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Abstract

Background DNA barcoding is a valuable taxonomic tool for rapid and accurate species identification and cryptic
species discovery in black flies. Indonesia has 143 nominal species of black flies, but information on their biological
aspects, including vectorial capacity and biting habits, remains underreported, in part because of identification prob-
lems. The current study represents the first comprehensive DNA barcoding of Indonesian black flies using mitochon-
drial cytochrome c oxidase subunit | (COl) gene sequences.

Methods Genomic DNA of Indonesian black fly samples were extracted and sequenced, producing 86 COI
sequences in total. Two hundred four COI sequences, including 118 GenBank sequences, were analysed. Maximum
likelihood (ML) and Bayesian inference (BI) trees were constructed and species delimitation analyses, including ASAP,
GMYC and single PTP, were performed to determine whether the species of Indonesian black flies could be deline-
ated. Intra- and interspecific genetic distances were also calculated and the efficacy of COI sequences for species
identification was tested.

Results The DNA barcodes successfully distinguished most morphologically distinct species (>80% of sampled taxa).
Nonetheless, high maximum intraspecific distances (3.32-13.94%) in 11 species suggested cryptic diversity. Notably,
populations of the common taxa Simulium (Gomphostilbia) cheongi, S. (Gomphostilbia) sheilae, S. (Nevermannia) feu-
erborni and S. (Simulium) tani in the islands of Indonesia were genetically distinct from those on the Southeast Asian
mainland (Malaysia and Thailand). Integrated morphological, cytogenetic and nuclear DNA studies are warranted

to clarify the taxonomic status of these more complex taxa.

Conclusions The findings showed that COIl barcoding is a promising taxonomic tool for Indonesian black flies. The
DNA barcodes will aid in correct identification and genetic study of Indonesian black flies, which will be helpful
in the control and management of potential vector species.
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Background

Black flies (Diptera: Simuliidae) are medically important
haematophagous insects for humans, domestic animals
and wildlife, due to their pestiferous biting habits and
vectorial roles in transmitting various parasites. They are
the sole vector of the filarial nematode Onchocerca vol-
vulus, which causes river blindness, the second leading
infectious cause of blindness in the world [1]. They also
transmit other Onchocerca species, Mansonella filarial
parasites and Leucocytozoon and Trypanosoma protozoa
[2, 3]. In contrast, black flies also function as beneficial
organisms in aquatic ecosystems, where the larvae pro-
cess fine particulate organic matter into larger food pel-
lets, serve as food for other aquatic organisms and act as
bioindicators of water quality [4].

Southeast Asia harbours nearly 20% of the world’s spe-
cies of black flies, providing excellent opportunities for
research on these minute creatures. The extensive mor-
photaxonomic research on black flies in Indonesia began
in the late 1990s, leading to a total of 143 species reported
from the country to date [5, 6]. The rich black fly biodi-
versity in Indonesia reflects its strategic location in the
tropical belt between the Pacific and Indian Oceans and
between the Asian and Australian continents. All Indo-
nesian black flies are in the genus Similium Latreille and
are classified in five subgenera: Gomphostilbia Ender-
lein, Morops Enderlein, Nevermannia Enderlein, Simu-
lium Latreille and Wallacelum Takaoka. The species are
further assigned to 27 species groups [6, 7]. Neverthe-
less, various biological aspects of black flies in Indonesia,
including their vectorial roles and biting habits, remain
to be explored. Exceptions include S. (G.) atratum, which
bites domestic fowls in Java [8], and S. (N.) aureohirtum,
which is autogenous [9, 10].

Black flies are traditionally identified using morpho-
logical keys, such as those by Adler, Currie [11], Crosskey
[12], Shelley [13], Takaoka [14], Takaoka and Davies [15],
Takaoka and Davies [16] and Takaoka, Sofian-Azirun
[17]. Chromosome-based analyses also drive black fly
taxonomy and have revealed cryptic diversity in many
morphospecies [2]. These two methods, however, are
sometimes insufficient for rapid and accurate species
identification crucial for biological research and vector
control. Morphologically similar species often cannot be
differentiated in one or more life stages, and chromo-
somal identifications are typically applicable only in the
larval stage. Both methods also require a higher level of
expertise [18, 19].

The DNA barcoding approach has shown promise
as a molecular taxonomic tool for black flies. Many
DNA barcoding studies, based on the mitochondrial
cytochrome ¢ oxidase subunit I (COI) gene, demonstrate
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high levels of correct species identifications, which
are usually consistent with morphotaxonomic and
chromosomal studies. COI-based barcoding has
demonstrated a considerable success level (>90%
sampled taxa) in distinguishing species of black flies
from Thailand [20, 21]. The molecular approach is also
helpful in revealing cryptic diversity in morphospecies
thought to be single species. Thailand, in particular, has
been actively reporting species complexes such as S. (G.)
angulistylum Takaoka & Davies [22], S. (N.) feuerborni
[23, 24] and S. (S.) fenestratum [25] through integrated
initiatives of barcoding and cytogenetics. Coupled with
other taxonomic approaches, DNA barcoding also
complements the description of cryptic species. Some
notable examples include the description of S. (N.)
pairoti from S. (N.) feuerborni [26] and the naming of S.
(S.) nobile cryptic species in Peninsular Malaysia as S.
(S.) vanluni [27]. Additionally, S. (S.) rufibasis Brunetti
in Japan and Korea was revised as S. (S.) yamatoense
Takaoka, Adler & Fukuda after the morphological,
chromosomal and molecular re-examinations of the
species [28]. In the meantime, ongoing molecular
research on these simuliids is being carried out in
Malaysia and Vietnam, hoping to contribute to the
growing body of knowledge in this area.

