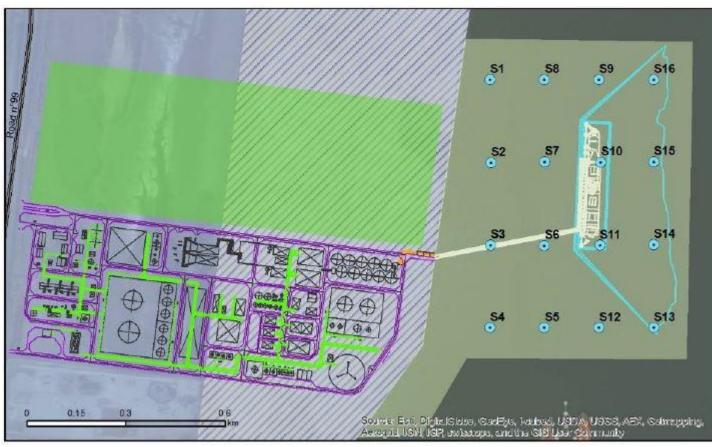


An Example of the use of Biodiversity Data in EIAs

Workshop on Unlocking Biodiversity Data from EIAs

Simon Wilson Five Oceans Environmental Services LLC



Seawater Quality

	89																			2	2			
-89				<i>¥</i>	4	<i>y</i> .				Lab I	Result	t			0.5		NS	No.	2%	AMWQOs-	Dubai Municipali	US EPA Recommended		
Parameter	Detection Limit	S1	52	53	54	S 5	S6	57	58	59	S10	S11	512	S13	S14	S15	S16	SC3	SC4	Legislation	tv-tv		WQ Criteria	
	(μg/L)																			(μg/L)	(µg/L)	Chronic	Acute	
Aluminium	5	17	15	37	12	11	17	13	11	50	12	10	9	11	11	11	10	8	9	(#)	200	12.50	8)	
Arsenic	1	4.7	4.9	4.7	5.2	5.2	5.4	5,3	5.1	5.3	5.5	5.4	4.9	4.9	5.1	5.2	5.0	5.1	5.4	5	10	36	69	
Cadmium	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	3	8.8	40	
Chromium	3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	10	10	50	1100	
Copper	3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	10	5	3.1	4.8	
Lead	0.5	<0.5	<0.5	0.51	1.6	<0.5	<0.5	<0.5	0.77	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	10	172	8.1	210	
Mercury	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	S=0	1993	0.94	1.8	
Nickel	3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	20	5255	8.2	74	
Vanadium	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	9	320		36	
Zinc	10	20	20	20	20	20	20	10	20	20	10	<10	<10	<10	<10	<10	10	10	<10	10	20	85.6	90	
Iron	5	40	30	40	20	30	30	20	30	40	20	40	20	20	20	20	20	20	20	300	200	50	3000	
Manganese	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	. 8 - 8	18 8 20	2.58	57	
Selenium	5	20	10	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20		1 2 5)	71	290	
			_	-	-			_	_	_		100		200		-	_	-		-	4	100	100	

Above Threshold

Detected values

Detected values

Marine Sediment Quality

			Lab Result (I															NOAA SQuiRTS (Buchmann 2008)		Dutch List (2000)		Dutch Soil Remediation Circular (2009)		
Parameter	Detection Limit (mg/kg)	51	52	\$3	54	55	S 6	57	58	59	510	511	\$12	513	514	S15	S16	SC3	5C4	ERM	ERL	Optimum	Action	Intervention Value
Aluminium	0.1	8200	9000	11000	9800	3500	5800	9800	3800	5200	6100	3900	5200	5400	9900	16000	11000	12000	6400	18000	18000	926	1524	65
Arsenic	0.1	8.9	8.8	8.2	8	6.6	7.4	7.8	4.4	7.9	8.2	9.2	7.4	9.6	9	11	11	14	14	70	7.24	29	55	70
Cadmium	0.1	⊲0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	⊲0.1	<0.1	⊲0.1	⊲0.1	<0.1	<0.1	-0.1	<0.1	9.6	0.38	0.8	12	13
Chromium	0.1	83	98	86	75	43	68	82	45	82	72	47	58	72	83	100	120	72	45	370	49	100	380	180, 78*
Copper	0.1	9.6	9.4	9.5	7.2	4.3	6.7	7.5	4.2	6.5	9	3.2	5.7	7.2	7.6	6.5	7.7	11	8.8	390	18.7	36	190	190
Lead	0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	⊲0.1	⊲0.1	<0.1	⊲0.1	⊲0.1	⊲0.1	<0.1	⊲0.1	⊲0.1	<0.1	<0.1	⊲0.1	<0.1	400	163	85	530	530
Mercury	0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	⊲0.1	<0.1	⊲0.1	⊲0.1	⊲0.1	<0.1	⊲0.1	<0.1	0.13	0.71	0.3	10	36, 4*
Nickel	0.1	430	450	560	340	210	300	490	180	330	340	240	240	310	570	810	540	830	420	110	15	35	210	100
Vanadium	0.1	0.2	0.2	0.2	0.2	0.1	0.1	0.1	<0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.1) a)	- 45	42	1944	
Zinc	0.1	19.2	15.6	14	11.2	7.2	12.2	11.8	7.3	11.8	16.9	9.2	12.1	12.4	14.6	14.7	14.7	21.1	18.8	410	94	140	720	720
Boron	0.1	8.2	9.5	8.7	9.6	9.5	8.7	7.7	4.7	7.7	8.5	9.3	10	10	8.8	8.6	9.1	11	8	8	128	223	953	18
Manganese	0.1	180	170	170	150	92	140	140	83	160	150	75	120	140	170	160	170	92	74		260	253	1525	
Tin	0.1	⊲0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	⊲0.1	⊲0.1	<0.1	⊲0.1	√0.1	⊲0.1	<0.1	⊲0.1	<0.1	3.4	183	(i-4)/	100	

