Principes de la Bonne Pratique sur le Géoréférencement

GLOBAL BIODIVERSITY INFORMATION FACILITY
INTRODUCTION ... 1
1. DEFINITION ... 1
2. PRINCIPES DE LA BONNE PRATIQUE .. 1

CONTEXTE .. 3
BIoGeoMANCER CLASSIC ... 3
MANIS .. 3
MAPSTeDI .. 3
INRAM .. 4
GEOLOCATE .. 4
ERIN ... 5
DOCUMENT CLES ET LIENS .. 5

COLLECTE ET ENREGISTREMENT DES DONNEES SUR LE TERRAIN 7
1. L’IMPORTANCE DU BON ENREGISTREMENT DES DONNEES DE LOCALITE .. 7
2. ENREGISTRER LES LOCALITES ... 8
3. ENREGISTRER LES COORDONNEES ... 8
4. UTILISER UN GPS .. 9
5. ENREGISTRER LE REFERENTIEL GEODESIQUE ... 10
6. ENREGISTRER L’ALTITUDE .. 11
7. ENREGISTRER LES CAPS ... 11
8. ENREGISTRER LES ETENDUES ... 12
9. ENREGISTRER L’ANNEE DE COLLECTE .. 12
10. DOCUMENTATION ... 13
11. ENREGISTREMENT DES DONNEES POUR LES PETITES ETIQUETTES .. 13
12. NOUVELLES TECHNOLOGIES ... 14

COMMENCER LE PROCESSUS DU GEOREFERENCEMENT 15
1. INTRODUCTION ... 15
2. LES RESSOURCES NECESSAIRES.. 16
3. CHAMPS A INTEGRER DANS LA BASE DE DONNEES .. 16
 a. Determine les champs necessaires .. 16
 b. Champs des localites ... 17
 c. Champs de georeferencement ... 17
 d. Donnees ecologiques .. 19
 e. Applier des contraintes .. 19
4. INTERFACES UTILISATEUR ... 20
5. UTILISATION DES NORMES ET DES DIRECTIVES ... 20
6. CHOISIR UNE METHODOLOGIE ... 21
 a. Tri d’enregistrements pour un georeferencement par lots 22
 b. Utiliser des enregistrements georeferences anterieurement 23
 c. Utilisation de BiogeoMancer ... 23
7. OPERATEURS DE SAISIE ... 24
 Georeferencer les donnees patrimoniales ... 25
1. CLASSIFIER LA DESCRIPTION DE LOCALITE ... 25
2. TROUVER LA LATITUDE ET LA LONGITUDE .. 26
3. UTILISER DES DECALAGES .. 26
4. TROUVER L’ETENDUE ... 27
5. CALCULER LES INCERTITUDES ... 27
 a. Calculer l’incertitude due a un referentiel geodesique inconnu 28
 b. Calculer l’incertitude liee a la distance ... 29
 c. Calculer l’incertitude liee a l’etendue des localites 30
 d. Calculer l’incertitude liee a la direction .. 30
 e. Calculer l’incertitude liee a la precision sur les coordonnees 31
 f. Calculer l’incertitude liee a l’utilisation d’une carte 32
 g. Calculer des incertitudes combinées ... 35
 h. Utilisation du calculateur de georeferencement de MaNIS 35
Ce article est équivalent à :
Copenhagen: Global Biodiversity Information Facility. 84 pp. ISBN: 87-92020-00-3 (disponible au format PDF sur http://www.gbif.org)
Introduction

L'un des résultats du projet « Biogeomancer » est un document sur les bonnes pratiques pour géoréférencer les données sur les espèces biologiques (spécimens et observations). Plusieurs projets (MaNIS, MapSTeDI, INRAM, GEOLocate, NatureServe, CRIA, ERIN, CONABIO, etc.) ont déjà développé des directives et des outils pour le géoréférencement, et ceux-ci fournissent un bon point de départ pour un tel document.

Le document fournit des directives sur les bonnes pratiques pour géoréférencer de telles données, mais il est important que les organisations et institutions produisent ensuite leur propre document interne qui intègre dans leur propre environnement de travail les pratiques exposées ici.

Le document présente des exemples de géoréférencement pour différents types d'emplacements, et fournit des informations et des exemples pour la détermination de l'étendue et de l'incertitude maximale sur la distance des emplacements en fonction des informations fournies.

1. Définition

« Le terme bonne pratique se réfère généralement à la meilleure façon possible de faire quelque chose ; il est couramment utilisé dans les domaines de la gestion, du génie logiciel et de la médecine, et de plus en plus dans le domaine de l'administration. [...] Souvent, l'expression 'bonne pratique actuelle' désigne la même chose de manière plus précise, en soulignant que la 'bonne pratique' est susceptible d'améliorations futures. » (Wikipedia : Bonne pratique).

2. Principes de la bonne pratique

- **Exactitude** – il s'agit d'une mesure de la capacité des données à représenter les vraies valeurs. La bonne pratique recommande de fournir avec les données une incertitude, en pourcentage ou en mètres, ou sous forme de polygone.

 Dans le cas du géoréférencement – il s'agit actuellement le plus souvent d'un rayon d'incertitude ; mais des polygones d'incertitude commencent à être utilisés dans certains cas. L'utilisation d'aires de probabilité est aussi à l'étude.

- **Effectivité** – c'est la probabilité qu'un programme de travail atteigne ses objectifs.

 Dans le cas du géoréférencement – c'est le pourcentage d'enregistrements pour lesquels la latitude et la longitude peuvent être obtenues avec une bonne précision en utilisant BioGeomancer ou par tout autre moyen.

- **Efficacité** – c'est le rapport entre le produit et ce qui a été nécessaire pour l'obtenir.

 Dans le cas du géoréférencement – l'efficacité est inversement proportionnelle à l'effort nécessaire pour obtenir un résultat acceptable. Y compris à la quantité d'information que l'utilisateur doit se procurer pour obtenir un résultat correct (par exemple, des gazetiers, des itinéraires de collecte, etc).

- **Fiabilité** – elle est liée à l'exactitude et se réfère à la cohérence des résultats produits.

 Dans le cas du géoréférencement – il s'agit de la constance avec laquelle une référence géographique peut être obtenue par l'utilisateur pour une même localité.
• **Accessibilité** – c’est la facilité avec laquelle les utilisateurs, quels qu’ils soient, peuvent accéder aux résultats

Dans le cas du géoréférencement – c’est la facilité avec laquelle tout utilisateur peut accéder aux coordonnées d’une localité géoréférencée.

• **Transparence** – elle consiste à expliciter les procédures utilisées pour collecter, analyser, rapporter et mettre à jour les données.

Dans le cas du géoréférencement – cela se réfère à la qualité des métadonnées et de la méthodologie du géoréférencement d’une localité donnée.

• **Opportunité** – se rapporte à la fréquence de la collecte des données, de ses rapports et de ses mises à jour.

Dans le cas du géoréférencement – cela se réfère essentiellement à la fréquence de mise à jour des gazetiers, et au rythme du géoréférencement et de la mise à disposition des données.

