CharIN High Power Commercial Vehicle Charging Standardization Task Force update

Rustam Kocher
June 2019
Who is CharIN?

The Charging Interface Initiative e. V. - abbreviated to CharIN e. V. - is a registered association founded by Audi, BMW, Daimler, Menneke, Opel, Phoenix Contact, Porsche, TÜV SÜD and Volkswagen. Based in Berlin, it is open to all interested parties. The purpose of the CharIN association is the worldwide promotion and support of the Combined Charging System. In this connection the limits drawn by antitrust laws are to be observed by all members. The three primary aims are:

1. To develop and establish the Combined Charging System (CCS) as the standard for charging battery-powered electric vehicles of all kinds
2. To draw up requirements for the evolution of charging-related standards and develop a certification system for use by manufacturers implementing the CCS in their products
3. To promote the CCS standard worldwide
Background - Many customers require the option to fast charge when needed

A CharIN task force was formed with the following purpose statement:
“Define a new commercial vehicle high power charging standard to maximize customer flexibility.” It was named the High Power Commercial Vehicle Charging Task Force (HPCVC for short).
There are many DC charging standards currently available... but the Power is too low. Target must be **1 to 3 MW**

Why do we need another?
Target charge times of 20 minutes (currently possible with today’s batteries) on commercial EVs require power levels of ~ 1-3 MW

Why not AC?
AC charging requires that the inverter be carried on the vehicle, which is a limiting factor in weight and charging speed.

What already exists?
There are many DC charging standards. See table.
Background – Major customers see the need and are actively participating in the HPCVC Task Force

“As a leading services provider to commercial fleets, we feel standardization around electric vehicle charging and charging stations will help accelerate the use of electric vehicles within the transportation industry. The interoperability of vehicle charging stations over the road is essential for commercial fleet uptime, efficiency, maintenance, and general ease of use for the industry.”

—Brian Hard, President and CEO of Penske Truck Leasing
Background - Diverse views are represented by the many members of the HPCVC Task Force

<table>
<thead>
<tr>
<th>OEMs</th>
<th>Customers</th>
<th>Travel Centers</th>
<th>Suppliers and Equipment Manufacturers</th>
<th>Construction</th>
<th>Standards</th>
<th>Network Providers</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAIMLER</td>
<td>PENSKE</td>
<td>bp</td>
<td>ABB</td>
<td>BURNS-McDONNELL</td>
<td>CHARIN</td>
<td>The Mobility House</td>
</tr>
<tr>
<td>FCA</td>
<td>NFI</td>
<td>Love's</td>
<td>AP TIV</td>
<td>PROLOGIS</td>
<td>UL</td>
<td>electriFi America</td>
</tr>
<tr>
<td>BYD</td>
<td>RUAN</td>
<td>TA</td>
<td>Thomas®Betts</td>
<td>BLACK & VEATCH</td>
<td></td>
<td>GREENLOTS</td>
</tr>
<tr>
<td>General Motors</td>
<td></td>
<td>Shell</td>
<td>heliox</td>
<td></td>
<td></td>
<td>allegro</td>
</tr>
<tr>
<td>Linde</td>
<td></td>
<td></td>
<td>HUBER-SUHNER</td>
<td></td>
<td></td>
<td>EVgo</td>
</tr>
<tr>
<td>HYUNDAI</td>
<td></td>
<td></td>
<td>Delta</td>
<td></td>
<td></td>
<td>FASTNED</td>
</tr>
<tr>
<td>PACCAR</td>
<td></td>
<td></td>
<td>IoTech</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gillig</td>
<td></td>
<td></td>
<td>ITT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVISTAR</td>
<td></td>
<td></td>
<td>LEONI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GILLIG</td>
<td></td>
<td></td>
<td>SCHUNK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PORSCHE</td>
<td></td>
<td></td>
<td>SÄUBLI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TESLA</td>
<td></td>
<td></td>
<td>TransTech Industries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW FLYER</td>
<td></td>
<td></td>
<td>VECtor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volvo</td>
<td></td>
<td></td>
<td>SYNOPSYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proterra</td>
<td></td>
<td></td>
<td>REMA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portland General Electric</td>
<td></td>
<td></td>
<td>SINBON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SIEMENS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diverse views are represented by the many members of the HPCVC Task Force.