Above Threshold

Detected values

Marine Infauna: Van veen grab, 1mm sieve, Rose Bengal

Species	S1	52	S 3	54	S5	56	S7	S8	59	\$10	S11	S12	S13	S14	S15	S16	SC3	SC4
Porifera (brown)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Actiniaria	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Phoronis sp.	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Sipunculidae	1	1	0	1	1	0	0	0	0	0	0	2	0	1	0	0	0	2
Aspidosiphonidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Platyhelminthes	1	0	0	0	0	0	0	0	0	0	2	0	0	0	0	1	0	0
Nemertea	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cerebratulus sp.	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
Aphroditidae	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Amphinomidae	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1
Sigalionidae	0	0	1	1	0	0	0	0	1	2	0	1	4	4	0	1	0	0
Phyllodocidae	0	0	0	0	2	0	0	0	0	0	0	1	0	0	3	0	0	0
Hesionidae	1	0	0	0	1	0	0	0	1	1	0	1	0	0	0	0	0	0
Glycera sp.	2	0	0	0	0	0	0	0	0	0	0	5	0	0	1	0	1	0
Cirratulidae	2	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0
Nephtys tulearensis	6	6	2	1	2	6	1	6	7	4	1	6	6	7	10	1	1	1
Poecilochaetidae	1	0	0	0	0	2	0	0	0	0	1	0	0	0	0	0	0	2
Eunice indica	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
Chaetopteridae	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0
Phyllochaetopterus socialis	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Onuphidae	0	0	0	2	0	1	0	0	0	0	2	7	1	0	1	0	0	0

Marine Infauna: Statistical Analysis

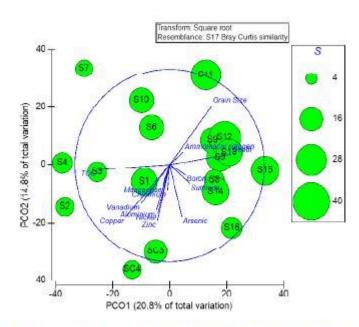


Figure 17. Diversity, species richness, and abundance of infauna at the surveyed loca imposed by all the environmental variables.

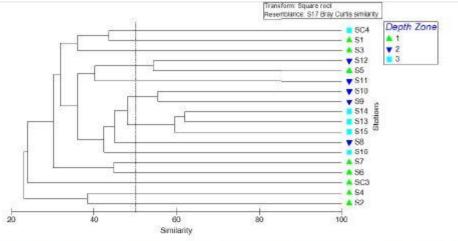


Figure 14. Cluster graph based on the infauna abundance data collected form surveyed stations, superimposed by different depth zones (1: 11-13 m, 2: 13-15 m, 3: 15-17 m).

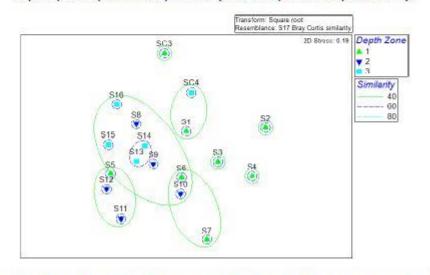


Figure 15. MDS graph based on the infauna abundance data collected form surveyed stations, superimposed by different depth zones (1: 11-13 m, 2: 13-15 m, 3: 15-17 m)

Marine Habitat Mapping

Figure 21. Schematic habitat map constructed from the drop down video, side scan sonar data, and sediment grain size data. It is clear that the majority of the surveyed area is composed of fine sand substrates and there were some sections composed of gravelly fine sand.

Marine Infauna: Diagnostic Power of Marine Infauna

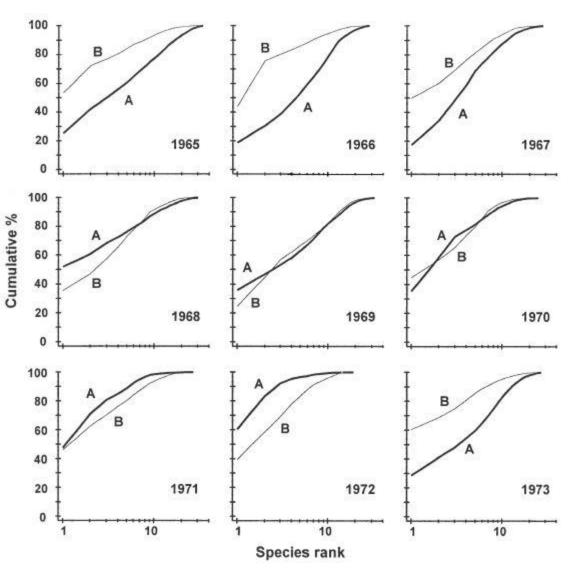


Fig. 10.7. Loch Linnhe macrofauna {L}. Shannon diversity (H') and ABC plots over the 11 years, 1963 to 1973, for data aggregated to family level (c.f. Fig. 8.7). Abundance = thick line, biomass = thin line.