guide to Incident Management | 7| www.victorops.com

System Concepts

Anyone who has worked alongside an Operations professional likely has a basic grasp of
Incident Management. Something goes wrong (with a Monitored system), some other thing
notices it (Monitoring system), a notification makes a phone go *beep beep beep* (Incident
Management system), and someone’s heart rate skyrockets as they jump in to respond.

Let’s dive into each of these systems.

Monitored Systems

Monitored systems are just that – the servers, switches, routers, instances, containers,
clusters, and/or databases being monitored. Monitoring can generally be broken into a couple
categories: System, Application Performance, and Business Objective (or passive).

• System monitors tend to be generic and apply to the system resource consumption:
 CPU, Memory, Storage usage or capacity, Network, etc.. System monitors are
historically the realm of the Operations team.

• Application performance monitors are focused on application specific metrics:
Heap, connection pools, cache utilization, etc.. APM tends to be more interesting to
Developers.

• Business objective monitors measure business performance as an indirect way to
gauge application or infrastructure health. Some common examples are transactions/
sec or new user registration/hour.

Regardless of type, monitored system checks share several basic characteristics:

• Check frequency: how often the observation occurs
• Thresholds: at what value, or rate of change, is something considered “unhealthy”
• Time periods: expected results may vary widely by time of day

Of course, with the adoption of complex systems, there is also significant variance in the way
systems are monitored. Active/Passive, log based, data inference, and many other approaches
are used to isolate a basic truth: Things are OK, or Things are Not OK.

1

The Dev and Ops Guide to Incident Management | 8| www.victorops.com

Monitoring Systems

Monitoring Systems run the checks, receive the results, check them against the expected value,
and ultimately trigger an Incident. Oftentimes monitoring systems are also Monitored systems
(Quis custodiet ipsos custodes?). Monitoring systems tend to be complicated to configure,
and offer flexible rule processing. Some examples of active monitoring include Nagios, Zabbix,
Datadog, and Zenoss. Some examples of passive monitoring include Splunk, Sumo Logic, and
Logstash.

Incident Management Systems

Incident Management systems apply a secondary logical operation to an Incident. Based on
configured rules, an Incident Management system determines:

• Who should be alerted to this particular Incident
• What method of notification (chat, phone, SMS, etc) is appropriate
• The state of the Incident and execution of Escalations or secondary workflows

So far, our examples have covered the Detection phase of Incident Management. From here
we will explore Response and Remediation.

This is where the rubber meets the road for both Developers and Operations - it is likely that
multiple “someones” are on-call. They are going to be alerted, at any time of day or night, about
an Incident. They will be expected to respond in a deliberate and consistent way to Incidents
of all types, covering all systems. Regardless of the secondary systems used to manage the
Incident, they are absolutely expected to resolve the Incident in a timely manner.

Response
In many ways, Response is the simplest of these phases to implement. Teams agree on some
approach to shared responsibility, which reflects in a schedule and rotation. A team of five
Front-end developers may agree on a weekly rotation, where each member is on-call for 1
week out of 5. A team of 60 Java developers may agree to split responsibility along functional
lines associated with the application, or by service.

1

The Dev and Ops Guide to Incident Management | 9| www.victorops.com

1. Make an Observation
this is the Detection phase - some metric is no longer where it should be

2. Ask a question
why is this metric now X?

3. Form a Hypothesis
perhaps because….

4. Test the Hypothesis
look at more metrics, examine logs, deploy new code, change configuration, etc...

5. GOTO Step 1

All teams will include a mix of seniority, experience, and familiarity with a given technology.
Similarly, all individuals will bring varying degrees of availability and dedication to the problem.
For any Incident, who should get called if the first responder is not responding, or is incapable
of resolving an incident? Escalation policies are the way to approach these questions, and are a
key component of the Response phase.

While these concepts may seem obvious, the tactical execution of them is critical to a
successful Incident Management process. Every second that passes without the “right people”
responding to an Incident extends the service interruption.

Remediation
Nearly everyone, Developers and Operations alike, come to a conversation on Incident
Management with the notion that “fixing things” is all there is to talk about. A more
sophisticated view is to understand that Incidents, like software, have a lifecycle. Effective
practice requires deep focus on Remediation, but also an extended view to understanding the
inputs to, and outputs from, this phase.

