## RISKS POSED BY INVASIVE MAMMALS TO THE EMERGENCE AND SPREAD OF ZOONOTIC DISEASES

Supervisor: Belinda Gallardo Armas

Paola Monguilod Brun









## Invasive Alien Species (IAS)



#### Non-native organisms



#### Spread extensively



Introduced through human activities (both intentionally and unintentionally)



Negative impact on biodiversity and ecosystems

### Invasive Animals and Human Health

#### Invasive Animals:

- Bring new pathogens to the introduced range
- Are introduced and proliferate in human-modified environments where animal-human contact is frequent
- Are reservoirs: can harbor pathogens and be asymptomatic
- Have competitive traits that allow them to rapidly reproduce and spread to other areas
- Invasive mammals in particular are phylogenetically close to humans, which increases the possibilities of zoonotic spillover.

Zoonoses originating from wildlife represent >40% of all global EIDs

#### EIDs: Emerging Infectious diseases



## IAS and Climate Change



- The increase in temperature due to climate change facilitates the geographic expansion of IAS
- Climate change will result in increased international trade and travel, contributing to the unintentional spread of IAS to new regions





Identify relevant IAS susceptible
 to zoonotic disease transmission
 in Europe.

2. Identify the pathogens hosted by the selected IAS, that are relevant for human health.





3. Spatially identify the areas under greatest risk of invasion and therefore EID transmission in Europe under current climate conditions: "disease hotspots".

4. Develop a practical assessment tool to prioritize IAS in terms of their risk to human health, that integrates the information generated in this study.

# 1. Which invasive mammals pose a threat to human health in Europe?

#### Carnivora

#### Rodentia





List of Invasive Species of Union Concern (Regulation (EU) 1143/2014); Roy et al., 2023b

# 2. Which pathogens do the selected mammals harbor that are of relevance for human health?

97 distinct pathogens

Average of 16 pathogens per invasive mammal studied



# 3. Which regions are suitable for invasive mammals that pose a threat to human health?

**GBIF** Geo-referenced data: Presence of the chosen invasive mammals

> Species Distribution models (SDMs)

Predict the potential distribution of the chosen invasive mammals under current and future conditions Identify regions that have <mark>conditions suitable</mark> for species establishment based on the predictors used:

- Accessibility
- Elevation
- Temperature-related variables
- Precipitation-related variables



Temperature and Accessibility most important predictors in distribution of the chosen invasive mammals



suitability maps

Disease hotspot maps

#### 8



#### Load species presence data

```
188 Ozibe_file <- read.csv("Species/Ozibe.csv")</pre>
189 x <- Ozibe_file[,"x"]
190 y <- Ozibe_file[,"y"]
191 presence <- Ozibe_file[,"presence"]
192 OzibeReor <- cbind(x, y, presence, Mcoyp = NA, Nnasu = NA, Hjava=NA, Nproc= NA, Ozibe=1, Ploto=NA, Scaro=NA, Tsibi=NA)
193
194 Ploto_file <- read.csv("Species/Ploto.csv")
195 x <- Ploto_file[,"x"]
196 y <- Ploto_file[,"y"]
197 presence <- Ploto_file[,"presence"]
198 PlotoReor <- cbind(x, y, presence, Mcoyp = NA, Nnasu = NA, Hjava=NA, Nproc= NA, Ozibe=NA, Ploto=1, Scaro=NA, Tsibi=NA)
199
200 Scaro_file <- read.csv("Species/Scaro.csv")
201 x <- Scaro_file[,"x"]
202 y <- Scaro_file[,"y"]
203 presence <- Scaro_file[,"presence"]</pre>
204 ScaroReor <- cbind(x, y, presence, Mcoyp = NA, Nnasu = NA, Hjava=NA, Nproc= NA, Ozibe=NA, Ploto=NA, Scaro=1, Tsibi=NA)
205
206 Tsibi_file <- read.csv("Species/Tsibi.csv")
207 x <- Tsibi_file[,"x"]
208 y <- Tsibi_file[,"y"]
209 presence <- Tsibi_file[,"presence"]</pre>
210 TsibiReor <- cbind(x, y, presence, Mcoyp = NA, Nnasu = NA, Hjava=NA, Nproc= NA, Ozibe=NA, Ploto=NA, Scaro=NA, Tsibi=1)
211
212 species <- rbind(MycopReor, NnasuReor, HjavaReor, NprocReor, OzibeReor, PlotoReor, ScaroReor, TsibiReor)
213 write.csv(species, file = "species.csv", row.names = FALSE)
```