<table>
<thead>
<tr>
<th>Utilities</th>
<th>Government Labs</th>
<th>Construction</th>
<th>Standards</th>
<th>Network Providers</th>
</tr>
</thead>
<tbody>
<tr>
<td>dps</td>
<td>Argonne</td>
<td>BURNS-McDONNELL</td>
<td>CHARIN</td>
<td>The Mobility House</td>
</tr>
<tr>
<td>Duke Energy</td>
<td>Sandia National Laboratories</td>
<td>PROLOGIS</td>
<td>UL</td>
<td>electriFi America</td>
</tr>
<tr>
<td>PEC</td>
<td>Electric Power Research Institute</td>
<td>BLACK & VEATCH</td>
<td></td>
<td>GREENLOTS</td>
</tr>
<tr>
<td>EPI2I</td>
<td>U.S. Department of Energy</td>
<td></td>
<td></td>
<td>allegro</td>
</tr>
<tr>
<td>Portland General Electric</td>
<td>NREL</td>
<td></td>
<td></td>
<td>EVgo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FASTNED</td>
</tr>
</tbody>
</table>
Charging Levels

Level 1
- **120V**
- **15-20 AMPS**
- **7-8 miles of i3 range per hour charging**
- **1.4 kW power delivery**

Level 2
- **240V**
- **UP TO 80 AMPS**
- **10 - 26 miles of i3 range per hour charging**
- **3.7 - 7.7 kW power delivery**

CCS DC charging
- **1000V**
- **500 AMPS**
- CCS can deliver up to around 200Amps with traditional copper cables, while higher currents are delivered via cooled cables.
- **Up to 80% of 100kWh battery in less than 20 minutes**
- **Up to 350kW power delivery, Some units up to 500kW**

Commercial Vehicle High Power (proposed)
- **1500V**
- **3000 AMPS**
- The High Power Commercial Vehicle charging standard would allow users to recharge their large, commercial vehicles (Classes 6, 7 & 8) in 20-30 minutes.
- **Up to 80% of Class 8 truck, carrying 500kWh, in 20 minutes**
- **Up to 4.5 MW power delivery**

Note: The image contains diagrams and icons representing the charging levels and power delivery.
HPCVC Process, Requirements, and Selection

Process

- A requirements-gathering process including all HOCVC stakeholders. An in-person meeting was held to gain group agreement on the requirements.
- The requirements were approved by the CharIN Board of Management on Nov 28, 2018.
- Proposals were solicited in Q1, 2019, resulting in 5 strong entries.
- An in-person voting meeting was held on May 16th, 2019 at the CharIN conference. Ranked choice voting was used. A winner was chosen but has not yet been announced.

Requirements

- single conductive plug
- max 1500 DCV
- max 3000 DCA
- PLC + ISO/IEC15118
- touch-safe (UL2251)
- on-handle software-interpreted override switch
- adheres to OSHA and ADA requirements
- FCC Class A EMI
- located on the driver side of the vehicle, hip-height
- capable of being automated
- UL (NRTL) certified
- cyber-secure
- V2X (bi-directional)
HPCVC called for contributions to solve the requirements as set forth.

There were five submissions, from Tesla, Electrify America, ABB, paXos, and Staubli.

They were reviewed and graded based on how well they solved the requirements and on their technological readiness.

The Task Force reviewed the submissions first online, and again after presentations at the in-person voting event on May 16.

Ranked choice voting was used to select a winning submission. That winner has not yet been announced due to some further discussions taking place.
HPCVC Roadmap

HPCVC Task Force proposal submission and review roadmap

<table>
<thead>
<tr>
<th>2019</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03.</td>
<td>10.</td>
<td>17.</td>
<td>24.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03.</td>
<td>10.</td>
<td>17.</td>
<td>24.</td>
<td></td>
</tr>
</tbody>
</table>

- **CharIN Task Force Opens for Submissions**: February 15th - March 22nd
- **Task Force reviews submissions**: March 25th - May 15th
- **CharIN Task Force Voting (in person)**: May 16th - May 31st
- **Standard details finalized of winning design**: June 3rd
- **Standard passed to standardizing body**: June 3rd