Although several genetic studies have been conducted
on black flies in Indonesia, including S. (N.) feuerborni, S.
(S.) nobile and S. (S.) timorense [24, 29, 30], the genetics
of other Indonesian black flies is understudied. We,
therefore, used the mitochondrial COI gene to delimit
species boundaries for 55 species of black flies from
Indonesia.

Methods

Sample collection

Samples were collected from eight provinces in Indonesia
between 2014 and 2017 (Table 1). Aquatic stages of black
flies (larvae and pupae) attached to grasses, leaves, twigs,
plant roots and rocks were collected by hand using fine
forceps. Pupae were individually kept alive in vials until
adult emergence. The adults, together with their pupal
exuviae and cocoons, were fixed in 80% ethanol for
identification at the subgenus, species group or species
level. The methods of collection and identification
followed those of Adler, Currie [11] and Takaoka [14].

DNA extraction, polymerase chain reaction (PCR)

and sequencing

One to four adults were selected randomly and
dissected for each species before DNA extraction.
Genomic DNA was extracted from the dissected parts
(thorax or hind leg), using the NucleoSpin® Tissue Mini
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Kit (Macherey—Nagel, Diiren, Germany), according
to the manufacturer’s protocol. A conventional
polymerase chain reaction (PCR) was then performed
to amplify the target region of the cytochrome ¢
oxidase subunit I (COI) gene, using the DNA barcoding
standard primers: LCO1490 (5'-GGTCAACAAATC
ATAAAGATATTGG-3') and HCO2198 (5'-TAA
ACTTCAGGGTGACCAAAAAATCA-3") [31]. Each
PCR reaction mixture contained 1 pl DNA template,
125 pl MyTaq ' Red Mix 2xmastermix (Bioline
Reagents, Meridian Bioscience, Cincinnati, Ohio,
USA), 0.4 pM forward primer, 0.4 pM reverse primer
and distilled water up to 25 pl. The PCR amplifications
were performed on Applied Biosystems Veriti 96-Well
Thermal Cycler (Applied Biosystems, Inc., Foster City,
CA, USA). PCR reaction conditions and temperature
profiles followed those of Rivera and Currie [19]:
denaturation at 96 °C for 1 min and 94 °C for 1 min,
primer annealing at 55 °C for 1 min, 35 cycles of
amplification at 72 °C for 1.5 min and 7 min at 72 °C.
PCR products were visualized on a 1.5% agarose
gel electrophoresis pre-stained with SYBR Safe dye
(Invitrogen Corp., Carlsbad, CA, USA) run using a 100-
bp DNA ladder (GeneDireX, Inc., Taiwan) as the DNA
band size standard. Lastly, the PCR amplicons were
sent to Apical Scientific Sdn Bhd (Selangor, Malaysia)
for sequencing.

Data analyses

Publicly available COI sequences of other related black
fly species were retrieved from the NCBI GenBank data-
base and included in analyses. A total of 204 black fly COI
sequences representing 55 species from 14 species groups
were analysed, with 86 of the sequences generated in the
present study. Representative sequences were deposited
in the NCBI GenBank database under accession num-
bers 0Q117897-0Q117982 and the Global Biodiversity
Information Facility (GBIF) database with other relevant
information. The COI sequences were aligned in Unipro
UGENE software using MUSCLE [32] and were trimmed
to 452 bp in BioEdit software [33]. Before phylogenetic
analyses, model selection was performed using kakusan4
to determine the most suitable nucleotide substitution
model [34]. Trees were constructed based on the COI
sequences via maximum-likelihood (ML) and Bayesian
inference (BI) methods. Parasimulium crosskeyi (Gen-
Bank accession number: FJ524489) [21] was chosen as an
outgroup for both tree analyses. The ML tree was gen-
erated from RAxML webserver (https://raxml-ng.vital-
it.ch/#/) [35] using a generalized time-reversible (GTR)
nucleotide substitution model with invariant sites of 0.47
(I), a gamma shape parameter (a) of 0.56 (G), four mean
gamma category rates and maximum likelihood search.
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Bootstrap support was estimated for 100 replicates. The
configuration file generated from kakusan4 was used to
perform BI tree analysis using MrBayes v3.2.7 [36] on
CIPRES Science Gateway v3.3 webserver (https://www.
phylo.org/portal2/home.action). The BI analysis adopted
the GTR substitution model using gamma-distributed
rate variation across sites with shape parameter of 0.767
and invariable sites of 0.466. The posterior probability
distribution of trees was estimated from two independ-
ent Markov chain Monte Carlo (MCMC) simulations of
five million generations until the average standard devia-
tion of split frequencies reached < 0.01. The first 25% of
all runs was discarded as burn-in.

Species delimitation analyses, including Assemble Spe-
cies by Automatic Partitioning (ASAP) [37], Generalized
Mixed Yule Coalescent (GMYC) [38] and single Poisson
Tree Processes (PTP) [39], were also performed. ASAP
analysis was performed in the webserver version (https://
bioinfo.mnhn.fr/abi/public/asap/). The Jukes-Cantor
(JC69), Kimura (K80) ts/tv and simple distance models
were tested. Results with genetic distances between 0
and 0.03 were highlighted. The GMYC analysis adopted
an ultrametric tree generated from BEAUti2 software
using a GTR+G+1 model, Yule prior and relaxed clock
log-normal model. The analysis was run for 40 million
generations with a sampling frequency of every 1000 gen-
erations in BEAST v2.6.7. The output file was visualised
using Tracer v1.6 software to ensure all estimated sample
sizes (ESS) of all parameters exceeded 200. The output
tree was then analysed in TreeAnnotator v2.6.7 software
with a 20% burn-in. Data were analysed using a single
threshold model in the SPLITS software package [40]
available in the R v3.3.0 program. The single PTP analysis
was performed in the mPTP webserver (https://mptp.h-
its.org/#/tree) with the tree obtained from RAxML as
input file and PTP with default p-value selected as the
model for analysis with default settings. The intra- and
interspecific genetic distances were calculated based
on an uncorrected p-distance model with variance esti-
mation using the bootstrap method for 1000 replicates
in MEGA11 software [41]. Lastly, the efficacy of COI
sequences for species identification was tested using the
best match (BM) and best close match (BCM) methods
in TaxonDNA software. The criterion for successful iden-
tifications based on the BM method was that all conspe-
cifics had the smallest distance to the query sequence,
whereas the BCM method required that the smallest dis-
tance be within the 95th percentile of overall intraspecific
distances [42]. Using an adhoc R package [43], the cut-off
threshold of BCM method was 1.9%.
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Table 1 Black flies (n=27) of Indonesia included in the present study of COI barcoding, with collection data and GenBank accession