| ^ | <b>x</b> $\Rightarrow$ | <b>y</b> $^{\ddagger}$ | presence 🍦 | Мсоур 🔅 | Nnasu 🍦 | Hjava 🍦 | Nproc 🌐 | Ozibe 🍦 | Ploto 🌐 🌐 | Scaro 🍦 | Tsibi 🍦 |
|---|------------------------|------------------------|------------|---------|---------|---------|---------|---------|-----------|---------|---------|
| 1 | 0.91667                | 43.58                  | 1          | 1       | NA      | NA      | NA      | NA      | NA        | NA      | NA      |
| 2 | -95.58333              | 29.42                  | 1          | 1       | NA      | NA      | NA      | NA      | NA        | NA      | NA      |
| 3 | 4.41667                | 43.42                  | 1          | 1       | NA      | NA      | NA      | NA      | NA        | NA      | NA      |
| 4 | -46.91667              | -23.58                 | 1          | 1       | NA      | NA      | NA      | NA      | NA        | NA      | NA      |
| 5 | -58.41667              | -34.58                 | 1          | 1       | NA      | NA      | NA      | NA      | NA        | NA      | NA      |
| 6 | 14.41667               | 50.08                  | 1          | 1       | NA      | NA      | NA      | NA      | NA        | NA      | NA      |
| 7 | -123.75000             | 46.25                  | 1          | 1       | NA      | NA      | NA      | NA      | NA        | NA      | NA      |
| 8 | 7.25000                | 45.08                  | 1          | 1       | NA      | NA      | NA      | NA      | NA        | NA      | NA      |
|   |                        |                        |            |         |         |         |         |         |           |         |         |



9

#### Calibration of the models: Selection of pseudo absences

- Package BIOMOD2 version 4.2-3 in R environment version 4.2.2
- Calibration of models at global scale (including information about the native and invasive ranges)
- Ensemble modelling approach combining 4 algorithms
- The algorithms used require explicit data of presence and absence of the species
- Random selection of 10,000 pseudo-absences, repeated 3 times



| 51 | ### Initialization                                                    |                                                                             |
|----|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 52 | # Select pseudo absences                                              |                                                                             |
| 53 | <pre>myBiomodData &lt;- BIOMOD_FormatingData(resp.var = myResp,</pre> | # Response variable: the presence data                                      |
| 54 | expl.var = myExpl,                                                    | # Explanatory variables: environmental predictors at global scale           |
| 55 | resp.xy = myRespXY,                                                   | # Spatial coordinates (latitude and longitude) of the species presence data |
| 56 | resp.name = myRespName,                                               | # Define a name for the response variable                                   |
| 57 | PA.nb.rep = 3,                                                        | # Number of times the 10.000 selection is repeated (independently)          |
| 58 | PA.nb.absences = 10000,                                               | # Number of pseudo-absence points to be randomly selected over the whole    |
|    | study area (global)                                                   |                                                                             |
| 59 | PA.strategy = 'random',                                               | # Strategy for selecting pseudo-absences. Set to 'random', meaning the      |
|    | pseudo-absence points are chosen randomly from the study area.        |                                                                             |
| 60 | na.rm= T)                                                             | # Removes missing values (NA) from the data set                             |
|    |                                                                       |                                                                             |