• **Pertinence** – les données rassemblées devraient répondre aux besoins de l’utilisateur - c’est-à-dire, devraient satisfaire le principe de “l’aptitude à l’usage”.

Dans le cas du géoréférencement - cela se réfère au format des résultats (lequel doit inclure de bonnes métadonnées sur les sujets ci-dessus).

De plus, un bon document sur les bonnes pratiques doit:

- Aligner la vision, la mission et les plans stratégiques d’une institution sur ses politiques et procédures, et gagner l’appui des bailleurs et/ou de la Direction.
- Utiliser un format normalisé pour décrire les politiques et procédures de l’institution.
- Satisfaire des normes professionnelles du domaine.
- Satisfaire la Direction et les auditeurs externes/internes.

Cette liste n'est en aucun cas exhaustive, mais elle couvre en revanche la plupart des éléments nécessaires pour identifier les bonnes pratiques.
Contexte

Plusieurs projets ont consacré de nombreuses années à développer des directives et des outils pour améliorer le géoréférencement des données primaires sur la biodiversité. Ce document s’inspire largement de ces initiatives précédentes et tente de rassembler leurs résultats en un document complet sur les bonnes pratiques. Un tel document n’aurait pas pu être réalisé sans ces travaux antérieurs. Les liens se trouvent ci-dessous dans "Documents Clés et Liens" à la fin de ce Chapitre.

BioGeoMancer Classic

Le programme original BioGeoMancer Classic a été développé par Reed Beaman, qui est maintenant à l'Université de Yale. Cet outil fournit un service de géoréférencement pour des collecteurs, des conservateurs et des utilisateurs de spécimens d'histoire naturelle. BioGeoMancer Classic peut faire l'analyse syntaxique de descriptions de lieux en anglais et fournir des jeux de coordonnées latitude/longitude associés aux descriptions. Il fournit des calculs de décalage lorsqu'une collecte est géoréférencée à une certaine distance et direction cardinale du toponyme le plus proche. Pour plus de détails sur sa façon de fonctionner - voir « Ce qu'il fait ….»

MaNIS

Avec l'appui de la Fondation Nationale (américaine) pour la Science, dix-sept institutions Nord-Américaines et leurs collaborateurs ont développé le "Mammal Networked Information System" (Système d'Information en Réseau sur les Mammifères). Les objectifs originaux de MaNIS étaient de 1) faciliter l'accès ouvert à des données de spécimens combinées à partir d'un navigateur Internet, 2) augmenter la valeur des collections de spécimens, 3) conserver les ressources curatoriales et 4) utiliser un paradigme de conception qui pourrait être facilement adopté par d'autres disciplines ayant des besoins similaires.

Le réseau MaNIS a développé de nombreux outils et directives pour aider à géoréférencer les collections dans le réseau MaNIS. Ces documents et outils ont largement inspiré le présent document.

MapSTeDI

À la différence de MaNIS ou d'autres projets, qui sont fortement centrés sur la taxonomie et ont débouché sur une base de données fédérative, MapSTeDI était centré sur une région, et a produit un SIG distribué. Comme pour d'autres projets cités ici, le géoréférencement était la première étape essentielle de MapSTeDI. Elle a fourni les données qui permettent les analyses spatiales et temporelles sur le SIG en ligne de MapSTeDI. Le projet MapSTeDI a

1 BioGeoMancer Classic – Ce qu’il fait … <http://130.132.27.130/yu/bgm-docs/what-it-does.html>
aussi développé des directives détaillées et des outils, comme les "Protocoles de géoréférencement MaPSTeDI", et le "Guide du géoréférencement", dont nous nous sommes beaucoup inspiré dans ce document.

INRAM

L'Institut d'analyse et de gestion de la ressource (en anglais “Institute of Resource Analysis and Management”, INRAM) a cherché à augmenter la valeur des données sur les spécimens du Muséum du Nouveau Mexique en soutenant le géoréférencement des lieux de récolte au Nouveau Mexique. Des données qui seraient géoréférencées au hasard sont peu utiles à la science, le premier objectif de l'équipe de l'INRAM en charge du géoréférencement a donc été de développer un protocole détaillé et complet décrivant la meilleure manière de déterminer les coordonnées et l'incertitude associée pour une localité donnée. L'équipe de l'INRAM a commencé par évaluer le protocole utilisé par le projet MaNIS auquel participait le département de mammalogie du Muséum de Biologie du Sud-ouest (en anglais « Museum of Southwestern Biology », MSB) et a identifié plusieurs améliorations à lui apporter. En particulier, INRAM a créé une liste plus détaillée de types de localité avec un jeu de règles spécifique pour chacun quant à la façon de déterminer des coordonnées et l’incertitude associée.

INRAM a aussi cherché à maximiser l'efficacité et l'exactitude du processus de géoréférencement. Avec l'aide du programme sur le patrimoine naturel du Nouveau Mexique (en anglais "New Mexico Natural Heritage Program") et du Muséum de Biologie du Sud-ouest, INRAM a développé un SIG combiné à une base de données qui exécute le protocole de manière beaucoup plus simple pour les étudiants travaillant sur ce sujet. Les deux réunis, le protocole d'INRAM et le logiciel de géoréférencement, fournissent un processus de géoréférencement semi-automatisé qui a permis une saisie de données précise et rapide, et qui a laissé un rapport détaillé des méthodes et des hypothèses utilisées pour géoréférencer chaque spécimen.

GEOLocate

En février 2002, Henry Bart et Nelson Rios ont obtenu un nouveau financement de la Fondation Nationale pour la Science des États-Unis pour développer un progiciel permettant de faciliter le géoréférencement des données de collections d'histoire naturelle, en utilisant la “Collection de Poissons de Tulane” comme banc d'essai. Le résultat produit fut “GEOLocate”, un outil qui permet un géoréférencement automatisé complet des localités nord-américaines. Le développement se poursuit, notamment pour atteindre une couverture mondiale, et fournir un support multilingue, une reconnaissance de formes définies par l'utilisateur et une capacité de géoréférencement collaboratif. GEOLocate est aussi porté sous
forme de Web service en vue de son intégration dans le développement en cours de BioGeomancer.

ERIN

Le Réseau d'Information sur les Ressources Environnementales (en anglais, « Environmental Resources Information Network », ERIN) a été établi dans le Ministère de l'Environnement australien en 1989 et a commenced à financer le stockage de données et le géoréférencement des collections de muséums et d'herbiers australiens. Des méthodes ont été établies pour aider le géoréférencement, y compris la liaison des enregistrements avec les Modèles Numériques de Terrain pour déterminer l'altitude, et des méthodes sophistiquées pour vérifier et valider les données en recherchant les aberrations dans l'espace environnemental à l’aide de techniques de modélisation de niche écologique. Ces méthodes ont récemment été améliorées en collaboration avec le Centre de référence en information environnementale (en portugais « Centro de Referência en Informação Ambiental », CRIA) et Robert Hijmans, l'auteur du logiciel DIVA-GIS.