numbers
Species group/species n Sampling location Latitude/longitude Sampling date  GenBank accession no.
Subgenus Gomphostilbia Enderlein
Simulium asakoae group
S. gyorkosae Takaoka & Davies 2 Kakek Bodo, Tretes N/A 18 Apr 2015 0Q117897-900
1 Munduk, Bali 08°15726.684”5/115°04"12.625”E 28 Sep 2014
1 Otak Kokok Joben, Lombok 08°31/57.775”5/116°23'51.041”E 25 Sep 2014
S. sunapii Takaoka, Sofian- 1 Rangat, Kempo, Flores? 08°36"20.443”5/120°01719.156”E 28 Feb 2016~ 0OQ117901
Azirun & Wayan
Simulium batoense group
S. lemborense Takaoka & Sofian- 2 Mbatakapidu, Waingapu, Sumba ~ 09°42702.589”5/120°13"21.775”E 7 Oct 2017 0Q117902-05
Azirun 2 Mbatakapidu, Waingapu, Sumba  09°40757.446”5/120°13'50.675”E 7 Oct 2017
S. tahanense Takaoka & Davies 2 Long Ikis, East Kalimantan 00°33704.414”5/116°06"01.340”E 3 Sep 2015 0Q117906-09
2 Long Ikis, East Kalimantan 01°33728.150”5/116°05"44.395”E 3 Sep 2015
Simulium ceylonicum group
S.rangatense Takaoka, Sofian- 1 Rangat, Kempo, Flores? 08°36"31.889”5/120°01706.248”E 28 Feb 2016 ~ 0Q117910
Azirun & Wayan'
S. sheilae Takaoka & Davies 4 Lembah Harau, West Sumatra 00°06"35.532”5/100°40"17.212”E 23 Nov2016  OQ117911-14
Simulium epistum group
S. atratum De Meijere 4 Suranadi, Narmada, Lombok 08°3471531575/116°13'54831”E 22Sep 2014  0OQ117915-18
S. cheongi Takaoka & Davies 4 East Kalimantan N/A 3 Sep 2015 0Q117919-22
S. floresense Takaoka, Hadli & 1 Wae Garit, Ruteng, Flores? 08°35'27.877”5/120°26°05.799”E 27 Feb 2016 ~ 0Q117923-26
Sigit 1 Ruang, Ruteng, Flores N/A 27 Feb 2016
1 Rangat, Kempo, Flores? N/A 28 Feb 2016
1 Roe, Cunca Lolos, Flores N/A 28 Feb 2016
S. lehi Takaoka 3 EastKalimantan N/A 4 Sep 2015 0Q117927-30
1 Long Ikis, East Kalimantan 01°32756.079”5/116°03"19.814”E 3 Sep 2015
S. merapiense Takaoka & Sofian- 4 Taman Nasional Gunung Merapi,  07°35735.175/110°25°58.0"F 28 May 2014 0Q117931-34
Azirun Kaliurang, Yogyakarta?
S. sarawakense Takaoka 4 East Kalimantan N/A 3Sep 2015 0Q117935-38
Simulium varicorne group
S.sumbaense Takaoka &Suana 1 Watumbaka, Waingapu, Sumba? ~ 09°3957.329”5/120°20°57.790”E 7 Oct 2017 0Q117939
Subgenus Nevermannia Enderlein
Simulium feuerborni, group
S. feuerborni Edwards 3 Kakek Bodo, Tretes N/A 18 Apr 2015 0Q117940-42
Simulium ruficorne group
S. aureohirtum Brunetti 1 Lembah Harau, West Sumatra 00°06735.53275/100°40"17.212”E 18 Apr2015  0Q117943
S. wayani Takaoka & Chen 7 Boentuka, Timor 09°55"39.6”5/124°10738.7"E 100ct 2017  0OQ117944-51
1 Polen, Sog, Timor? 09°41'32.11775/124°28”57.748”E 11 Oct 2017
Subgenus Simulium Latreille
Simulium eximium group
S.eximium De Meijere 1 Malang N/A 17 Apr 2015 0Q117952-54
1 Kakek Bodo, Tretes N/A 18 Apr 2015
1 Wae Garit, Ruteng, Flores 08°35'27.877”5/120°26°05.799”E 27 Feb 2016
Simulium iridescens group
S. iridescens De Meijere 1 Munduk, Bali 08°15'26.684”5/115°04"12.625”F 28 Sep 2014~ 0Q117955-58
1 Nungnung Waterfall, Bali 08°19742.039”5/115°13"44.116”E 29 Sep 2014
1 Malang N/A 17 Apr 2015
1 Kakek Bodo, Tretes N/A 18 Apr 2015
S. javaense Takaoka & Hadli 2 Sebatu, Bali 08°23/56.592”5/115°17752.803”E 27 Sep 2014  0Q117959-62
2 Tampaksiring, Bali 08°24755.853”5/115°18755.844”E 27 Sep 2014
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Species group/species n Sampling location Latitude/longitude Sampling date  GenBank accession no.
Simulium multistriatum group
S. fenestratum Edwards 1 West Sumatra 00°57"39.252”5/100°36"46.961”E 24 Nov 2016 0Q117963
Simulium nebulicola group
S. nebulicola Edwards 1 Nteer, Manggarai, Flores 08°41703.955”5/120°19717.135”E 27 Feb 2016  OQ117964
Simulium nobile group
S. nobile De Meijere 2 West Sumatra 00°57'39.252”5/100°36"46.961”E 24 Nov 2016 ~ OQ117965-68
1 Sebatu, Bali 08°23756.592”5/115°17752.803”E 27 Sep 2014
1 Pusat Pendidikan Lingkungan N/A 16 Apr 2015
Hidup (PPLH), Surubaya
S. timorense Takaoka, Hadi & 1 Wae Garit, Ruteng, Flores N/A 27 Feb 2016 0Q117969-72
Sigit 1 Narmada, Lombok 08°35°46,85075/116°12°18.327”E 23 Sep 2014
1 Sungai Toloweri, Nunger, Bima, N/A 21 Feb 2016
Sumbawa
1 Mbatakapidu, Waingapu, Sumba ~ 09°42”702.589”5/120°13721.77 7 Oct 2017
5"E
Simulium striatum group
S. argyrocinctum De Meijere 2 Coban Talun, Malang N/A 17 Apr 2015 0Q117973-76
1 Puncak, Bogor N/A 14 Apr 2015
1 Pusat Pendidikan Lingkungan N/A 16 Apr 2015
Hidup (PPLH), Surubaya
S. baliense Takaoka & Sofian- 1 Sebatu, Bali 08°23/56.592”5/115°17752.803”E 27 Sep 2014  OQ117977
Azirun
Simulium tuberosum group
S. keningauense Takaoka 4 East Kalimantan N/A 3 Sep 2015 0Q117978-81
S. tani Takaoka & Davies 1 West Sumatra 00°57739.252”5/100°36"46.961”E 24 Nov 2016 ~ 0Q117982