That said, much of the actual time, if not the excitement, of your Incident will be spent in
Remediation. Triage, diagnosis and resolution is, after all, what we’re trying to do. An ideal
approach to remediation follows a pattern similar to that of the Scientific Method:

1

The Dev and Ops Guide to Incident Management | 10| www.victorops.com

For a visual representation, if you map the “Five Phases” of the Incident Management
framework to monitored/monitoring systems, you can create a picture like this:

This methodical approach sets a team up to quickly investigate, identify, and recover from an
Incident.

As you can appreciate, the supporting tools involved vary widely by technology stack, severity
of Incident, functional role of the responder, and more. Whatever the specific choices, the
functional breakdown of remediation tooling can be grouped like this, with a few examples:

• Documentation (Confluence, Visio, Wiki, Swagger)
• Intelligence (Grafana, NewRelic, Splunk)
• Workflow (Jira, ServiceNow, Rally)
• Change or Build management (Jenkins, Puppet, TFS)

The approach, backed by and mediated through the supporting tools, provides responders and
on-call teams the ways and means to remediate Incidents.

Concepts in Action

Monitored
Systems

Monitoring
Systems

Incident
Management

System

Incident
Responder

1

Status Pages

System Metrics

Logs

Runbooks

Subject Matter Experts

Detection Response Remediation

AnalysisReadiness

The Dev and Ops Guide to Incident Management | 11| www.victorops.com

For purposes of illustration, imagine there is one monitored system (test-webhost), one
monitoring system (Nagios), and one Incident Management system (VictorOps). Nagios, or any
monitoring system, enables some built-in protection against false positives. Anyone facing on-
call is rightly concerned about interruptions that “aren’t real,” or otherwise are triggered from
transient failures instead of real Incidents. This is why a properly configured monitoring system
is important.

In this example, Nagios is configured to “check http” on test-webhost. While a review of the
Nagios documentation to support this task can be overwhelming, the salient pieces are here:

This provides some false positive protection: Nagios will check this service every 5 minutes
(check_interval), upon a failed check, Nagios will retry again in 1 minute (retry_interval). Nagios
will not send a notification of failure until it registers 3 consecutive failures (max_check_
attempts).

Meanwhile, the Incident Management system is configured with two teams: DevTeam, and
Escalations. This Nagios integration is configured to properly route alerts for that test-webhost
to the DevTeam.

Additionally, the DevTeam is configured for escalations. Escalations can work in a variety
of ways, but typically the idea is “if no action takes place in X minutes, automatically notify
someone else.” Escalations are the safety net to any Incident Management system. Even the
most responsive team member will occasionally misplace a phone, silence a ringer, or sleep a
little too soundly. Escalations provide a built-in defense against such unplanned events.

check_interval 5

max_check_attempts 3

retry_interval 1

“Escalations are the safety net to any Incident
Management system.”

1

The Dev and Ops Guide to Incident Management | 12| www.victorops.com

Beep Beep Beep

To test this workflow, I’ve triggered an alert by disabling http on the test-webhost. Here you
can see Nagios in the check/retry_interval logic as it has marked the service “CRITICAL”, but
has not triggered an Incident. The 6th column lists check ⅓ has failed:

test-
webhost

01-26-2017
23:34:39

Connection
refused

http_check 0d 0h 0m 10s 1/3CRITICAL

1

The Dev and Ops Guide to Incident Management | 13| www.victorops.com

Once the alert passes that max_check_attempts (3), Nagios forwards the alert to the Incident
Management system, where the on-call team member is notified. If I ignore the alert, or am
unable to acknowledge the alert, the escalation kicks in. First, the timeline indicates I’ve been
contacted:

Then we see the escalations kick in 5 minutes later, preventing unacknowledged or unresolved
Incidents from being missed.