Document clés et liens

- BioGeoMancer Classic http://classic.biogeomancer.org
- Centro de Referência em Informação Ambiental (CRIA) http://www.cria.org.br
- DIVA-GIS http://www.diva-gis.org
- Exemples de bonnes et de mauvaises localités http://mvz.berkeley.edu/Locality_Field_Recording_examples.html
- GEOLocate – Université de Tulane http://www.museum.tulane.edu/geolocate/
- Système d'Informations en réseau sur les Mammifères “Mammal Networked Information System” (MaNIS) http://manisnet.org/
- Documentation de MaNIS http://manisnet.org/Documents.html
- Directives de géoréférencement de MaNIS/HerpNet/ORNISde
http://manisnet.org/manis GeorefGuide.html

- L’initiative informatique pour les bases de données spatio-temporelles sur les montagnes et les plaines ("The Mountains and Plains Spatio-Temporal Database Informatics Initiative" - MaPSTeDI)
 http://mapstedi.colorado.edu/index.html

- Protocoles de géoréférencement de MaPSTeDI
 http://mapstedi.colorado.edu/georeferencing-protocols.html

- Guide pour le géoréférencement de MaPSTeDI de
 http://mapstedi.colorado.edu/georeferencing-howto.html

- Informatique du Musée de Zoologie des Vertébrés (en anglais, “Museum of Vertebrate Zoology Informatics”, MVZ) – Université de Californie, Berkeley
 http://mvz.berkeley.edu/Informatics.html

- Guide du MVZ pour enregistrer des localités sur le terrain:
 http://mvz.berkeley.edu/Locality_Field_Recording_Notebooks.html

- Raisons pour lesquelles il est important de saisir de bonnes données sur les localités (MVZ)
 http://mvz.berkeley.edu/Locality_Field_Recording_important.html

- Index documentaire de l’OGC sur les recommandations
 http://www.opengeospatial.org/specs/?page=recommendation
Collecte et enregistrement des données sur le terrain

La collecte de données sur le terrain est le cadre idéal pour mettre en œuvre de bonnes procédures de géoréférencement. De nombreuses techniques récentes permettent maintenant d’obtenir une grande précision dans le géoréférencement des lieux de collecte ; il faut cependant enregistrer correctement le lieu de collecte pour réduire la probabilité d'erreur. Nous recommandons que tous les nouveaux actes de collecte utilisent un GPS pour enregistrer les coordonnées chaque fois que cela est possible, en prenant soin de configurer le GPS avec les références appropriées (voir ci-dessous).

1. L’importance du bon enregistrement des données de localité

De bonnes descriptions des localités permettent des géoréférencements plus précis avec des incertitudes réduites, et fournissent aux utilisateurs des données beaucoup plus précises et de grande qualité. En enregistrant des données sur le terrain, que ce soit à l’aide d'une carte ou avec un GPS, il est important d'enregistrer les informations pertinentes sur la localité, avec le géoréférencement, afin qu’une validation ultérieure puisse être effectuée si nécessaire.

L’un des objectifs, lorsqu’on décrit une localité donnée, est de permettre la validation des coordonnées, dans lesquelles les erreurs seraient autrement difficiles à détecter. Bien sûr, la validation n’est possible que dans la mesure où la description de la localité et sa contrepartie spatiale décrivent bien le même endroit. La qualité de la description de localité est d’autant meilleure qu’elle contient moins de sources d’incertitude. En utilisant une distance le long d’un chemin, ou deux distances orthogonales à partir d’un lieu connu, on évite l’incertitude liée à des caps imprécis. Choisir un point de référence de petite taille réduit l'incertitude intrinsèque liée à cette taille. Et choisir un point de référence proche réduit l’impact de l’erreur sur la mesure de la distance.

Pour faciliter la validation d'une localité, utilisez des points de référence qui sont faciles à trouver sur des cartes ou dans des index géographiques. Evitez à tout prix d'utiliser des termes vagues comme "près de" et "centre de" ou encore de fournir seulement une indication de position relative incomplète, sans distance, comme "à l'Ouest d'Albuquerque".

Dans n'importe quelle localité qui contient un endroit dont le nom peut être confondu avec celui d’un autre endroit de type différent, il faut spécifier le type entre parenthèses après le nom de la localité.

Exemples:

Exemple de description de localité utilisant une distance le long d’un chemin :
Rive Est du lagon Bolinas, à 3.1 km vers le Nord-Ouest le long de la Highway 1, depuis l’intersection entre la Highway 1 et la rue del Arpyo à Stinson Beach (ville), Marin Co., Calif.

Exemple de description de localité utilisant deux distances relatives à partir d'un point de référence:
Itérrain de glace en dessous du Cerro El Plomo, 0.5 km S et 0.2 km O du sommet, Région de Metropolitana, Chili.

2. Enregistrer les localités

Il faut décrire la localité, même si vous avez ses coordonnées géographiques. La description devrait être aussi spécifique, succincte, claire, complète et précise que possible, sans laisser d’incertitude quant à son interprétation.

Les localités utilisées comme points de référence devraient être stables – c’est-à-dire des emplacements (villes, points géodésiques, etc.) qui vont rester les mêmes pendant longtemps après l’acte de collecte. N’UTILISEZ PAS des emplacements temporaires ou des repères d’itinéraire de collecte comme lieux de référence clés. Vous avez peut-être effectué un enregistrement GPS précis pour un emplacement temporaire, et ensuite référencé les collectes suivantes à partir de celui-ci (par exemple, 200 m au SE de la Land Rover), et cela peut très bien avoir un sens pour cette série de collectes. Mais ce repérage perdra son sens, ensuite, lorsque les collectes se trouveront séparées et déposées dans un muséum selon un rangement taxonomique, car le lien avec l'endroit où était placée la «Land Rover» sera alors perdu.

Lorsque l’on enregistre des lieux le long d'un itinéraire fixe (route, rivière, etc.), il est aussi important de noter si les distances ont été mesurées le long de cet itinéraire («en suivant la route») ou en ligne droite depuis l'origine («à vol d'oiseau»).

Indication : Les localités les plus précises sont celles décrites par a) une distance et un cap le long d’un itinéraire à partir d’une intersection proche et clairement définie, ou b) deux distances relatives selon deux directions cardinales à partir d’une référence unique et proche de petite dimension.

3. Enregistrer les coordonnées

Les coordonnées sont un bon moyen de définir une localité, car non seulement celle-ci ne peut pas être définie avec plus de précision par une description, mais en plus, elle est alors directement utilisable dans des applications mettant en œuvre un SIG. Il faut toujours inscrire autant de décimales qu’en donne la source des coordonnées. Une mesure donnée en degrés décimaux avec cinq décimales est plus précise qu'une mesure donnée en degrés, minutes, secondes à la seconde près, et plus précise qu'une mesure en degrés et minutes décimales données avec trois décimales (voir le Tableau 4). Certains récepteurs GPS récents permettent maintenant d’enregistrer les données en secondes décimales, et ceci (avec deux décimales), fournit une précision comparable à celles des degrés décimaux.