' Simulium rangatense is represented by a type specimen

2 Specimens were collected from type localities

Results

Phylogenetic analysis based on COl barcodes

Both ML and BI trees showed similar topologies. The
only difference was in the placement of the S. (S.) exi-
mium clade. Simulium (Simulium) eximium grouped
with the S. (S.) iridescens group in the ML tree, whereas
it clustered with the S. (S.) multistriatum group in the BI
tree; only the ML tree is shown. The BI tree was included
as a supplementary figure (see Additional file 1).

Three major clades were formed in the tree,
corresponding to (i) subgenus Simulium, (ii) subgenera
Gomphostilbia and Nevermannia and (iii) Simulium
(Gomphostilbia) tahanense. Overall, most nominal
species formed clades in their respective subgenera
and species groups, consistent with morphotaxonomic
studies, except for S. (G.) tahanense, which formed
a distinct clade with strong bootstrap and posterior
probability values.

Subgenus Simulium Latreille
All species groups of the subgenus Simulium were mono-
phyletic (Figs. 1, 2). Simulium nebulicola was the only

member of the S. nebulicola group represented in our
study. It formed a distinct clade from other Simulium spe-
cies groups with high interspecific distances. Simulium
eximium formed a strongly supported clade, whereas
S. iridescens was paraphyletic with the S. javaense clade
nested in its clade. In the S. multistriatum group, S. bul-
latum formed a strongly supported distinct subclade.
Simulium fenestratum formed two subgroups represent-
ing the only species in a distinct Indonesia group and a
Thailand group that included the remaining members of
the S. multistriatum group (S. chainarongi, S. chaliowae
and S. ubonae). Within the S. striatum group, S. argyro-
cinctum was paraphyletic, with S. baliense nested within
its clade. Simulium chaingmaiense, S. nakhonense and S.
wangkwaiense formed a non-monophyletic clade with
low genetic distances among these taxa. In the S. nobile
group, one sequence of S. vanluni was distinct from the
others that formed a separate clade of S. vanluni. The S.
nobile clade was nested within the S. timorense clade,
with low interspecific distances (minimum=1.11%),
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Fig. 1 ML tree showing species of black flies from Indonesia in the subgenus Simulium Latreille, which was constructed from COI sequences.
Bootstrap and posterior probability values of >50% and >0.50, respectively, are shown on the branches. Branches with bootstrap and posterior
probability values > 70% and > 0.70, respectively, are considered well supported. New sequences generated in the study are in bold. Grey bars
indicate the respective operational taxonomic units recognized by the three species delimitation analyses (i.e. ASAP, GMYC and PTP, in order). ASAP
Assemble Species by Automatic Partitioning, GMYC Generalized Mixed Yule Coalescent, PTP Poisson Tree Processes

making the S. timorense clade paraphyletic. However, in
the BI tree, the S. nobile and S. timorense clades were well
separated. In the S. tuberosum group, S. jianshiense and S.
keningauense each formed a monophyletic clade, whereas
S. tani was divided into two subgroups.

Subgenus Nevermannia Enderlein

In subgenus Nevermannia, two clades formed represent-
ing the S. feuerborni species group and the S. ruficorne
species group (Fig. 3). Members of the S. feuerborni group
were divided into two subgroups, showing the paraphyly
of S. feuerborni with other taxa. The two subgroups cor-
responded to S. feuerborni from Indonesia and Thailand,
which were non-monophyletic with other members of
the S. feuerborni group (S. fruticosum, S. ledangense, S.
pairoti and S. pumatense). In the S. ruficorne group, S.
aureohirtum was divided into two subgroups of which
one subgroup had sequences of S. wayani nested within.

Subgenus Gomphostilbia Enderlein
The nominal species of the subgenus Gomphostil-
bia formed two clades: a major clade with subgenus

Nevermannia clustering with the Simulium epistum
group and a strongly supported distinct S. tahanense
clade of the S. batoense group (Figs. 4, 5). Other members
of the S. batoense group were monophyletic.

