Outline:

• Context: the algorithm as just one part of the model
• Review of some common techniques: presence-only and presence-absence approaches
• Model-based uncertainty…
The main steps to build & validate a species distribution model (SDM)

- **L2**
 - Observed species’ distribution (a list of localities where the species has been observed, and sometimes also localities where the species is known to be absent)

- **L2**
 - Database of ‘raw’ environmental variables (e.g. temperature, precipitation, soil type).
 - Data usually stored in a GIS

- **L3 & P1, P2**
 - Modeling algorithm e.g. Maxent, GARP, BioClim, Domain, artificial neural network, generalized linear model, regression trees
 - Model testing (statistical assessment of predictive ability, using test such as AUC or Kappa)

- **L4, L5, P1, P2**
 - Predicted species’ distribution. Prediction may be for a different region (e.g. for an invasive species) or for a different time period (e.g. under future climate change)

Case Studies
Environmental Niche Modeling (ENM)
Often called Species Distribution Modeling (SDM)
The use of computer algorithms to:
• **FIRST** fit mathematical functions, describing species distributions in environmental space, for each of n environmental variables
• **THEN** generate predictive maps of species distributions in geographic space using these functions
Remember: the algorithm as just one part of the modeling process...

1. Definition of the question
2. Data identification and preparation (environmental layers, presence only vs presence/absence, scale, data partitioning)
3. Selection of a modeling algorithm (absence data, categorical data, extrapolation)
4. Testing predictive performance (omission/commission errors, decision thresholds, variable contributions)
5. Interpretation of model output
Some approaches that have been applied:

<table>
<thead>
<tr>
<th>Method(s)</th>
<th>Model/software name</th>
<th>Species data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatic envelope</td>
<td>BIOCLIM</td>
<td>Presence-only</td>
</tr>
<tr>
<td>Gower Metric</td>
<td>DOMAIN</td>
<td>Presence-only</td>
</tr>
<tr>
<td>Ecological Niche Factor Analysis (ENFA)</td>
<td>BIOMAPPER</td>
<td>Presence/background</td>
</tr>
<tr>
<td>Maximum Entropy</td>
<td>MAXENT</td>
<td>Presence/background</td>
</tr>
<tr>
<td>Genetic algorithm</td>
<td>GARP</td>
<td>Presence/pseudo-absence</td>
</tr>
<tr>
<td>Regression: Generalized linear model (GLM) and Generalized additive model (GAM)</td>
<td>GRASP</td>
<td>Presence/absence</td>
</tr>
<tr>
<td>Artificial Neural Network (ANN)</td>
<td>SPECIES</td>
<td>Presence/absence</td>
</tr>
<tr>
<td>Classification and regression trees (CART), GLM, GAM and ANN</td>
<td>BIOMOD</td>
<td>Presence/absence</td>
</tr>
<tr>
<td>Boosted regression trees</td>
<td>BRT (implemented in R)</td>
<td>Presence/absence</td>
</tr>
<tr>
<td>Multivariate adaptive regression splines</td>
<td>MARS (implemented in R)</td>
<td>Presence/absence</td>
</tr>
<tr>
<td>Ensembles</td>
<td>SDMtoolbox (Brown, 2014)</td>
<td>???????</td>
</tr>
</tbody>
</table>
Species’ distribution data: presence-only or presence/absence?

Uroplatus sp.
(leaf-tailed gecko)

(*absence records on this map are hypothetical*)
Species’ distribution data: presence-only or presence/absence?

Uroplatus sp.
(leaf-tailed gecko)
Species’ distribution data: presence-only or presence/absence?

Uroplatus sp.
(leaf-tailed gecko)
Species’ distribution data:

Presence-only

Presence/absence

Presence/pseudo-absence

Presence/background
General consideration: Explanation or prediction?

• Explanation/understanding:
 – a simple approximation often preferred (Occam’s razor). E.g. GLM.
 – More complex models: explain with visualization, response curves

• Prediction:
 – Best possible approximation usually preferred. May be complex, difficult to interpret -- may not help us understand the system.

\[Y = b_0 + b_1X_1 + b_2X_2 + \ldots + b_kX_k \]

or black box?

(M. Nakamura)
General consideration: model complexity

Truth
Training sample
Complex model
Test points
Training error
Test error

(M. Nakamura)
Algorithm using only presence records

Climate Similarity: BIOCLIM

- Simple and intuitive similarity model
- Gives equal weight to all variables
- Does not account for potential interactions between variables
- Gives binary predictions (or continuous, defined by minimum percentile)
- Cannot use categorical variables
- No extrapolations into “novel” conditions

Diva GIS: http://diva-gis.org
Algorithms using presence and absence records

Regression: Generalized linear model (GLM) and Generalized additive model (GAM)

• Implemented in SPLUS and R by the ‘Generalized Regression Analysis and Spatial Prediction’ group (GRASP)

• ‘Transparent’ statistical approaches

• GLMs assume a linear relationship between (transformed) response and predictors

See Guisan et al. 2002 Ecological Modeling 157: 89-100
Lehman et al. 2002 Ecological Modeling 157: 189-207
Algorithms using presence and absence records

Regression trees

• Classification and regression trees, CART
• Recursive binary splits
• Grow large and prune / fixed size

✔ Good:
 • Numeric vars, categorical, ...
 • Variable selection
 • Outliers
 • Transformations
 • Missing data
 • Interactions

✗ Bad:
 • Inaccurate

From Hastie et al 2001
Algorithms using presence and absence records:

Boosted or bagged regression trees

✓ Random Forests:
 • Sequence of trees fitted independently
 • Output is sum of trees
 • Salford Systems

✓ BRT:
 • Boosted regression tree / stochastic gradient boosting
 • Fit sequence of trees
 • Output is sum of trees
 • Each tree fitted to improve fit of trees so far
 • Free implementation in R

Algorithms using presence & background data

MAXENT: more to come…

ENFA (ecological niche factor analysis)

- Biomapper implementation: http://www2.unil.ch/biomapper/
- Cannot interpret categorical (discrete) input

![Graph showing Marginality and Specialization](image)

Marginality = \[\frac{m_G - m_S}{1.69\sigma_G} \]

Specialization = \[\frac{\sigma_G}{\sigma_S} \]
Algorithm using presence & pseudo-absences

Genetic algorithm for rule-set prediction: GARP

- Uses a genetic algorithm to develop rules based, in part, on climate envelopes and general linear models
- Output is a sum of runs
- Neat user interface
- Widely applied to address a range of questions
- Computationally intensive
- Poor at interpreting categorical data

http://www.lifemapper.org/desktopgarp/
How important is model method? Model-based uncertainty

Other algorithms/models (group contributions??)...

- Fuzzy envelope: Svenning & Skov
- Mahalonobis distance: pres-background; no categorical; ArcView extension.
- WhyWhere: David Stockwell
- Domain
- Lives; support vector machines; (co)kriging
Algorithms using presence & absence records

Artificial Neural Network (ANN)

- An machine-learning approach, inspired by the structure of the brain
- Theoretically good at identifying non-linear relationships, and robust to noise
- Network structure is difficult to interpret, making the approach fairly ‘black box’
- Can be adapted to interpret categorical data
- Various software packages available; but recently implemented for distribution modeling in software by Oxford University group (SPECIES model)

Hilbert and Ostendorf 2001 *Ecological Modelling* 146: 311-327