Chaque fois que c’est réalisable, il faut fournir les coordonnées de l'emplacement où la collecte a effectivement eu lieu (voir **Dimension de la zone de collecte**, ci-dessous). En lisant des coordonnées à partir d'une carte, il faut utiliser le même référentiel géodésique que celui de la carte. Le référentiel géodésique est une partie essentielle de la description d’un emplacement par ses coordonnées ; il fournit le système de référence. Lorsque vous utilisez en même temps une carte et un GPS sur le terrain, il faut que le GPS soit réglé sur le même référentiel géodésique que celui de la carte, afin que les coordonnées fournies par le GPS correspondent à celles que donne la carte. Il faut bien s’assurer d’enregistrer le système de données utilisé.

Certains projets spécifiques peuvent exiger des référentiels géodésiques particuliers, mais nous trouvons que les coordonnées géographiques en degrés décimaux sont les plus commodes pour le géoréférencement. Puisque ce format repose sur deux attributs seulement, un pour la latitude, et un autre pour la longitude, il fournit une description concise et applicable partout, qui est de plus facile à traduire d'autres référentiels géodésiques. En minimisant le nombre d'attributs enregistrés, les chances d'erreurs de transcription s'en trouvent réduites (Wieczorek *et al.* 2004).
Indication: Les degrés décimaux sont préférables lorsqu'on lit les coordonnées sur un GPS, voir cependant le paragraphe Utiliser un GPS, ci dessous.

Indication: Si on utilise des coordonnées UTM, il faut toujours enregistrer la Zone UTM.

4. Utiliser un GPS

La technologie du GPS (Système de positionnement global ; en anglais, “Global Positioning System”) utilise la triangulation pour déterminer la position d'un point sur la surface terrestre. La distance calculée est celle qui sépare le récepteur GPS des satellites du système GPS (Van Sickle 1996). Comme la position des satellites GPS dans l’espace est connue, la position à la surface de la Terre peut être calculée. Un minimum de quatre satellites GPS est requis pour déterminer une position sur la surface terrestre (McElroy et al. 1998, Van Sickle 1996). Ceci n’est généralement pas une limitation aujourd’hui, puisque l’on peut souvent capter sept satellites ou plus dans la plupart des emplacements sur Terre. Cependant, autrefois le nombre de satellites que l’on pouvait capter n’était pas toujours suffisant. Avant mai 2000, la plupart des récepteurs GPS utilisés par des civils étaient soumis à une « Disponibilité Sélective ». La suppression de cette technique de dégradation de signal a grandement amélioré l'exactitude que l’on peut généralement attendre des récepteurs GPS (NOAA 2002).

Pour obtenir la meilleure exactitude possible, le récepteur GPS doit être placé dans un secteur libre d'obstructions aériennes et de surfaces réfléchissantes, et avoir un bon champ de vision vers l'horizon (par exemple, ils ne fonctionnent pas très bien sous une couverture forestière dense). Le récepteur GPS doit pouvoir enregistrer des signaux d'au moins quatre satellites GPS dans un arrangement géométrique approprié. Le meilleur arrangement est d'avoir "un satellite directement au-dessus et les trois autres situés à égale distance autour de l'horizon" (McElroy et al. 1998). Le récepteur GPS doit être aussi réglé sur un référentiel géodésique approprié pour le secteur, et ce référentiel géodésique doit être enregistré (Chapman et al. 2005a).

L’exactitude du GPS : La plupart des récepteurs GPS sont capables de fournir une exactitude horizontale théorique basée sur les conditions locales au moment de la lecture. Pour des emplacements très spécifiques, il est possible que l’erreur potentielle lors de la lecture du GPS soit du même ordre de grandeur que la dimension de la localité. Dans ces cas-là, l'exactitude du GPS peut contribuer de manière non négligeable à l'incertitude globale sur la position indiquée par les coordonnées.

Avant la suppression de la “Disponibilité Sélective”, l’incertitude sur la lecture des récepteurs GPS portables qui ont été utilisés par la plupart des biologistes et observateurs sur le terrain, était d'environ 100 mètres ou plus (McElroy et al. 1998, Van Sickle, 1996, Leick 1995). Mais depuis lors, la précision des récepteurs GPS s'est améliorée, et aujourd'hui la plupart des fabricants de récepteurs GPS portables promettent une marge d'erreur de moins de 10 mètres dans les zones libres où l’on capte au moins quatre satellites. La précision peut être encore améliorée en faisant la moyenne des résultats de plusieurs lectures au même endroit (McElroy et al. 1998), et certains récepteurs GPS modernes, qui incluent des algorithmes de calcul de moyenne, peuvent ramener la marge d'erreur à environ cinq mètres, voire mieux.

NOAA (2001) suggère que les GPS sans différentiel (voir ci-dessous) peuvent avoir une précision allant de 10 à 15 mètres, selon le récepteur utilisé, la configuration des satellites et les conditions atmosphériques ; mais il s’agit là de la meilleure précision accessible.

L'utilisation de GPS Différentiels (DGPS) peut améliorer considérablement la précision. Les DGPS utilise le géoréférencement d'une Station GPS de Base (généralement un point de
Principes de la bonne pratique sur le géoréférencement

contrôle d’observation) dont l’emplacement est connu, afin de calibrer le récepteur. Ceci repose sur la réception simultanée des positions des satellites par la Station de Base et par le GPS portable, ce qui réduit la marge d’erreur due aux conditions atmosphériques. De cette manière, le GPS portable applique les corrections appropriées à la position déterminée. Selon la qualité des récepteurs utilisés, on peut attendre une précision de 1 à 5 mètres. Cette précision diminue lorsque la distance entre le récepteur et la Station de Base augmente. Là aussi, un calcul de moyen sur plusieurs lectures peut enore améliorer ces valeurs (McElroy et al. 1998). Par exemple, le DGPS des Garde Côtes américains a une exactitude horizontale affichée de ± 10 mètres (95%). En d'autres termes, 95 pourcents du temps une position déterminée en utilisant le DGPS sera dans un rayon de 10 mètres autour de la position terrestre réelle. Sous certaines conditions, les marins peuvent obtenir des marges d'erreurs inférieures à 10 mètres (NOAA 2001).

Le Système d'Augmentation de Large Zone (en anglais, « Wide Area Augmentation System », WAAS) est un système de navigation et d’atterrissage guidés par GPS développé pour le guidage de précision des avions (Département Fédéral de l'Aviation Civile 2004). WAAS utilise des antennes au sol à des emplacements bien précis pour donner une plus grande précision aux récepteurs GPS. Des technologies similaires, comme le Système d’Augmentation de Zone Locale (en anglais, « Local Area Augmentation System », LAAS) sont en cours de développement pour fournir une précision encore plus grande.

5. Enregistrer le référentiel géodésique

Sauf dans des circonstances particulières (les pôles, par exemple), les coordonnées, si l’on ne spécifie pas le référentiel géodésique utilisé, ne décrivent pas une position de manière unique. Une confusion sur le référentiel géodésique peut entraîner une erreur de position de plusieurs centaines de mètres.

Lorsque vous utilisez un GPS, il est important de régler et enregistrer le référentiel géodésique utilisé. Voir la discussion ci-dessous au paragraphe Calculer les imprécisions.