#### Calibration of the models: Modelling step

- Calibration of models using 4 algorithms: <u>GLM and GAM (regression models)</u>, <u>RF and GBM (machine learning)</u>.
- Evaluate the predictive performance of the models: presence of species was randomly divided into training data (70%) and test data (30%).
- 12 model replicas per species (4 algorithms x 3 data partitions)
- Metrics for assessing the calibrated models: TSS and ROC
- Permutations to assess the importance of the variables

```
#myBiomodData
262
       myBiomodOptions <- BIOMOD_ModelingOptions()</pre>
263
264
       ### Modelling
265
       myBiomodModelOut <- BIOMOD_Modeling(bm.format = myBiomodData,</pre>
266
                                                                                 # Uses the formatted data object created earlier
                                          bm.options = myBiomodOptions,
                                                                                 # Specifies the modeling options configured for BIOMOD
267
                                          models = c("GLM", "GBM", "RF", "GAM"), # These are the algorithms I'll be using
268
                                          CV.nb.rep = 3,
                                                                                 # Number of repetitions for cross-validation
269
                                                                                 # Percentage of data used for training during data splitting (70%
270
                                          CV.perc = 0.7,
     training, 30% testing)
271
                                                                                 # Calculates variable importance three times for increased
                                          var.import = 3,
     reliability
                                                                                 # Evaluation metrics used
272
                                          metric.eval = c('TSS', 'ROC'),
                                          CV.do.full.models = FALSE
                                                                                 # Indicates whether to create full models using all available
273
     data (FALSE means only cross-validation models are created)
274
```



#### Calibration of the models: Ensemble modelling

- Ensemble models were created for each species
- Each of the 12 model replicas was assigned a weight based on its predictive capacity, measured by the TSS
- Replicas with TSS < 0.7 were discarded</li>

| 285 | 5 ### Building ensemble-models (Put the options to do the ensemble)    |                                                                                            |
|-----|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 286 | 6 myBiomodEM <- BIOMOD_EnsembleModeling(bm.mod = myBiomodModelOut, # U | Use the output from the modeling step as input for the ensemble                            |
| 287 | 7 models.chosen = 'all', # 1                                           | Include all model replicas from the previous step in the ensemble modeling                 |
| 288 | 8 em.by = 'all', # 0                                                   | Create ensemble models by considering all available algorithms and scenarios               |
| 289 | 9 $em.algo = c('EMmean'), \# E$                                        | Define the ensemble modeling algorithm as 'EMmean', which calculates the mean probability  |
|     | across models                                                          |                                                                                            |
| 290 | 0 metric.select = c('TSS'), # D                                        | Define the selection metric for including models in the ensemble as 'TSS'                  |
| 291 | 1 metric.select.thresh = $c(0.7)$ , #                                  | # Define the threshold of the selecting metric as 0.7; only models with TSS $\geq$ 0.7 are |
|     | included                                                               |                                                                                            |
| 292 | 2 metric.eval = c('TSS', 'ROC', 'S                                     | SR'), # Define the metrics used to evaluate the ensemble models: ' 'TSS', 'ROC' and 'SR'   |
| 293 | 3  var.import = 3,  # S                                                | Specify that variable importance should be calculated three times for the ensemble         |
| 294 | 4 EMci.alpha = 0.05, # D                                               | Define the confidence level for the confidence interval as 0.05                            |
| 295 | 5 EMwmean.decay = 'proportional',                                      | # Define the average weighted decay form as 'proportional'                                 |
| 296 | 6 prob.mean.weight = T) # Use the                                      | average weight of the probabilities for creating the ensemble models                       |
| 297 | 7                                                                      |                                                                                            |

#### Model projections onto Europe for the current scenario

- myBiomodProj:
  - Continuous and binary maps for individual models (12 model replicas per species)
- myBiomodEF:
  - Continuous and binary maps for ensemble models (1 per species)
- Continuous maps (suitability 0-1000 scale) were converted into binary maps (0: unsuitable, 1:suitable)