The S. asakoae group was not monophyletic. It had
a member of the S. ceylonicum group (S. rangatense)
clustering with one of its members (S. sunapii).
Nonetheless, the high genetic distance (8.85%) between
S. rangatense and S. sunapii suggests that they are
distinct species. Other taxa of the S. asakoae group
formed a monophyletic clade except for S. puaense,
which contained S. maehongsonense in the ML tree. In
the BI tree, however, all members of the S. asakoae group
were monophyletic.

In the S. ceylonicum group, S. sheilae was paraphyly
because its clade included S. trangense. This clade was
further divided into three subclades: (i) Malaysia and
Indonesia, (ii) Thailand and (iii) Indonesia+S. trangense.
The S. epistum species group formed four subclades: (i)
S. cheongi (Malaysia), S. atratum and S. floresense; (ii) S.
merapiense; (iii) S. lehi; (iv) S. sarawakense and S. cheongi
(Indonesia). All involved taxa were monophyletic, except
for S. cheongi. Simulium chumpornense and S. sumbaense
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Fig. 2 Continued ML tree showing species of black flies from Indonesia in the subgenus Simulium Latreille, which was constructed from COI
sequences. Bootstrap and posterior probability values of >50% and >0.50, respectively, are shown on the branches. Branches with bootstrap

and posterior probability values > 70% and > 0.70, respectively, are considered well supported. New sequences generated in the study are in bold.
Grey bars indicate the respective operational taxonomic units recognized by the three species delimitation analyses (i.e. ASAP, GMYC and PTP,

in order). ASAP Assemble Species by Automatic Partitioning, GMYC Generalized Mixed Yule Coalescent, PTP Poisson Tree Processes

of the S. varicorne group formed a paraphyletic clade,
clustering with subclade iv of the S. epistum group.

Genetic distances

The maximum intraspecific genetic distance ranged
from 0% in S. (N.) ledangense, S. (N.) wayani and S.
(S.) chainarongi to 13.94% in S. (G.) cheongi. Out of
55 morphospecies, 11 exhibited high intraspecific
divergences, with mean and maximum values reported
as follows: S. (G.) gyorkosae (2.18%; 3.32%), S. (G.)
sheilae (5.75%; 9.51%), S. (G.) cheongi (7.93%; 13.94%),
S. (G.) floresense (1.88%; 3.76%), S. (N.) feuerborni
(7.04%; 10.62%), S. (N.) aureohirtum (4.36%; 7.96%), S.

(S.) eximium (2.51%; 3.76%), S. (S.) iridescens (2.14%;
3.32%), S. (S.) femestratum (2.58%; 4.42%), S. (S.)
argyrocinctum (2.80%; 3.54%) and S. (S.) tani (5.32%;
7.74%) (Table 2). Among these species, S. (N.) feuerborni,
S. (S.) fenestratum and S. (S.) tani are known to be species
complexes.

Interspecific genetic distances ranged from 0 to 19.25%,
with an average of 13.22%. Low levels of minimum
interspecific distance were noted in the following species
pairs, suggesting that the individuals of the two species in
each pair are closely related or perhaps conspecific: S. (N.)
aureohirtum and S. (N.) wayani (0.66%), S. (S.) iridescens
and S. (S.) javaense (0.66%), S. (S.) chainarongi and S. (S.)
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Fig. 3 ML tree showing species of black flies from Indonesia in the subgenus Nevermannia Enderlein, which was constructed from COI sequences.
Bootstrap and posterior probability values of >50% and >0.50, respectively, are shown on the branches. Branches with bootstrap and posterior
probability values > 70% and > 0.70, respectively, are considered well supported. New sequences generated in the study are in bold. Grey bars
indicate the respective operational taxonomic units recognized by the three species delimitation analyses (i.e. ASAP, GMYC and PTP, in order). The
double asterisk (**) on the two grey bars of the ASAP analysis indicates these two bars represent the same taxonomic unit. ASAP Assemble Species

by Automatic Partitioning, GMYC Generalized Mixed Yule Coalescent, PTP Poisson Tree Processes

ubonae (0.88%), S. (S.) chaliowae and S. (S.) fenestratum
(0.22%), and S. (S.) fenestratum and S. (S.) ubonae (0.66%).
Table S1 shows the intraspecific and interspecific genetic
distances of each species (see Additional file 2).

Species delimitation analyses

For ASAP analysis, a few subsequent partitions other
than the “best” one with the lowest ASAP score and the
threshold distance were considered while choosing the
final species partition [37]. The fifth partition with an
ASAP score of 11 and threshold distance of 0.034 was
chosen among the 10 “best” partitions found by the ASAP
analysis using a simple distance substitution model.
The distance-based ASAP method and GMYC revealed
comparable results, which were 44 and 42, respectively,
whereas the single PTP method revealed 51 opera-
tional taxonomic units (OTUs). Overall, all three species
delimitation analyses showed good agreement, although
the single PTP method identified more putative species
than did the other two methods. The non-monophyletic

groups, such as the S. (N.) feuerborni and S. (S.) multist-
riatum groups, were considered by the analyses as single
taxonomic units, with their members inseparable. Also,
more than one taxonomic unit was detected within the
single species that had high intraspecific distances (>3%),
except for S. (S.) iridescens.