Note! Si la description de la localité n’est pas basée sur une carte, il faut régler le GPS sur le référentiel géodésique WGS84. Il faut enregistrer ce réglage dans toute la documentation.
6. Enregistrer l'altitude

Il faut compléter la description de la localité avec des informations sur l'altitude si elle peut être obtenue facilement. Il est préférable d'utiliser un altimètre barométrique si vous en disposez. Sinon l'altitude peut aussi être obtenue à l'aide d’un modèle numérique de terrain (habituellement réalisé a posteriori en laboratoire), ou bien en utilisant les informations de hauteur associées aux contours et aux points remarquables sur une carte de la région à une échelle appropriée. Enregistrez la méthode utilisée dans les observations.

Note! "Les marquages d'altitude peuvent affiner la zone dans laquelle vous placez un point. Le plus souvent, cependant, ils semblent créer des incohérences. Bien que l'altitude ne doive pas être ignorée, il est important de réaliser que l'altitude a souvent été mesurée de façon inexacte et / ou imprécise, surtout au début du 20e siècle. L'une des meilleures utilisations possibles de l'altitude dans la description de la localité, c'est d'identifier la position précise d'un lieu sur une route ou une rivière dans une zone topographiquement complexe, surtout quand le reste de la description du lieu est vague."

(MaPSTeDi) 2004

Dans des conditions normales, les appareils GPS sont beaucoup moins précis pour l'enregistrement de l'altitude que des distances horizontales, et ils ne signalent pas la précision d'altitude. Il est important de noter que l’altitude affichée par un récepteur GPS est en fait la hauteur par rapport à un ellipsoïde qui modélise la surface de la Terre, et non une hauteur en fonction du niveau moyen de la mer, ou par rapport à un référentiel géodésique normalisé comme le référentiel géodésique australien pour l’altitude (en anglais, « Australian height datum »). En Australie, par exemple, la différence entre l’altitude fournie par un récepteur GPS et celle relative au niveau moyen de la mer peut varier de -35 à +80 mètres et a tendance à varier de façon imprévisible (Chapman *et al.* 2005, McElroy *et al.* 1998, Van Sickle 1996).

Si l'altitude est un élément déterminant de la description d'un lieu, veillez à utiliser une source fiable pour cette mesure (altimètre barométrique, la carte fiable, ou modèle numérique de terrain à l'échelle appropriée), et à préciser la source dans les références. Il n'est pas recommandé de déterminer l'altitude en utilisant un GPS.

Astucre: un altimètre barométrique, lorsqu'il est correctement calibré, est beaucoup plus fiable que le GPS pour obtenir des altitudes précises. Il n'est pas recommandé de déterminer l'altitude en utilisant un GPS. Voir les remarques ci-dessus au paragraphe Utiliser un GPS à propos de l'erreur inhérente à l'usage du GPS pour déterminer l'altitude.

7. Enregistrer les caps

Il est important lorsqu'on utilise une boussole pour enregistrer des caps, que des ajustements soient faits pour enregistrer le Vrai Nord et non pas le Nord Magnétique. La différence entre le Vrai Nord et le Nord Magnétique varie à travers le monde, et dans certains endroits peuvent varier considérablement sur une très petite distance. La différence change également au fil du temps. Par exemple, dans une zone d'environ 250 km au NO de Minneapolis aux États-Unis, la déclinaison varie de 16,6 °E à 12,0 °O sur une distance de seulement 6 km (Goulet, 2001).

Le Centre national de données géophysiques des États-Unis (en anglais, « National Geophysical Data Center », NGDC) a un calculateur³ en ligne qui peut fournir la déclinaison magnétique pour n'importe quel endroit sur la Terre et n’importe quel instant. Si vous avez

besoin de faire des ajustements, nous vous suggérons d'utiliser ce calculateur pour déterminer la déclinaison pour la zone en question. Sinon, déterminez votre cap en utilisant une carte fiable.

8. Enregistrer les Étendues

L'étendue est une mesure de la taille de la zone dans laquelle les collectes ou observations ont eu lieu pour une localité donnée. En supposant que la localité est enregistrée sous la forme des coordonnées d’un point, l'étendue est la distance entre ce point et le point le plus éloigné où collectes ou observations ont été effectuées dans cette localité. Jusqu’ici, l’étendue a rarement été enregistrée, mais elle peut avoir son importance lorsque les collectes ou observations sont étalées sur une zone ou le long d'un transect (par exemple il est fréquent d’effectuer des observations d'oiseaux sur une zone de 2 ha).

Les collectes ou observations ont souvent lieu dans une région décrite collectivement par une seule localité (par exemple, dans un rayon d’1 km autour de l'endroit décrit dans la localité enregistrée). Sans une mesure de l'écart potentiel par rapport au point fourni, un utilisateur des données n’a généralement aucun moyen de connaître la précision réelle de la localisation. L’étendue est un moyen simple d’alerter l'utilisateur sur le fait que, par exemple, tous les spécimens collectés ou observations effectuées l’ont été effectivement dans un rayon d’1 km autour du point enregistré. Il peut être parfois très utile d'inclure dans vos notes de terrain une carte à grande échelle du voisinage de chaque localité, correspondant à la zone dans laquelle collectes et observations ont eu lieu.

Astuce: Une ligne de pièges de 1 km dont les coordonnées se réfèrent au centre a une étendue de 0,5 km. Une zone de 2 ha où les coordonnées sont données au centre d’un cercle a une étendue d’environ 80 m.

9. Enregistrer l’année de collecte

L'année où la collecte a été effectuée peut souvent influer sur le géoréférencement d'un emplacement. Villes, routes, comtés, et même pays peuvent changer de nom et de limites dans le temps. Les rivières et les côtes peuvent changer de position, certaines zones sont inondées ou asséchées selon les saisons et les années, les localités (comme les villes) peuvent changer de taille et de forme, et des zones autrefois naturelles peuvent être devenues des terres agricoles ou des zones urbaines. Des cartes datées peuvent ne plus représenter la situation actuelle. La date est donc une caractéristique importante de la collecte et doit être prise en compte pour déterminer un géoréférencement.
Exemple: « Les localités de collectes le long de l'Alaska Highway sont souvent repérées par les bornes kilométriques, mais l'Alaska Highway est environ 40 km plus courte qu'elle ne l'était en 1942 et l'amélioration de la route continue de la dévier et de la raccourcir chaque année. La localisation précise d'une borne kilométrique, par conséquent, nécessiterait de se référer à la date de collecte. Pour compliquer encore les choses, l'Alaska utilise des jalons historiques (calibré selon des distances de 1942), le Yukon utilise des jalons historiques convertis en kilomètres, et la Colombie-Britannique utilise le kilométrage réel (exprimé en kilomètres) ».

(From Wheeler et al. 2001).

10. Documentation

Il faut enregistrer les sources de toutes les mesures. Au minimum, inclure le nom de la carte et l'échelle, le modèle du récepteur GPS, le référentiel géodésique sur lequel il est réglé, la source des données d'altitude, la zone UTM si vous utilisez des coordonnées UTM, et l'étendue de la localité ou de l’acte de collecte.