#### optimizing the TSS of the model

| 303 | <pre># Make projection (Europe present)</pre>                |                                             |                                                                   |
|-----|--------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|
| 304 | <pre>myBiomodProj &lt;- BIOMOD_Projection(</pre>             |                                             |                                                                   |
| 305 | <pre>bm.mod = myBiomodModelOut,</pre>                        | # Use the output from the modeli            | ng step as input for the projection                               |
| 306 | <pre>proj.name = 'Current_',</pre>                           | # Define the name of the project            | ion as 'Current_'                                                 |
| 307 | new.env = $myExplEUR$ ,                                      | # Sets the environmental variabl            | es for the projection as myExplEUR (Europe's current variables)   |
| 308 | <pre>models.chosen = 'all',</pre>                            | <pre># Selects all available models f</pre> | rom the previous step for the projection                          |
| 309 | <pre>metric.binary = 'all',</pre>                            | <pre># Treats all metrics (TSS, ROC,</pre>  | SR) as binary in the projection                                   |
| 310 | <pre>metric.filter = 'all',</pre>                            | # Includes all available metrics            | without applying any filter                                       |
| 311 | compress = T,                                                | # Compresses the output files of            | the projection to save space                                      |
| 312 | <pre>build.clamping.mask = F,</pre>                          | # Does not build a clamping mask            | during the projection                                             |
| 313 | <pre>output.format = '.img'</pre>                            | # Sets the output format of the             | projected files as '.img'                                         |
| 314 | )                                                            |                                             |                                                                   |
| 315 |                                                              |                                             |                                                                   |
| 316 |                                                              |                                             |                                                                   |
| 317 | # Make ensemble-model projections based on the               | models and environmental variabl            | es                                                                |
| 318 | <pre>myBiomodEF &lt;- BIOMOD_EnsembleForecasting(bm.em</pre> | = myBiomodEM, #                             | Uses the ensemble-model output as input                           |
| 319 | bm.p                                                         | roj = myBiomodProj, #                       | Uses the projection output for generating ensemble forecasts      |
| 320 | mode                                                         | ls.chosen = 'all', #                        | Includes all models for ensemble forecasting                      |
| 321 | metr                                                         | ic.binary = "TSS", #                        | Generates binary maps based on the TSS metric (threshold applied) |
| 322 | metr                                                         | ic.filter = NULL, #                         | Does not filter the metrics (all included)                        |
| 323 | outpu                                                        | ut.format = '.img' #                        | Specifies the output file format as '.img'                        |
| 324 | )                                                            |                                             |                                                                   |



#### Model projections onto Europe for the future scenarios



| 303<br>304<br>305<br>306<br>307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316<br>317<br>318<br>319<br>320<br>321<br>322<br>323<br>324 | <pre># Make projection (Europe present) myBiomodProj &lt;- BIOMOD_Projection(</pre>                                                                                                                                                                                                                                                                                                                                                        | from the modeling step as input for the projection as 'Current_'<br>mmental variables for the projection as myExp<br>ilable models from the previous step for the<br>ics (TSS, ROC, SR) as binary in the projecti<br>ailable metrics without applying any filter<br>butput files of the projection to save space<br>a clamping mask during the projection<br>format of the projected files as '.img'<br>mmental variables<br># Uses the ensemble-model output<br># Uses the projection output for<br># Includes all models for ensemb<br># Generates binary maps based on<br># Does not filter the metrics (a<br># Specifies the output file form | ection<br>PIEUR (Europe's current variables)<br>projection<br>on<br>Current scenario<br>: as input<br>: generating ensemble forecasts<br>Pie forecasting<br>: the TSS metric (threshold applied)<br>Il included)<br>mat as '.img' |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 361<br>362<br>363<br>364<br>365<br>366<br>367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>378<br>379<br>380               | <pre>#BAU 2050 myBiomodProjFuture_BAU_2050 &lt;- BIOMOD_Projection(     bm.mod = myBiomodMode]Out.     new.env = myExplFuture_BAU2050, ]# Sets the environmental variables for the pro     proj.name = 'future_BAU_2050',     models.chosen = 'all',     metric.filter = 'all',     compress = T,     build.clamping.mask = F,     output.format = '.img')  myBiomodEF_BAU_2050 &lt;- BIOMOD_EnsembleForecasting(bm.em = myBiomodEM,</pre> | <ul> <li>Depiction on Europe's future Business as usual scenario</li> <li>Future scenarios</li> <li>Business As Usual (BAU)</li> <li>High Emissions</li> <li>Low Emissions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Same functions and<br>parameters but changing the<br>predictors used to the ones<br>in the future scenarios                                                                                                                       |

#### Continuous suitability maps

В

St.

