Lecture 4: Testing predictive performance of niche-based distribution models

Prepared by: Richard Pearson Adapted by: Alison Cameron

Outline:

- Sources of evaluation data
- Presence-only testing
- Presence-absence testing
- Setting decision thresholds
- Threshold-independent testing

The main steps to build & validate a species distribution model (SDM)

Model validation

- Fielding, A. H., and J. F. Bell. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. *Environmental Conservation*. 24:38-49.
- Austin, M. (2007) Species distribution models and ecological theory: A critical assessment and some possible new approaches. *Ecological Modelling*. 200:1-19

YouTube Tutorials

- **Townsend Peterson**
- English

https://www.youtube.com/watch?v=nTLP8oPc Pl8

• Portuguese

https://www.youtube.com/watch?v=WCI-hVP-Nt4

Y

Y

Hastie et al. (2001)

Model calibration and evaluation strategies: resubstitution

(after Araújo et al. 2005 Gl. Ch. Biol.)

Model calibration and evaluation strategies: independent validation

(after Araújo et al. 2005 Gl. Ch. Biol.)

Model calibration and evaluation strategies: data splitting

(after Araújo et al. 2005 Gl. Ch. Biol.)

Cross validation

- 1. Split data randomly into k roughly equal-sized parts. Take turns using each part as a test set and the other k 1 parts for model training.
- 2. Compute test statistic each time. Cross-validation estimate of predictive performance is the average of the *k* tests.

n observations

Model calibration and evaluation strategies:*k*-fold partitioning= Train / validate

Final prediction is a combination of the predictions from k ensemble models

- 2 main types of test:
- Threshold dependent
- Threshold independent

Used to tell which part of a model is useful & whether one model is better than another.

THRESHOLDING

The four types of results that are possible when testing a distribution model

Geographical space

(see Pearson NCEP module 2007)

Presence-absence confusion matrix

	Recorded present	Recorded (or assumed) absent		
Predicted present	a (true positive)	b (false positive)		
Predicted absent	c (false negative)	d (true negative)		

Presence-only test statistics

Proportion of observed presences correctly predicted (or 'sensitivity', or 'true positive fraction'): a/(a + c)

Presence-only test statistics

Proportion of observed presences correctly predicted (or 'sensitivity', or 'true positive fraction'): a/(a + c)

Proportion of observed presences incorrectly predicted (or 'omission rate', or 'false negative fraction'): c/(a + c)

Absence-only test statistics

Proportion of observed (or assumed) absences correctly predicted (or 'specificity', or 'true negative fraction'): d/(b+d)

Absence-only test statistics

Proportion of observed (or assumed) absences correctly predicted (or 'specificity', or 'true negative fraction'): d/(b+d)

Proportion of observed (or assumed) absences incorrectly predicted (or 'commission rate', or 'false positive fraction'): b/(b+d)

Presence-absence test statistics

	Recorded present	Recorded (or assumed) absent
Predicted present	a (true positive)	b (false positive)
Predicted absent	c (false negative)	d (true negative)

Proportion correctly predicted, or 'accuracy', or 'correct classification rate':

$$(a + d)$$

Presence-absence test statistics

	Recorded present	Recorded (or assumed) absent
Predicted present	a (true positive)	b (false positive)
Predicted absent	c (false negative)	d (true negative)

Proportion correctly predicted, or 'accuracy', or 'correct classification rate':

(a + d)/(a + b + c + d)

WHICH THRESHOLD IS BEST?

A very complicated answer!

Again, it depends on what you want to use the model for.

TO COMPARE THRSHOLDS:

All Presence Data

Split presence data: 75% Training 25% Testing

Derive Model from 75% Training data

Overlay Presence Test Data

Overlay Absence Test Data

- in our case we use randomly generated "pseudo-absences"

First Threshold 0.0

		ACT	UAL
		+	-
PREDICTED	+	ТР	FP
	_	FN	TN

Sensitivity = TP / All Actual Positives

Second Threshold 0.75

		ACT	UAL
		+	-
PREDICTED	+	ТР	FP
	_	FN	TN

Sensitivity = TP / All Actual Positives

Third Threshold 0.9

		ACT	UAL
		+	-
PREDICTED	+	ТР	FP
	_	FN	TN

Sensitivity = TP / All Actual Positives

WHICH THRESHOLD IS BEST?

presence-absence data

Presence-absence test statistics

	Recorded present	Recorded (or assumed) absent
Predicted present	a (true positive)	b (false positive)
Predicted absent	c (false negative)	d (true negative)

Cohen's Kappa:

$$k = \frac{\left[(a+d) - \left(\left((a+c)(a+b) + (b+d)(c+d)\right)/n\right)\right]}{\left[n - \left(\left((a+c)(a+b) + (b+d)(c+d)\right)/n\right)\right]}$$

Selecting a decision threshold (p/a data)

Threshold selection

 Liu, C., Berry, P. M., Dawson, T. P. and Pearson, R. G. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385-/393.