NOTIFY: Trying to contact matthewboeckman for #10, sending EMAIL

NOTIFY: Trying to contact ginatasmanto for #10, sending EMAIL

NOTIFY: Trying to contact flerghen for #10, sending EMAIL

NOTIFY: Trying to contact matthewboeckman for #10, sending EMAIL

INCIDENT: #10 was OPENED for SERVICE (http_check) on HOST (test-webhost)

Jan 26, 2017 17:02:10 MST

Jan 26, 2017 17:07:11 MST

Jan 26, 2017 17:07:10 MST

Jan 26, 2017 17:07:10 MST

Jan 26, 2017 17:02:10 MST

1

Jan 26, 2017 17:02:09 MST

More Info

PROBLEM
Jan 26, 2017 17:02:09 MST
http_check / test-webhost
CRITICAL
Connection refused
test-webhost
UP
PING OK - Packet loss = 0%, RTA = 11.83 ms

NAGIOS
TIME

SERVICE
STATE
OUTPUT
HOST
STATE
OUTPUT

The Dev and Ops Guide to Incident Management | 14| www.victorops.com

For an on-call team, ACK(nowledge) is shorthand for “I’ve got this”. An ACK by no means
implies a fix, or a resolution of the Incident. At last, I ACK this alert. Note how the ACK cancels
further escalations.

An ACK simply communicates to the team, and the Incident Management system, that the
alerted person is responsive and on the case. In many implementations, the ACK is the final
word on escalations. However, it is common to see an ACK silence further escalations, but if
an Incident remains unresolved for a longer time period, then a separate set of escalations can
kick in.

NOTIFY: Cancelled paging ginatasmanto

NOTIFY: Cancelled paging flerghen

NOTIFY: Cancelled paging matthrewboeckman

INCIDENT: #10 was ACKED for SERVICE (http_check) on HOST (test-webhost) by
@matthewboeckman

Jan 26, 2017 17:11:03 MST

Jan 26, 2017 17:11:03 MST

Jan 26, 2017 17:11:03 MST

Jan 26, 2017 17:11:02 MST

1

Jan 26, 2017 17:02:09 MST

More Info

ACKNOWLEDGEMENT
Jan 26, 2017 17:11:09 MST
http_check / test-webhost
CRITICAL
Connection refused
test-webhost
UP
PING OK - Packet loss = 0%, RTA = 11.83 ms

NAGIOS
TIME

SERVICE
STATE

OUTPUT
HOST

STATE
OUTPUT

The Dev and Ops Guide to Incident Management | 15| www.victorops.com

Building Trust

This example provides some basic transparency to the ways an Incident may be triggered, and
how that Incident may cause your phone to make annoying noises at 3am. For anyone joining
their first on-call rotation, having faith in the systems behind the alerts is important. Engineers,
as a rule, don’t do much on faith. As such, it is encouraged that the Operations team, or
whoever maintains the alerting systems, is an active partner with the entire on-call team.
Provide clear explanations of how alerting works, what conditions trigger escalations, and set
clear expectations around responsiveness (e.g. Service Level Objectives).

By discussing these concepts within your team, you can help responders understand
the how and why of what triggers alerts. Keeping these concepts and terminology in
mind for postmortems will ensure everyone understands the discussion. Over time,
teams arrive at a place of great trust that the systems are monitoring the right things,
the right ways, and alerting for the right reasons.

1

The Dev and Ops Guide to Incident Management | 16| www.victorops.com

Chapter 2

After Action Process[]

The Dev and Ops Guide to Incident Management | 17| www.victorops.com

“The Practice of a Postmortem is a fundamental component of
the analysis phase of modern Incident Management.”

Chapter 2
After Action Process

In the preceding chapter, we discussed a practical example representing parts of the first three
phases of our “Five Phases” approach. Let us turn then, to the remaining two: Analysis and
Readiness.

The practice of a Postmortem (or Retrospective) is a fundamental component of the analysis
phase of modern Incident Management. While it can be structured in many different ways,
at it’s highest level a postmortem is a detailed review of an Incident that clearly identifies
what caused it and how it was corrected. Postmortems build on these reviews to create a
more full understanding of the system as a whole. A postmortem review should be conducted
blamelessly, and in service of an objective review of systems, processes, and teams following
an Incident.

Teams often have a standing time set aside to review Incidents that were small in nature or
impact. As needed, a postmortem can (and should) be called to review significant events, or
Incidents that may portend hard times ahead. The output of a postmortem then becomes the
leading input for the Readiness phase.