Species identification efficacy

The percentages of correct species identifications via
the best match and best close match methods exceeded
80% (Table 3). Incorrect identifications were associated
with non-monophyletic species as follows: S. (N.)
aureohirtum, S. (N.) feuerborni, S. (N.) fruticosum, S. (N.)
pumatense, S. (S.) argyrocinctum, S. (S.) fenestratum, S.
(S.) iridescens and S. (S.) nakhonense. Lack of conspecifics
in database might also cause ambiguous and incorrect
identifications of the following species: S. (G.) johorense,
S. (G.) laosense, S. (G.) rangatense, S. (G.) sumbaense, S.
(G.) sunapii, S. (S.) baliense and S. (S.) nebulicola.
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Fig. 4 ML tree showing species of black flies from Indonesia in the subgenus Gomphostilbia Enderlein, which was constructed from COI sequences.
Bootstrap and posterior probability values of >50% and > 0.50, respectively, are shown on the branches. Branches with bootstrap and posterior
probability values > 70% and > 0.70, respectively, are considered well supported. New sequences generated in the study are in bold. Grey bars
indicate the respective operational taxonomic units recognized by the three species delimitation analyses (i.e. ASAP, GMYC, and PTP, in order). ASAP
Assemble Species by Automatic Partitioning, GMYC Generalized Mixed Yule Coalescent, PTP Poisson Tree Processes

Discussion

The relationships among 55 nominal species of black flies
in 14 previously established species groups in Indonesia
are presented for the first time to our knowledge through
DNA barcodes based on the mitochondrial COI gene.
The accuracy of the COI gene to identify black fly species
in Indonesia is > 84%. Most of the species are shown
to be monophyletic in their respective species groups
and subgenera with a few exceptions. Possible causes
of non-monophyly include inadequate phylogenetic
signal, imperfect taxonomy, interspecific hybridization,
incomplete lineage sorting and gene paralogy [44].

In the S. batoense group, S. (G.) tahanense forms a
single group distinct from other group members. This
topology agrees with previous phylogenetic analyses
[45, 46]. In fact, S. (G.) tahanense is distinctive not
only among species of S. batoense species group but
also among species of the subgenus Gomphostilbia by
having the elongate female labrum [47]. The unique
characteristic observed in S. (G.) tahanense is believed
to contribute to its distinctiveness from other taxa. The

grouping of S. (G.) rangatense of the S. ceylonicum group
with S. (G.) sunapii causes the S. asakoae group to be
non-monophyletic. Even so, a high genetic distance of
8.85% was recorded between these two species, each of
which is recognized as a distinct species. The grouping
might be due to inadequate phylogenetic signal of the
COI gene in resolving the two species groups, as shown
by Low, Takaoka [48].

Simulium (Gomphostilbia) sheilae from Indonesia
is probably a distinct lineage from this nominal species
in Malaysia and Thailand, based on our results. In
the barcode tree, S. (G.) sheilae is divided into three
subclades: (i) Indonesia and Malaysia; (ii) Thailand; (iii)
Indonesia, which are regarded as different taxonomic
units by the delimitation analyses. Furthermore, S. (G.)
sheilae from Indonesia displayed high intraspecific
distances (minimum=3.10%) compared to lineages
from Malaysia and Thailand. Conversely, a single
sample from Indonesia showed a high genetic distance
(minimum=8.63%) compared to other Indonesian
sequences, indicating a high level of intraspecific
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Fig. 5 Continued ML tree showing species of black flies from Indonesia in the subgenus Gomphostilbia Enderlein, which was constructed from COI
sequences. Bootstrap and posterior probability values of >50% and > 0.50, respectively, are shown on the branches. Branches with bootstrap

and posterior probability values > 70% and > 0.70, respectively, are considered well supported. New sequences generated in the study are in bold.
Grey bars indicate the respective operational taxonomic units recognized by the three species delimitation analyses (i.e. ASAP, GMYC and PTP,

in order). ASAP Assemble Species by Automatic Partitioning, GMYC Generalized Mixed Yule Coalescent, PTP Poisson Tree Processes

divergence within S. (G.) sheilae in Indonesia. These
findings suggest that S. (G.) sheilae in Indonesia may
harbour cryptic diversity. Simulium (Gomphostilbia)
trangense also has a lower genetic distance from S.
(G.) sheilae from Indonesia (minimum=1.77%) than
from Malaysia (minimum=9.96%) and Thailand
(minimum=6.19%), indicating that S. (G.) trangense is
genetically more closely related to S. (G.) sheilae from
Indonesia.

Simulium (Nevermannia) feuerborni is a species
complex of four chromosomally distinct lineages from
Thailand (cytoforms A and B), Malaysia (cytoform C,
subsequently named S. (N.) pairoti) and Indonesia (cyto-
form D), although molecular analysis was not conducted
on the Indonesian population in the original studies [23,
24, 26]. Our study supports the distinctiveness of the
Indonesian lineage with high divergence values (mini-
mum=9.29%) reported between Indonesian and Thai
lineages. The two lineages are also considered different
taxonomic units. Besides, one sequence of Indonesian S.
(N.) feuerborni (GenBank accession number: KX525228)

has high genetic distance of 5.09% against other Indone-
sian sequences. Moreover, ASAP and PTP analyses also
detected two taxonomic units in the Indonesian S. (N.)
feuerborni. These genetic results suggest possible cryp-
tic diversity, though further research is needed to clarify
these observations.