Utilisation d'un GPS. Pour avoir la meilleure précision quant à la description d'un lieu donné par un GPS il est important de documenter :

- Les coordonnées obtenues par le GPS
- Le référentiel géodésique
- La précision donnée par le GPS
- La marque du récepteur GPS utilisé

Nota! La plupart des appareils GPS n'enregistrent pas la précision avec les coordonnées de chaque point, mais ils l’indiquent sur l’écran avec les conditions courantes des satellites.

Nota!: La précision indiquée par la plupart des enregistreurs GPS est uniquement une précision relative pour l’instrument sur lequel elle est lue et non la précision réelle. Pour beaucoup d’enregistreurs GPS, la précision signalée est presque toujours plus réduite que celle garantie.

Exemple:

Localité: “Modoc National Wildlife Refuge, 2.8 mi S and 1.2 mi E junction of Hwy. 299 and Hwy. 395 in Alturas, Modoc Co., Calif.”

Lat/Long/Référentiel géodésique : 41.45063, -120.50763 (WGS84)
Altitude : 1330 ft
Précision GPS : 24 ft
Etendue : 150 ft

(Extrait de MVZ Guide for Recording Localities in Field Notes)

11. Enregistrement des données pour les petites étiquettes

Un problème récurrent avec les collectes d'insectes est la difficulté d'enregistrer l'information relative à la localité sur de petites étiquettes. Ceci devrait être maintenant moins problématique du fait que les nouvelles technologies permettent de n’inscrire sur l’étiquette qu’une information de base, et de renvoyer pour le reste à une base de données (par le biais d’un identifiant, par exemple sous forme de code barres). Voir Wheeler et al. (2001) sur les directives relatives à la préparation des étiquettes pour les arthropodes terrestres, mais gardez à l'esprit les principes énoncés dans le présent document lorsque vous préparez les données.
pour les étiquettes d'insectes, en particulier l'enregistrement du référentiel géodésique, etc., que le document cité ne couvre pas.

12. Nouvelles technologies

Un certain nombre de nouvelles technologies commencent à rendre beaucoup plus aisé l'enregistrement des données sur le terrain. Par exemple, un certain nombre de sociétés ont récemment publié des petits ordinateurs de poche, « Assistants numériques personnels » (en anglais, « Personal Digital Assistant », PDA) qui intègrent la fonction GPS et qui peuvent, selon le type, enregistrer les coordonnées avec un degré de précision relativement élevé. Bien qu'ils soient excellents pour enregistrer sur le terrain l'information de localisation en vue d'un transfert ultérieur vers la base de données, et pour préparer les étiquettes, beaucoup ne sont pas pourvus d'une antenne extérieure pour la réception des données satellitaires, et cela est susceptible de réduire la précision des informations enregistrées. Le manque d'antenne extérieure accroît le besoin d'un accès dégagé aux satellites.

L'utilisation d'identifiants globaux uniques (en anglais, « Globally Unique Identifiers », GUIDs) pour identifier de manière unique des objets individuels et d'autres sortes de données (comme des collections et observations) est en discussion. Nous recommandons leur utilisation lorsqu'un système stable sera en place. Une information plus complète sur ce sujet est disponible sur les sites Web du TDWG\(^4\) et du GBIF\(^5\).

\(^4\) http://www.tdwg.org/TDWG_GUID.htm
\(^5\) http://www.gbif.org
Commencer le processus du géoréférencement

1. Introduction

Un certain nombre de questions doivent être abordées avant de se lancer dans le géoréférencement. Cette opération peut sembler rebutante a priori, mais il existe de nombreuses manières de la simplifier et de la rendre plus pratique.

Les gestionnaires et les conservateurs ne manqueront pas de poser de nombreuses questions, dont les plus fréquentes seront les suivantes:

- Quel est le degré de difficulté ?
- Combien cela va-t-il prendre de temps ?
- Quelle proportion de ma collection est déjà numérisée ?
- Quel est l'état actuel de la collection ?
- Quels sont les avantages et inconvénients de géoréférencer la collection ?
- Comment vont être utilisées les données du géoréférencement et par qui ?
- De quelle sorte d'expertise vais-je avoir besoin ?
- Quelle supervision sera nécessaire et par qui ?
- Dans quelle mesure vais-je devoir, ou vouloir modifier mon modèle de données ?
- Combien cela va-t-il coûter et quelles ressources sont disponibles pour le géoréférencement ?
- Quels outils y a-t-il pour m'aider ?
- Puis-je faire confiance à ce que produisent ces outils ?
- De combien de personnes aurai-je besoin pour la saisie ?
- Quelle formation le personnel de saisie doit-il recevoir ?
- Parmi les bonnes pratiques qui ont été établies, combien dois-je vraiment en suivre ?

Ce document ne va pas répondre à toutes ces questions, car beaucoup dépendent des institutions ; mais il devrait quand même répondre à quelques-unes, et donner les moyens de trouver les réponses manquantes.

La premier problème à traiter est celui du système de gestion de données :

- Est-ce que ma base de données actuelle fait l'affaire ou ai-je besoin de la modifier ?
- Quelle modification vais-je devoir apporter à mon interface utilisateur pour faciliter la saisie des données lors du géoréférencement ?
- Quel est le moyen le plus efficace de saisir les données, y compris le géoréférencement ?

Ce document ne couvre pas les méthodes de saisie des données en général. Ces méthodes sont très diverses. On peut citer : la saisie directe depuis l'étiquette en apportant les spécimens ou le registre près de l'ordinateur ; ou inversement l'utilisation d'un ordinateur de poche que l'on approche des spécimens ou du registre ; l'utilisation d'un scanner ou d'un appareil photographique (fixe ou vidéo) pour capturer l'information de l'étiquette afin que la saisie puisse ensuite se faire à partir d'un écran ; ou l'utilisation de reconnaissance d'écriture manuscrite ou de caractères imprimés (OCR) pour récupérer les données ; etc. Certaines de ces méthodes arrivent tout juste à maturité, mais vous devez en faire un examen sérieux afin de choisir celle qui convient le mieux à votre institution.
La section suivante vous aidera à décider si votre base de données doit subir des modifications ou non, et dans quelle mesure. Il est souvent tentant d’inclure simplement des champs pour les coordonnées géoréférencées et d’ignorer tout autre champ supplémentaire, mais vous (ou ceux qui prendront la suite après vous) êtes sûr de regretter ensuite d'avoir pris une telle option. Les informations associées, sur les méthodes utilisées pour déterminer le géoréférencement, et sur l’étendue et l’incertitude associées au géoréférencement, sont des éléments d'information très importants pour l'utilisateur final. En outre, ces sont des éléments très importants pour la gestion et l'amélioration de la qualité de vos informations.

De bons exemples de systèmes de production qui sont bien documentés sont les programmes [Mountains and Plains Spatio-Temporal Database Informatics Initiative](http://mapstedi.colorado.edu/GuideToGeoreferencing/Georeferencing1-3_SettingUpYourDatabase.html) (MaPSTeDI) et [Mammal Networked Information System](http://mapstedi.colorado.edu/GuideToGeoreferencing/Georeferencing1-3_SettingUpYourDatabase.html) (MaNIS). Il est intéressant d'observer les procédés utilisée par ces projets pour géoréférencer leurs données.