60

#### **Current IAS Distribution**

#### Binary suitability maps















- Tamias sibiricus А. В. Sciurus carolinensis
  - Procyon lotor С.
  - Ondatra zibethicus D.
  - Ε. Nyctereutes procyonoides
  - F. Nasua nasua
  - Myocastor coypus G.
  - Н. Herpestes javanicus

















— Countries Borders Species Suitability <=100 100-200 200-300

- 300-400 400-500 500-600 600-700 700-800
  - 800-900 900-1000



#### Species Range Change (SRC) maps Future IAS distribution

SRC maps = Future binary maps – Current binary maps



QCIS

- SRC (future-present) Gain = 1 - 0 = 1 No change = 1 - 1 / 0 - 0 = 0 Loss = 0 - 1 = -1
  - A. Tamias sibiricus
  - B. Sciurus carolinensis
  - C. Procyon lotor
  - D. Ondatra zibethicus
  - E. Nyctereutes procyonoides
  - F. Nasua nasua
  - G. Myocastor coypus
  - H. Herpestes javanicus

#### High emissions scenario



#### Disease hotspot maps

Example: Echinococcosis

| Reservoir Species           | Prevalence |
|-----------------------------|------------|
| Myocastor coypus            | 0.4%       |
| Nyctereutes<br>procyonoides | 12%        |
| Ondatra zibethicus          | 11%        |





#### Disease hotspot maps



### Human Exposure

Calculated using only European raster layers

Example: *Herpestes javanicus* in the current scenario

Sum (*Herpestes javanicus* binary Current \* population Current) sum (population Current)

Human exposure provides insights into the likelihood of human populations interacting with the specific IAS under study <u>To be considered:</u> Files exported from QGIS have elements separated by a comma and decimals indicated with a dot.

To ensure they can be properly read in <u>Excel</u>, the elements should be separated by a semicolon, and decimals should use a comma.

Percentage of European population residing in areas considered suitable for the species

QCIS

### Human Exposure

Percentage of European population residing in areas considered suitable for the species

|                             | Current (%) | Low Emissions<br>(%) | Business As<br>Usual (%) | High Emissions<br>(%) |         |
|-----------------------------|-------------|----------------------|--------------------------|-----------------------|---------|
| Herpestes<br>javanicus      | 22,50       | 31,03                | 27,28                    | 29,93                 |         |
| Myocastor<br>coypus         | 99,43       | 99,42                | 99,12                    | 99,58                 | Highest |
| Nasua<br>nasua              | 28,80       | 30,21                | 24,88                    | 20,67                 | Lowest  |
| Nyctereutes<br>procyonoides | 87,49       | 81,04                | 76,74                    | 75,75                 |         |
| Ondatra<br>zibethicus       | 85,2        | 81,33                | 80,10                    | 80,06                 |         |
| Procyon<br>lotor            | 81,80       | 82,95                | 74,71                    | 76,28                 |         |
| Sciurus<br>carolinensis     | 82,43       | 90,35                | 90,83                    | 92,65                 |         |
| Tamias<br>sibiricus         | 78,16       | 60,09                | 49,14                    | 47,17                 |         |

# Integrate the information into a new tool to assess the risk posed by IAS to human health

Considering:

- Prevalence of the disease-causing pathogens in IAS populations
- Severity of the diseases caused by the pathogens harbored by IAS.
- Geographic Distribution of the IAS
- Human population exposure to the IAS