Similar to the studies by Thaijarern, Sopaladawan [49]
and Pramual, Jomkumsing [20], S. (N.) aureohirtum in
our study was divided into two lineages, considered dif-
ferent taxa, that are genetically different, with a maxi-
mum distance of 7.96%. However, no evidence was found
of sibling species in S. (N.) aureohirtum in Thailand [50].
Further analyses are required to determine whether the
two lineages are different species [20]. More specimens of
S. (N.) aureohirtum from Indonesia should be included in
analyses to determine intraspecific variation and genetic
relationships with other taxa. In addition, comparisons
with S. (N.) aureohirtum from the type locality (Assam,
India) are essential in sorting out the taxonomy of this
nominal species.
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Table 2 Species of black flies (n=55) included for barcoding analyses (n=204 COI sequences), with the mean and maximum
intraspecific divergence values (%) of each species

Subgenus Species group Species n (from Mean intraspecific
this study) divergence
(maximum), %
Gomphostilbia Enderlein  S. asakoae S. asakoae Takaoka & Davies 5 159 (243)
S. brinchangense Takaoka, Sofian-Azirun & Hashim 3 0.44 (0.66)
S. chiangdaoense Takaoka & Srisuka 4 122 (2.21)
S. gyorkosae Takaoka & Davies 4) 2.18(3.32)
S. izuae Takaoka, Sofian-Azirun & Hashim 3 0.74 (0.88)
S. lurauense Takaoka, Sofian-Azirun & Hashim 3 0.88(1.11)
S. maehongsonense Takaoka, Srisuka & Saeung 2 -
S. nanthaburiense Takaoka, Srisuka & Fukuda 3 0.59 (0.66)
S. phapeungense Takaoka, Srisuka & Fukuda 3 0.29 (0.44)
S. puaense Takaoka, Srisuka & Saeung 2 -
S. roslihashimi Takaoka & Sofian-Azirun 3 0.29 (0.44)
S. sunapii Takaoka, Sofian-Azirun & Wayan M -
S. batoense S. johorense Takaoka, Sofian-Azirun & Ya‘cob 1 -
S. laosense Takaoka, Srisuka & Saeung 1 -
S. lemborense Takaoka & Sofian-Azirun 4) 0.88(1.77)
S. tahanense Takaoka & Davies 4) 1.33(1.99)
S. yvonneae Takaoka & Low 2 -
S. ceylonicum S. rangatense Takaoka, Sofian-Azirun & Wayan (1) -
S. sheilae Takaoka & Davies 4(4) 5.75(9.51)°
S. trangense Jitklang, Kuvangkadilok, Baimai, Takaoka & Adler 3 0.88(1.33)
S. epistum S. atratum De Meijere 3(4) 0.63(1.77)
S. cheongi Takaoka & Davies 3(4) 7.93 (13.94)
S. floresense Takaoka, Hadi & Sigit (4) 1.88 (3.76)
S. lehi Takaoka (4) 0.11(0.22)
S. merapiense Takaoka & Sofian-Azirun (4) 0.11(0.22)
S. sarawakense Takaoka (4) 1.33(1.99)
S.varicorne S. chumpornense Takaoka & Kuvangkadilok 4 077 (1.11)
S. sumbaense Takaoka & Suana (1) -
Nevermannia Enderlein S. feuerborni S. feuerborni Edwards 4 (3) 7.04(1062)°
S. fruticosum Takaoka & Choochote 2 -
S. ledangense Ya'cob, Takaoka & Sofian-Azirun 2 -
S. pairoti Ya‘cob, Takaoka & Sofian-Azirun 3 0.29 (0.44)
S. pumatense Takaoka, Low & Pham 2 -
S. ruficorne S. aureohirtum Brunetti 8 (1) 436 (7.96)
S. wayani Takaoka & Chen (8) 0
Simulium Latreille S.eximium S. eximium De Meijere (3) 2.51(3.76)
S. iridescens S.iridescens De Meijere (4) 2.14(3.32)
S. javaense Takaoka & Hadi 4) 0.22 (0.44)
S.multistriatum  S. bullatum Takaoka & Choochote 2 -
S. chainarongi Kuvangkadilok & Takaoka 3 0
S. chaliowae Takaoka & Boonkemtong 2 -
S. fenestratum Edwards 6(1) 2.58 (442)°
S. ubonae Thaijarern, Wongpakam, Kangrang & Pramual 2 -
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Table 2 (continued)
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Subgenus Species group Species n (from Mean intraspecific
this study) divergence
(maximum), %
S. nebulicola S. nebulicola Edwards m -
S. nobile S. nobile De Meijere 5(4) 0.82 (1.99)
S. timorense Takaoka, Hadi & Sigit 4(4) 0.26 (0.66)
S.vanluniYa'cob, Takaoka & Sofian-Azirun 5 0.49 (0.88)
S. striatum S. argyrocinctum De Meijere 4) 2.80 (3.54)
S. baliense Takaoka & Sofian-Azirun m -
S. chiangmaiense Takaoka & Suzuki 4 0.88 (1.33)
S. nakhonense Takaoka & Suzuki 2 -
S. wangkwaiense Takaoka, Srisuka & Saeung 2 -
S. tuberosum S. jianshiense Takaoka, Otsuka & Adler 3 0.44 (0.44)
S. keningauense Takaoka 4) 0.22 (0.44)
S. tani Takaoka & Davies 5(1) 532 (7.74)°

3The intraspecific divergences indicate possible presence of cryptic species

Table 3 COlidentifications of black flies based on best match (BM) and best close match (BCM) methods

Species identification methods Correct identifications % (n)  Ambiguous % (n) Incorrect identifications Sequences w/o any
% (n) match closer than
1.9% (n)
Best match 89.7 (183) 0.5(1) 9.8 (20) -
Best close match 83.8(171) 0.0(0) 9 (8) 12.3(25)

The sequences of S. (N.) wayani were nested within one
of the S. (N.) aureohirtum subgroups with low genetic
distances (minimum=0.66%), although S. (N.) aureohir-
tum is readily distinguished from S. (N.) wayani by the
number of pupal gill filaments, suggesting that S. (N.)
wayani is closely related to the S. (N.) aureohirtum sub-
group. Chromosomal analyses indicate, however, that S.
(N.) wayani is closely related to the S. (N.) ornatipes com-
plex of mainland Australia [1], indicating that further
barcode studies should include the S. (N.) ornatipes com-
plex. Takaoka [51] inferred that species of the S. ruficorne
group dispersed eastward from Sumatra in Indonesia to
the Australasian Region while reducing the pupal gill fila-
ments from eight (S. (N.) glattharri Takaoka & Davies)
to four (S. (N.) ornatipes) through six (S. (N.) aureohir-
tum). Simulium (N.) wayani has four pupal gill filaments.
Our results support the hypothesis that S. (N.) wayani
might have evolved from an ancestral six-filamented
population of S. (N.) aureohirtum, proposed by Takaoka,

Sofian-Azirun [52], perhaps along with members of the S.
(N.) ornatipes complex [1].