2. Les ressources nécessaires

Chaque institution aura besoin de différentes ressources pour géoréférencer ses collections. L'essentiel, toutefois, comprend :

- Une base de données et un logiciel de base de données (nous ne recommandons pas l'utilisation de tableurs)
- Des cartes topographiques (électronique, papier ou bien les deux)
- L'accès à un bon dictionnaire géographique – (beaucoup sont disponibles gratuitement sur Internet, ou pour la recherche en ligne)
- Un accès à Internet de préférence (comme il y a de nombreuses ressources sur Internet qui pourront être utiles pour aider à géoréférencer et localiser les emplacements)
- Du matériel informatique approprié

Des informations supplémentaires sur certaines de ces exigences peuvent être trouvées sur le site de MaPSTeDI à la rubrique “What you Need”.

3. Champs à intégrer dans la base de données

L'un des aspects clés pour un géoréférencement efficace est de structurer correctement la base de données.

Quelques projets de géoréférencement (par exemple MaPSTeDI) utilisent une base de données de travail distincte pour les opérateurs de saisie de données afin de ne pas modifier les données principales et de ne pas entraver l'utilisation au jour le jour de la base de données. Les données venant de la base de travail peuvent être contrôlées sur le plan de la qualité, et ensuite transférées vers la base de données principale de temps à autres. Un tel mode de fonctionnement dépend de l'institution et il peut être intéressant de l’envisager.

a. Déterminer les champs nécessaires

Cette étape semble aller de soi, mais il est surprenant de voir combien de fois une base de données est créée et mise au point avant que ne soit exactement déterminé ce que la base de données doit contenir.

6 Adapté des directives de MaPSTeDI

Principes de la bonne pratique sur le géoréférencement

données est supposée détenir. Les superviseurs du processus de géoréférencement devraient être consultés avant que la base de données soit créée, afin d’assurer que les champs requis pour le géoréférencement soient inclus dans le modèle de données dès le départ. Veillez à ne pas amalgamer des données différentes dans un seul champ. Toujours séparer les données dans des champs distincts lorsque c’est possible. Par exemple, si vous recueillez latitude et longitude, votre base de données devrait au moins avoir un champ distinct pour chacune. Enfin, il convient également de mettre cette concertation à profit pour déterminer quels champs les opérateurs de saisie devraient voir quand ils effectuent le géoréférencement. Des champs comme la date de la collecte, le nom du collecteur, l’identifiant du spécimen, et la taxonomie sont très utiles pour les opérateurs du géoréférencement en complément des données plus directement liées à la localité.

Note! Lorsque vous séparez les données lors de la saisie, il faut toujours inclure un champ ou plusieurs où l’on transcrit telles quelles les données originales, afin que la séparation et autres transformations puissent être ultérieurement retrouvées et contrôlées.

b. Champs des localités

Quelles sont les champs dont vous avez besoin dans votre base de données pour conserver au mieux les informations de géoréférencement ? On peut distinguer deux parties, la première comprend les champs associés à la description de localité. De nombreuses institutions sont actuellement en train de décomposer les descriptions de localités en leurs éléments constitutifs, à savoir le nom de l'emplacement, la distance, la direction, etc., et d’inscrire ces informations dans des champs distincts dans leurs bases de données. Toutefois, avec le développement de la boîte à outils de BioGeomancer et son analyse automatisée des descriptions de localités en langue naturelle, cela devient désormais redondant et inutile (voir la discussion ci-dessous). Si l’on effectue cette décomposition de l'information de localité, il est important de ne pas remplacer le champ de localité en texte libre (les données telles quelles sont écrites sur l'étiquette ou dans le carnet de terrain), mais d’ajouter des champs supplémentaires, du fait que la forme sous laquelle la description est écrite est souvent importante, et cette information originale ne devrait jamais être écrasée ou supprimée.

D'autres champs qui pourraient être importants et utiles pour aider au géoréférencement sont :

- dernière date de modification
- agglomération/section/zone/région administrative/conté/état/pays
- altitude
- date de collecte
- remarques

Une référence utile à vérifier avant de développer votre propre système de base de données est le *Herbarium Information Standards and Protocols for Interchange of Data* (Conn 1996, 2000), qui bien que mis en place pour les herbiers, est applicable à la plupart des données de collections d'histoire naturelle.

c. Champs de géoréférencement

Le deuxième ensemble de champs est celui des champs directement associés au géoréférencement, et au processus de géoréférencement. Il est recommandé, pour une bonne pratique du géoréférencement que les champs suivants, au minimum, soient ajoutés. Ceux-ci s’ajoutent aux autres champs que votre base de données contient peut-être déjà, comme Latitude_Degrés, Latitude_Minutes, Latitude_Secondes, etc. Certaines bases de données comprennent une interface utilisateur qui permet de saisir les données en degrés, minutes, secondes, mais qui les traduit ensuite en degrés décimaux lors de l’inscription dans la base.
Si c’est le cas, alors les deux types de géoréférencement devraient être enregistrés, les degrés décimaux étant utilisés pour les échanges de données. Voir aussi le [Geospatial Element Definitions Extension to Darwin Core](http://www.tdwg.org/standards/dwc/geo/2005) (TDWG 2005).

<table>
<thead>
<tr>
<th>Champ</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td>Voir le Glossaire pour la définition. Les nombres positifs sont au Nord de l’équateur et sont inférieurs ou égaux à 90, alors les valeurs négatives sont au Sud de l’équateur et sont supérieures ou égales à -90. Exemple: -42.5100 degrés (ce qui équivaut à peu près à 42° 30’ 36” S).</td>
</tr>
<tr>
<td>Décimale</td>
<td></td>
</tr>
<tr>
<td>Longitude</td>
<td>Voir le Glossaire pour la définition. Les valeurs positives sont à l’Est du Méridien de Greenwich et sont inférieurs ou égales à 180, les valeurs négatives sont à l’Ouest du Méridien de Greenwich et sont supérieures ou égales à -180. Exemple: -122.4900 degrés (ce qui équivaut à peu près à 122º 29’ 24” W).</td>
</tr>
<tr>
<td>Décimale</td>
<td></td>
</tr>
<tr>
<td>Référentiel Géodésique</td>
<td>La description géométrique d’un modèle de surface géodésique (par exemple : NAD27, NAD83, ou WGS84). Les référentiels géodésiques sont souvent enregistrés sur les cartes et dans les dictionnaires géographiques, et peuvent être spécifiés sur la plupart des appareils GPS afin que les points enregistrés correspondent au référentiel sélectionné. Utilisez “non enregistré” lorsque le référentiel n’est pas connu [Voir la discussion séparée sur les référentiels dans le présent document].</td>
</tr>
<tr>
<td>Estimation de l’Incertitude Maximale</td>
<td>La limite supérieure du rayon autour du point défini par la latitude et la longitude, décrivant un cercle dans lequel s’inscrit l’ensemble de la localité décrite.</td>
</tr>
<tr>
<td>Unité de l’Incertitude Maximale</td>
<td>L’unité de longueur dans laquelle l’incertitude maximale est enregistrée (par exemple : mi, km, m, ou ft). Utilisez la même unité que pour les mesures de distance dans la description de la localité.</td>
</tr>
<tr>
<td>Coordonnées Originales</td>
<td>Les coordonnées originales avant toute transformation.</td>
</tr>
<tr>
<td>Le système de Coordonnées Original</td>
<td>Le système de coordonnées dans lequel les données brutes ont été enregistrées. Si les données sont saisies dans la base en Degrés Décimaux, par exemple, les coordonnées géographiques de la carte ou du dictionnaire géographique utilisés doivent être saisies (par exemple : degrés décimaux, degrés-minutes-secondes, degrés-minutes décimales, coordonnées UTM).</td>
</tr>
<tr>
<td>Validation du Géoréférencement</td>
<td>Indique quelles procédures de validation ont été conduites sur le géoréférencement – par exemple diverses procédures de détection des valeurs aberrantes, nouvelles visites de la localité, etc. Est lié à l’état de vérification.</td>
</tr>
<tr>
<td>Protocole de Géoréférencement</td>
<td>Une référence à la ou les méthode(s) utilisée(s) pour déterminer les coordonnées et estimer les incertitudes (par exemple : “MaNIS Georeferencing Calculator”).</td>
</tr>
</tbody>
</table>
d. Données écologiques