Iteration is key in all software or operations endeavors, and none more so than Incident
Management. Following a successful postmortem, action becomes expected in Readiness.
Adjusting system or infrastructure configuration is a common action item: adding space to a
disk volume, increasing thread count on a pool, or tuning a cache. Similarly, teams may spend
time adjusting thresholds, policies, or checks in their monitoring systems. Updating runbooks,
documentation, and procedures is also a highly fruitful endeavor and one of the many ways
teams can improve not only their systems, but their practice as well.

2

The Dev and Ops Guide to Incident Management | 18| www.victorops.com

Chapter 3

Actionable Alerts[]

The Dev and Ops Guide to Incident Management | 19| www.victorops.com

Chapter 3
Actionable Alerts

3

Incident response teams are frequently hamstrung by an unproductive cycle of alerting against
arbitrary thresholds, instead of alerting on actionable failures. A classic example of this is the
Linux Load metric - most default settings in Alerting systems will trigger an alert at an arbitrary
value of 3. What does 3 signify? Doesn’t matter. Wake someone up.

Given the business impact of failure in critical systems, it is no wonder that many organizations
err on the side of over-alerting. This translates into a fundamental fear shared by all on-call
teams: #FOMO or the Fear of Missing Out. #FOMO frequently sets teams up for alert-fatigue,
and general dissatisfaction with the on-call process.

Unpacking the problem, we can see that an alert’s actionability has to exist on two
dimensions. First, the alert must require an action, differentiated from something that’s merely
informational. Second, the alert must route to someone who has the access, permission, and
skills to be able to adequately perform said action.

If either of those things are untrue, you’re going to have a bad time.

One of the most common examples of this being done poorly are setups where the Operations
team receives all Incidents, and is asked to “just escalate” when the source of the alert is
outside their domain. CPU load is high on a host, the offending process is the application itself,
and Operations needs Developers to triage and repair. Why did Operations get involved at all?

A different example illustrating common frustration running the other way: Development
team receives a page indicating application health checks are failing. Operations has restricted
Developers from tools or systems necessary to action the alert (root, shell access, access to
Splunk, etc). Great! Guess we’ll wake an admin to fix the problem.

The Dev and Ops Guide to Incident Management | 20| www.victorops.com

3

Actionable Change

Depending on where your team specifically falls on this prickly issue, there are some simple
and easy to implement things you can do to get better.

First and foremost – ensure you have some implementation of “teams”
configured in your Monitoring or Incident Management systems. Teams
should align with systems either by virtue of functional alignment (Java
Developers on-call for java application) or by responsibility (teams on the
Registration team own registration and identity services).

Second, revisit default configurations in Monitoring systems. Either as
part of scheduled postmortem time, or a separate project, analyze current
thresholds for alerts. If you can’t answer the question “what should
someone do about this”, change the threshold or remove the alert entirely.

Lastly, a compromise can be struck by assigning alerts of uncertain status
to a severity level of “Informational”. In most platforms, this creates an alert,
but does not trigger a primary communication method. Stated differently -
you get an email, but not a phone call.

This approach is a fantastic way to evaluate thresholds and explore
alerts without creating fatigue.

1

2

3

The Dev and Ops Guide to Incident Management | 21| www.victorops.com

3

Alert Evolution

If you accept the myriad of things in-play, you must also accept that there is no single, static
answer to the problem. Similarly, you have to recognize that where your team nests is only a
point-in-time. Every Postmortem should include some discussion of the alerting and routing
associated with the Incident, keeping the conversation focused on the Detection and Response
phases:

• Was it actionable? Or just informational?
• Did it get to the right team?
• Did they have tools, access, and skills necessary to action a remedy?

Inevitably that answer will occasionally come up “no”, and that’s where you, the on-call team,
must embrace personal action to improve the system. Continuous improvement only happens
when teams communicate clearly, and devote iterations to tuning and refining these systems.

The Dev and Ops Guide to Incident Management | 22| www.victorops.com

Chapter 4

Team Structure
and Roles[]

The Dev and Ops Guide to Incident Management | 23| www.victorops.com

Chapter 4
Team Structure and Roles

4

Organizing an on-call roster is tough. The problem of aligning skills, experience, and availability
with specific application technologies is magnified by the dynamic nature of teams today. In
most cases you settle for “close enough” and hope smart people make good decisions. Skills
and scheduling are really only the beginning; effective Incident Management requires focus on
how your on-call team operates.

