

Risk-Based Screening Assessment Form

24 Sep 2025 / Mike Rodriguez

Complete

Score	0 / 0 (0%)	Flagged items	0	Actions	2
-------	------------	---------------	---	---------	---

Filled-out on 24.09.2025 15:00 PST

Prepared by Mike Rodriguez

Location Charlotte, North Carolina, USA

Actions	2 actions
RBI Screening Assessment Form / Consequence Evaluation / Safety	
Evaluation Rating	High
To do Assignee: SafetyCulture Staff Priority: High Due: 02.10.2025 08:46 PST Created by: SafetyCulture Staff	
Install complete edge protection and enforce 100% fall arrest use for all elevated work.	
RBI Screening Assessment Form / Probability Evaluation / Internal	
Model (s)	
Failure Mode & Effects Analysis (FMEA) — likelihood of trench wall collapse due to weak soil classification.	
To do Assignee: SafetyCulture Staff Priority: Low Due: 02.10.2025 08:48 PST Created by: SafetyCulture Staff	
Track incidents/near misses to verify whether controls are reducing risk.	

RBI Screening Assessment Form

2 actions

Type of InstallationMulti-Story Residential
Construction Project**System No.**

007

Rev

1.0

Description

Reinforced concrete foundation system including excavation, shoring, and slab placement

Function & BoundariesSupports structural load of the
building; boundary includes all
excavation pits, footings, and slab
reinforcement works**Dependent Systems**

Crane lifting operations, electrical temporary power systems, water drainage/pumping system

Process & Materials Information

Material

Material 1

Type of Material

Reinforced concrete

Product Service Code

5630

Op. Temperature (in Celsius)

20

Op. Press Barg

Atmospheric

Chemical Information/Comment/ReferencePortland cement with fly ash,
aggregates, admixtures. Alkaline;
wet concrete can cause chemical
burns.

Material 2

Type of Material

Steel Reinforcement

Product Service Code

9515

Op. Temperature (in Celsius)

20

Op. Press Barg

N/A

Chemical Information/Comment/Reference	Alloy steel, primarily Fe with C, Mn. Corrosion risk if exposed
---	---

Material 3

Type of Material	Shoring materials (timber/steel)
Product Service Code	5510
Op. Temperature (in Celsius)	20
Op. Press Barg	N/A

Chemical Information/Comment/Reference	Timber: potential for fungal/mold if moisture >20%. Steel: may oxidize; treated with protective coatings.
---	---

Consequence Evaluation	1 action
Safety	1 action

Evaluation Rating	High
To do Assignee: SafetyCulture Staff Priority: High Due: 02.10.2025 08:46 PST Created by: SafetyCulture Staff	
Install complete edge protection and enforce 100% fall arrest use for all elevated work.	

Justification/Reasoning/Reference	
Potential trench collapse or fall from height could cause multiple fatalities or serious injuries. Referenced OSHA 29 CFR 1926 Subpart P (Excavations) and Subpart M (Fall Protection).	
Economic	Medium

Evaluation Rating	Medium
Justification/Reasoning/Reference	

Delay from collapse or rework of foundation would cost >\$250,000 in direct and indirect losses. Industry benchmark: AACE Cost Impact Analysis for U.S. construction.	
Environmental	Medium
Evaluation Rating	

Justification/Reasoning/Reference
Soil erosion and runoff with cement washout could impact nearby stormwater drains; moderate environmental cleanup costs. Reference: EPA Stormwater Construction General Permit.

Probability Evaluation	1 action
Internal	1 action
Evaluation Rating	Medium

Model (s)

Failure Mode & Effects Analysis (FMEA) — likelihood of trench wall collapse due to weak soil classification.

To do | Assignee: SafetyCulture Staff | Priority: Low | Due: 02.10.2025 08:48 PST | Created by: SafetyCulture Staff

Track incidents/near misses to verify whether controls are reducing risk.

Justification/Reasoning/Reference

Past incident logs at similar projects (OSHA incident database, 2021–2024) indicate a medium probability of collapse in similar soil conditions.

External

Evaluation Rating	Low
--------------------------	-----

Model (s)

Event Tree Analysis (external events: flooding, adjacent construction vibration).

Justification/Reasoning/Reference

External weather/flooding events could accelerate soil instability, but seasonal forecast indicates low probability.

Fatigue

Evaluation Rating	Low
--------------------------	-----

Model (s)

Structural Fatigue Model (S-N curve applied to rebar in early stages).

Justification/Reasoning/Reference

Foundation steel is new and not subject to long-term cyclic loads yet. Fatigue probability low in initial construction phase.

Results

Notes/Comments

- The assessment identified fall-from-height and excavation collapse as the two most critical hazards, consistent with OSHA fatality data for U.S. construction (Falls = #1 cause, Excavation collapses = high-fatality but low-frequency).
- Safety documentation (permits-to-work, soil classification logs) was incomplete in multiple areas.

Actions To Be Taken

Weekly reassessment of risk ratings to measure progress.

Agreement to Evaluation

Team Representative

Mike Rodriguez
25.09.2025 08:51 PST

Date

24.09.2025 16:30 PST