Selecting a decision threshold (p/a data)

Code Approach	Definition	Reference
Subjective approach 1 Fixed threshold approach	Taking a fixed value, usually 0.5, as the threshold	Manel et al. (1999), Bailey et al. (2002)
Objective approaches Single index-based approaches: 2 Kappa maximization approach	Kappa statistic is maximized	Huntley et al. (1995).
3 OPS maximization approach	Overall prediction success (OPS) is maximized	Guisan et al. (1998)
Model-building data-only-based approach: 4 Prevalence approach	Taking the prevalence of model-building data as the threshold	Cramer (2003)
Predicted probability/suitability-based approach 5 Average probability/suitability approach	hes: Taking the average predicted probability/ suitability of the model-building data as	Cramer (2003)
6 Mid-point probability/suitability approach	the threshold Mid-point between the average probabilities of or suitabilities for the species' presence for occupied and unoccupied sites	Fielding and Haworth (1995)
Sensitivity and specificity-combined approache 7 Sensitivity-specificity sum maximization approach	s: The sum of sensitivity and specificity is maximized	Cantor et al. (1999), Manel et al. (2001)
8 Sensitivity-specificity equality approach	The absolute value of the difference between sensitivity and specificity is minimized	Cantor et al. (1999)
9 ROC plot-based approach	The threshold corresponds to the point on ROC curve (sensitivity against 1- specificity) which has the shortest distance to the top-left corner (0.1) in ROC plot	Cantor et al. (1999)
Precision and recall-combined approaches: 10 Precision-recall break-even point approach	The absolute value of the difference	Shapire et al. (1998)
11 P-R plot-based approach	The threshold corresponds to the point on P-R (Precision-Recall) curve which has the shortest distance to the top-right corner	
12 F maximization approach	(1,1) in P-R plot The index F is maximized. In this study, $\alpha = 0.5$ is used in F, i.e. there is no preference to precision and recall	Shapire et al. (1998)

(Liu et al. 2005 *Ecography* 29:385-393)

Maxent Output

🕹 Mozilla Firefox 💶 🗖 🔀						
File Edit View Go Bookmarks Tools Help						
🖕 • 🇼 • ಶ 🛽) 🏠 🗋 file:///t:/dat	a/tutorial/outputs/bradypus_	variegatus.html	💌 🜔 Go 💽		
🌮 Getting Started 🗟 Late	est Headlines					
Some common thresholds and corresponding binomial probabilities are as follows. The binomial probabilities are calculated using a normal approximation to the binomial.						
Cumulative threshold	Fractional predicted area	Training omission rate	Test omission rate	P-value		
1	0.604	0.000	0.000	6.516586244861611E-6		
5	0.420	0.000	0.000	1.2505936795802532E-10		
10	0.318	0.046	0.046	9.613377387017234E-14		
💌 Find: 💿 Find Next 🙆 Find Previous 📰 Highlight 🗖 Match case						
Done						

Area Under the Reciever Operator Characteristic Curve (AUC)

A threshold-independent test statistic:

A Reciever Operator Characteristic (ROC) plot

All Presence Data

Split presence data: 75% Training 25% Testing

Derive Model from 75% Training data

Overlay Presence Test Data

Overlay Absence Test Data

- in our case we use randomly generated "pseudo-absences"

First Threshold 0.0

		ACT	UAL
		+	-
PREDICTED	+	ТР	FP
	_	FN	TN

Sensitivity = TP / All Actual Positives

A Reciever Operator Characteristic (ROC) plot

Second Threshold 0.75

		ACT	UAL
		+	-
PREDICTED	+	ТР	FP
	_	FN	TN

Sensitivity = TP / All Actual Positives

A Reciever Operator Characteristic (ROC) plot

Third Threshold 0.9

		ACT	UAL
		+	-
PREDICTED	+	ТР	FP
	_	FN	TN

Sensitivity = TP / All Actual Positives

A Reciever Operator Characteristic (ROC) plot

Threshold-independent assessment: The Receiver Operating Characteristic (ROC) Curve

(check out: http://www.anaesthetist.com/mnm/stats/roc/Findex.htm)

What is a 'good' result?

Some *subjective* guidelines:

Kappa (after Landis & Koch 1977 *Biometrics*):

- 0-0.4: poor
- 0.4 0.75: good
- 0.75 1.0: excellent

AUC (after Swets 1988 Science):

- 0.5 0.7: poor discrimination
- 0.7 0.9: reasonable discrimination
- 0.9 1.0: very good discrimination