As expected from Pramual and Nanork [53], S. (S.)
fenestratum was paraphyletic with respect to other mem-
bers of the S. multistriatum group. The specimen from
Indonesia forms a clade separate from the Thailand
sequences retrieved from GenBank, although Indonesian
S. (S.) fenestratum is genetically closer to two Thailand
sequences (GenBank accession numbers: MG734051 and
MG734055). The intraspecific variation of S. (S.) fenestra-
tum from Indonesia could not be examined, as only one
specimen was available. Simulium (Simulium) ubonae
has low interspecific distances compared with other taxa
in our study. The genetic distances of S. (S.) ubonae com-
pared with those of S. (S.) chainarongi (0.88%) and one
sequence of S. (S.) fenestratum (0.66%) are especially low,
indicating S. (S.) ubonae is genetically closer to these two
species. This result does not agree with a previous study
showing high interspecific distances (minimum =4.9%) of
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S. (S.) ubonae [54]. The non-monophyly of S. (S.) chiang-
maiense, S. (S.) nakhonense and S. (S.) wangkwaiense in
the S. striatum group in our study was expected; a pre-
vious study by Pangjanda and Pramual [55] showed that
the COI gene was unable to separate these three taxa.

In the S. tuberosum group, S. (S.) tani is a large species
complex [56-58]; thus, the high intraspecific divergence
in our study was expected. Although the single barcode
of S. (S.) tani showed high intraspecific distances (mini-
mum=3.10%) compared to other Thailand sequences,
delimitation methods do not classify S. (S.) tani from
Indonesia as a separate taxonomic unit. However, due to
the availability of only one sample, genetic results provide
limited information on the intraspecific variation of S.
(S.) tani from Indonesia.

A rough indicator of separate species in the Simuliidae
has been suggested as 3% divergence [59]. Accordingly,
S. (G.) gyorkosae, S. (G.) cheongi, S. (G.) floresense, S. (S.)
eximium, S. (S.) iridescens and S. (S.) argyrocinctum are
possible species complexes. All COI sequences of these
nominal species, except S. (G.) cheongi, are reported
here for the first time. Takaoka and Davies [15] first sus-
pected that S. (G.) iridescens is a species complex because
males from West Java differ from those at the type local-
ity in East Java. Morphological differences have also been
found between males of S. (G.) gyorkosae from Bali and
Lombok [60]. The cytotaxonomy of S. (S.) eximium sug-
gested that it includes two cryptic species [61]. For S. (G.)
floresense and S. (S.) argyrocinctum, no morphological
or cytogenetic studies indicate possible cryptic diversity.
Intraspecific distances of these species, which exceed
3%, hint at possible cryptic diversity, but more study is
required. On the other hand, the COI gene strongly sug-
gests that S. (G.) cheongi from Indonesia and Malaysia
represents two genetically distinct species, as evidenced
by the high genetic divergence between the two line-
ages and their placements in the tree. The two clades are
also recognised as separate taxa. The Malaysian lineage
is more closely related to S. (G.) atratum based on their
genetic distance and the sister relationship between the
two species.

In addition to the species pairs with low levels of inter-
specific distances described earlier, the two species in
the following species pairs group together in the tree and
possess low minimum genetic distances between them: S.
(G.) sumbaense and S. (G.) chumpornense (2.21%), S. (S.)
nobile and S. (S.) timorense (1.11%), and S. (S.) baliense
and S. (S.) argyrocinctum (2.21%). The low interspecific
distances between S. (S.) nobile and S. (S.) timorense
are comparable to those in previous studies [27, 29].
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Simulium (Gomphostilbia) sumbaense is assigned to the
S. chumpornense subgroup and has a similar arrange-
ment of pupal gill filaments to S. (G.) chumpornense [52].
In contrast, S. (S.) baliense and S. (S.) argyrocinctum are
structurally alike in their pupal gill arrangements [60].
Although these three species pairs are structurally alike,
the species are nonetheless separable by other characters.
Their low genetic distances suggest that the members of
each pair are closely related.

Conclusions

COI-based DNA barcoding is a valuable means of
identification of black flies in Indonesia, except for a
limited number of taxa, especially nominal species
known to be complexes. The separation of these
problematic taxa requires other options, such as fast-
evolving genes and cytogenetics. Several nominal species
were unavailable for in-depth inspection because of
limited sampling. For instance, only one sequence was
included for the following species, limiting the study
of their intraspecific variation: S. (G.) sunapii, S. (G.)
rangatense, S. (G.) sumbaense, S. (N.) aureohirtum, S.
(S.) fenestratum, S. (S.) nebulicola, S. (S.) baliense and S.
(S.) tani. Therefore, more samples should be collected
from Indonesia for in-depth studies. Furthermore, no
morphological variation was observed in the species
that showed high intraspecific divergences; further
detailed morphological examinations are thus required
to confirm the presence of cryptic diversity. Nevertheless,
this research provides a basis for future comprehensive
studies on black flies in Indonesia. The deposition of
COI sequences into publicly accessible databases also
enables the establishment of a novel sequence library
for Indonesian black flies. Additionally, the nucleotide
database is expected to serve as a reference for species
identification and comparative studies of other species
of Indonesian black flies that were not included in this
study. Overall, our findings establish the groundwork
for further utilization of COI barcoding as a rapid and
precise method for exploring the diversity of Indonesian
black flies.
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