| Score of<br>Impact | Average<br>Prevalence of<br>Disease-Causing<br>Pathogens | Average Severity<br>of Diseases the<br>pathogens IAS<br>harbor cause | Human<br>Exposure                  | Geographic<br>Distribution                     | Final Score Description                                                                                                                                                                                             |
|--------------------|----------------------------------------------------------|----------------------------------------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1: Minimal         | 1: Very low (less<br>than 1%)                            | 1: Mild<br>(BSL-1)                                                   | 1: Low<br>(0 - 20%)                | 1: Local<br>(0 - 20 %)                         | 1: IAS with low prevalence of disease-causing<br>pathogens, causing mild diseases, with minimal human<br>exposure. The impact is limited to a local area.                                                           |
| 2: Minor           | 2: Low<br>(1 – 10%)                                      | 2: Moderate (BSL-<br>2)                                              | 2: Low to<br>Moderate<br>(20 -40%) | 2: Local<br>(20 - 40 %)                        | 2: IAS with low prevalence of disease-causing pathogens, causing moderate diseases, with minor to moderate human exposure. Impact remains localized.                                                                |
| 3: Moderate        | 3: Moderate (10 -<br>30%)                                | 3: Moderate to<br>Severe<br>(BSL-3)                                  | 3:<br>Moderate<br>(40 – 60%)       | 3: Moderate<br>to<br>Widespread<br>(40 - 60 %) | 3: IAS with moderate prevalence of disease-causing<br>pathogens, causing moderate to severe diseases, with<br>moderate human exposure. Impact can be localized or<br>extended to multiple regions.                  |
| 4: Major           | 4: High<br>(30 - 70%)                                    | 4: Severe (BSL-3)                                                    | 4: High<br>(60 – 80%)              | 4:<br>Widespread<br>(60 - 80 %)                | 4: IAS with high prevalence of disease-causing<br>pathogens, causing severe diseases, with significant<br>human exposure. Impact is widespread, affecting<br>multiple regions.                                      |
| 5: Massive         | 5: Very High<br>(greater than<br>70%)                    | 5: Very Severe<br>(BSL-4)                                            | 5: Very<br>High (80 –<br>100%)     | 5:<br>Widespread<br>(80 - 100%)                | 5: IAS with a very high prevalence of disease-causing<br>pathogens, causing very severe diseases, with massive<br>human exposure. Impact is extensive, potentially<br>affecting ecosystems and regions extensively. |



#### **Invasive Species Assessment Tool**

-

•

#### Average Prevalence of Pathogens

1: Very Low (<1%)

Average Prevalence of Disease-Causing Pathogens that IAS harbor

#### Severity of Diseases

1: Mild (BSL-1)

Average Severity of the diseases the pathogens IAS harbor cause (according to BSL Classification)

#### Human Exposure

1: Low (0-20%)

•

Percentage of European population residing in areas considered suitable for the IAS

#### **Geographic Distribution**

1: Local (0-20%)

-

Percentage of European territory suitable for the establishment of the IAS

#### **Final Score Description**

IAS with low prevalence of disease-causing pathogens, causing mild diseases, with minimal human exposure. The impact is limited to a local area. Exact Final Score: 1 Final Score (rounded): 1 out of 5

| 1   |     |    |     |     |     |     |
|-----|-----|----|-----|-----|-----|-----|
|     | Usi | ng | li  | bra | ary | y   |
| i . |     | S  | nir | N   |     |     |
| Ι.  |     | 5  |     | ' y |     | - 1 |
| 1   | _   | -  |     | _   |     |     |



# Integrate the information into a new tool to assess the risk posed by IAS to human health

Considering:

- Prevalence of the disease-causing pathogens in IAS populations
- Severity of the diseases caused by the pathogens harbored by IAS.
- Geographic Distribution of the IAS
- Human population exposure to the IAS

| Species                  | Human health<br>impact score in<br>our study | Biodiversity<br>impact score in<br>the Union List<br>Risk Assessment |
|--------------------------|----------------------------------------------|----------------------------------------------------------------------|
| Herpestes javanicus      | 3                                            | 4                                                                    |
| Myocastor coypus         | 4                                            | 4                                                                    |
| Nasua nasua              | 3                                            | 3                                                                    |
| Nyctereutes procyonoides | 4                                            | 4                                                                    |
| Ondatra zibethicus       | 4                                            | 4                                                                    |
| Procyon lotor            | 4                                            | 3                                                                    |
| Sciurus carolinensis     | 4                                            | 4                                                                    |
| Tamias sibiricus         | 4                                            | 3                                                                    |



- 8 invasive mammals regulated in Europe as potential zoonotic hosts and an average of 16 pathogens in them were identified.
- Disease hotspots found in Western and Central Europe
- Several of the IAS fell into the Major threat category based on our risk assessment tool

#### Summary use of GBIF data in this study

#### Parameters of Risk Assessment tool

- Prevalence of the disease-causing pathogens in IAS populations
- Severity of the diseases caused by the pathogens harbored by IAS.
- Geographic Distribution of the IAS
- Human population exposure to the IAS



#### **Creation of Disease Hotspot maps**



# Thank you very much for your attention

#### Paola Monguilod Brun