Think of team interactions on two dimensions:

First, there is the structural organization of the team–people playing roles, workflows, and
escalation paths. This is important to on-call teams because it impacts the procedural behavior
of Incident Management.

Second, there are the cultural aspects. This dynamic is important to on-call teams because
we’re all likely to interact in high pressure moments in the middle of the night.

“How we treat each other matters.”

The Dev and Ops Guide to Incident Management | 24| www.victorops.com

4

Team Mechanics

Many responses in Incident Management can be managed down to simple runbooks or
automated completely. These simple, low diagnostic threshold Incidents are the bread and
butter of an on-call team. Nearly anyone skilled enough to be in rotation can meaningfully
respond to the Incident. Java OOM? Restart the app.

Sometimes, the cause of an alert or the necessary diagnosis exceeds a specific responder’s
abilities. While (hopefully) less frequent, these kinds of alerts tend to indicate something is
wrong in a larger sense. Whether this is just a tricky problem, or Rome is actually burning, the
first responder has to know how to get help.

It’s important to provide that escalation path in the simplest, easiest method possible. At 3am,
while a database implodes, you don’t want a Unix admin breaking out a call-down tree. Every
moment the response team spends notifying others, or escalating, is a moment of effective
diagnostic or remediation wasted. How you setup your on-call team for this moment will turn
the tide.

“Every moment the response team spends notifying
others, or escalating, is a moment of effective diagnostic

or remediation wasted.”

The Dev and Ops Guide to Incident Management | 25| www.victorops.com

The Quarterback

The Quarterback is responsible primarily for directing and de-duplicating the efforts of the
team. They provide ad-hoc organization to the swarm, and ensure that some of the team is
focused on resolution of the proximate cause, and some of the team focuses on remediation or
mitigation efforts if a timely resolution is not likely. The Quarterback also plays the role of risk
advisor and assessor. If a fix is risky, they’re making the call.

The Scribe

The Scribe manages inbound and outbound communication with others in the engineering
team, or others in the business. A Scribe can also manage internal documentation of the event
itself–capturing investigatory threads, who’s looked at what, and changes made “in the heat of
battle” in a simple, easy-to-digest document. As new team members join the response party,
scrolling back the last 200 lines of chat is not practical, but having a running synopsis of
what’s going on is.

4

An Embarrassment of Helpers

We can all imagine the panic suffered by a first responder when they call for help and no one
comes. Paradoxically, it’s almost worse when the first responder calls for help, and everyone
shows up. Without direction, a dozen engineers trying to crowd solve a problem is a recipe for
disaster. This is where two new escalation roles begin to show value: an Incident Commander
(or Quarterback), and an Incident Communicator (or Scribe).

The Dev and Ops Guide to Incident Management | 26| www.victorops.com

A (Non) Hypothetical Example

To further illustrate the idea, let’s take an Incident pattern and walk through the firefight.

Series of alerts are triggered indicating slow response times on application servers. Alerts
routed to an individual on the platform on-call team.

04:07 - 04:15

04:09 - 04:23

04:30 - 04:35

04:35 - 04:45

Series of alerts are triggered indicating high CPU and Memory utilization on application
servers, high CPU and high Disk I/O on a database system. Alerts routed to an individual on
the Operations on-call team.

Question
What (if any) queries are responsible for the high DB load? Is the DB healthy? What (if any)
application calls are churning through that CPU? Are the App servers healthy? Any recent
changes going out? At a high level, is traffic to the application within expected norms for the
time period?

Scribe begins manual escalation and notification of SME’s or others deemed necessary to
help. Scribe begins the running summary document, or otherwise documenting the Incident.
Public facing status pages are updated. They notify Customer Support, and key business
stakeholders of the event, and invite them to monitor the summary document. Backend team
isolates high CPU calls to a few specific operations, each hammering the DB, and all triggered
from a few common URL patterns. Database team confirms the database is generally healthy,
but high volume of expensive queries coming from aforementioned application operations.
Quarterback directs new level of inquiry focused on the application; while directing the
database team to investigate reducing query execution time. Quarterback requests additional
escalations to network team to investigate potential traffic rerouting, Scribe works through
getting them up to speed.

Question
What’s going on? Clearly something bad.

Both teams declare an emergency and escalate to the Quarterback and Scribe on-call. They
join the chat and begin getting up to speed.

4

The Dev and Ops Guide to Incident Management | 27| www.victorops.com

Question
Where is the traffic coming from? Why is it triggering this condition now? Did new code go
out recently? Any system changes? Any security concerns with the traffic?

I won’t continue the tedious play-by-play in this example, you get the idea. Lots of people,
running in different directions, quickly. Multiple independent investigative threads are
going, avenues explored and abandoned, individuals are focused and refocused against new
questions. All of which must be captured to prevent duplicative effort, and provide a clear
narrative for future postmortem analysis and new team members joining the fight.

As this example plays out, each team is focused on their functional area of expertise and
responsibility. Transparency to stakeholders is maintained without distracting the responders,
and a strong narrative is built enabling handoffs, efficient triage, and an eventual postmortem
analysis.

Training Opportunities

While a Quarterback is almost always a senior member of the team, the Scribe role is a perfect
place to introduce junior or new team members to the on-call process. Scribes can come
from any background, and get an opportunity to observe the diagnostic and remediation
work without bearing the technical burden personally. Lastly, a Scribe is an active, meaningful
participant, who will both add more value in, and extract more out of, than passive observers or
ride-a-longs.

4

The Dev and Ops Guide to Incident Management | 28| www.victorops.com

4

Blameless Escalations

Formal team structure is critical to the success of your firefighting efforts. It sets the team up
for success by enabling responders to focus directly on the problem. How we all behave in the
moment, however, is far more impactful to the outcome of a specific Incident, and a team’s
long-term success.

Individuals must be encouraged to escalate early and often.

While much has been said about the importance of keeping after-action analysis blameless, it
is doubly important to keep escalations blameless. A lone wolf toiling away makes for a great
graphic novel hero, but rarely leads to effective resolution of Incidents in complex systems.

This basic tenet is often missing in on-call team culture. Individuals want others to respect their
abilities. They’re concerned about how they’ll be viewed if they “need help” too often. Previous
acrimony creates a reluctance to engage other teams. Managers frequently highlight the work
of “Heroes”, establishing an anti-pattern and “Hero” culture within the team.

This theme of blameless escalation becomes doubly meaningful to teams expanding on-
call to non-traditional teams. Developers, who are unfamiliar with organizational or industry
norms, will be pinned between a reluctance to get help and a fear that they lack the skills to
adequately respond by themselves. Encouraging blameless escalations enables everyone in a
rotation to get help when they need it.

“They’re concerned about how
they’ll be viewed if they “need help” too often.”

The Dev and Ops Guide to Incident Management | 29| www.victorops.com

Summary

*

Distilling the myriad variables and experience of the massively complex topic of Incident
Management is no easy task. In any organization the ways and means of Detecting an Incident,
Responding, and Remediating, and the formal existence of Analysis and Readiness, will vary
wildly. Any established technology team has some approach to Incident Management, whether
a formal adoption of ITSM, or a hoary confusion of unspoken agreements, people have a sense
of their duty.

While building and/or joining these teams may seem daunting, and personally inconvenient,
the benefits are significant. Deep dives in metrics, diagnostic technique, and a deeper
understanding of complex behavior are deeply satisfying pursuits (and benefit career growth).
For organizations, the benefits of a DevOps or SRE culture are manifest.

Teams with an effective Incident Management focus produce resilient applications, scalable
infrastructure, and work better together. Building and maintaining a focus on your Incident
Management practice will empower you to be victorious.

Start Free Trial Request a Demo

Looking for tools to support faster and more effective
incident resolution? Check out VictorOps.

Aggregating alerts from your monitoring systems, delivering them according to customizable
alerting policies, and then supporting collaboration during remediation, VictorOps offers
unmatched support throughout the incident lifecycle. Getting started is easy:

http://bit.ly/2s0QanX
http://bit.ly/2sA83ak