Le travail de géoréférencement d'une collection de données écologiques devrait être traité de façon similaire à celui effectué sur les données de spécimen et d'observation. Souvent les données écologiques sont enregistrées à l'aide d'une grille, ou d'un transect, etc., et peuvent avoir un lieu de départ et un lieu d'arrivée ainsi qu'une heure de départ et une heure d'arrivée. Parfois le centre du transect est utilisé comme localité et la moitié de la longueur du transect utilisé pour l'étendue. L'incertitude est ensuite calculée comme pour les autres données. Si les données sont enregistrées sur une grille, alors la localité enregistrée est le centre de la grille, et l'étendue est la distance entre ce centre et l'extrémité de la grille la plus éloignée (c’est à dire un coin). Ces données devraient être enregistrées en plus des données enregistrées pour la localité elle-même, particulièrement lorsque de nombreux champs différents sont utilisés pour enregistrer les données originales. Voir les commentaires dans l’Annexe.

e. Appliquer des contraintes

L'un des principaux moyens de s'assurer que les données soient aussi et propres et précises que possible est de s'assurer que les données ne peuvent pas être placées dans le mauvais champ et que seules les données d'un certain type peuvent être placées dans chaque champ. Cela est réalisé en appliquant des contraintes sur les champs de données – par exemple, seules les valeurs entre -90 et +90 sont autorisées dans le champ latitude décimale. La plupart des erreurs trouvées lorsqu’on vérifie une base de données sont des erreurs inutiles – des erreurs qui ne pourraient pas se produire si la base de données avait été construite correctement dès le départ.
Avec des données écologiques ou d'enquête etc., on pourrait fixer des limites entre la localité de départ et celle d'arrivée. Par exemple, si votre méthodologie utilise toujours des transects de 1 km ou moins, alors la base de données peut inclure une limite qui signale chaque tentative de placer les deux extrémités à plus de 1 km de distance.

4. Interfaces utilisateur

De bonnes interfaces conviviales sont essentielles pour rendre l’opération de géoréférencement efficace et rapide, et pour réduire les erreurs des opérateurs. La présentation doit être conviviale, facile à utiliser et facile à regarder. Lorsque cela est possible (et que le logiciel le permet) un certain nombre de vues différentes sur les données devraient être présentées. Ces vues peuvent mettre l’accent sur différents aspects des données et améliorer l’efficacité de l’opérateur de saisie en offrant différentes manières de saisir les données avec des vues différentes qui réduisent l’ennui.

De même, des macros et des scripts peuvent apporter une aide, avec des procédures automatisées et semi-automatisées, réduisant le besoin de répétitions fastidieuses (et chronophages). Par exemple si les données sont saisies par le même opérateur pour plusieurs collectes effectuées par le même collecteur, en même temps et au même endroit, l’information qui est répétée d’un enregistrement à l’autre devrait pouvoir être saisie en quelques clics.

5. Utilisation des normes et des directives

Les normes, les méthodologies normalisées, et les directives peuvent aider à assurer la cohérence à travers la base de données et à réduire considérablement les erreurs. Un ensemble de normes et de directives devraient être établies au début du processus et avant que le géoréférencement ne commence. Elles doivent rester suffisamment souples pour prendre en compte des données nouvelles et des changements dans les processus au cours du temps. Les normes et directives dans les domaines suivants peuvent améliorer la qualité des données et l'efficacité de leur saisie. On espère que ce document fournira des directives valables pour beaucoup d'entre eux. Ils comprennent :

- Unités de mesure. Utilisez une seule unité de mesure pour des champs similaires. Par exemple, n'autorisez pas un mélange de pieds et de mètre pour des champs altitude et profondeur. Par ailleurs, les mesures et unités originales devraient être conservées dans un champ texte.
- Méthodes et formats pour déterminer et enregistrer les incertitudes et les étendues.
- Degré de précision dans la détermination des points lorsqu’il est connu. (Pour de nombreuses données historiques, cela ne pourra pas être déterminé).
- Champs qui doivent être renseignés (c’est-à-dire les champs requis).
- Format pour enregistrer les coordonnées (c’est-à-dire pour lat/long : degrés/minutes/seconde, degrés/minutes décimales, ou degrés décimaux).
- Source(s) originale(s) des noms de lieux.
- Traitement des fautes de frappe et autres erreurs dans la base de données existante.
- Nombre de décimales à conserver dans les nombres décimaux.
- Comment traiter les valeurs “nulles” par opposition aux valeurs zéro (dans certaines bases de données c’est un problème).
- Comment traiter les champs obligatoires qui ne peuvent être remplis immédiatement (par exemple, parce qu’une référence doit être d’abord trouvée). Il peut y avoir
besoin de quelque chose qui puisse être placé dans le champ et qui permette de sauvegarder et de fermer la base de données, mais qui rappelle que l'information est toujours attendue.

- Quelle validation de données doit être effectuée avant qu'un enregistrement puisse être considéré comme complet ?

Détecter ces normes et les documenter peut vous aider à les maintenir, ainsi que aider à vous former et à enregistrer la qualité des données. Elles devraient faire partie du manuel sur les bonnes pratiques du géoréférencement de l'institution.

6. Choisir une Méthodologie

Les institutions et de nombreuses personnes qui ont une expérience du géoréférencement développent leurs propres préférences quant à l'ordre dans lequel ils traitent le géoréférencement. Ceci peut être déterminé par la nature des données, par la manière dont les spécimens sont rangés ou documentés, ou par la préférence générale de l'opérateur.

Le projet MaPSTeDI fait les recommandations suivantes. Notez que cela n'ira pas avec toutes les institutions, mais pourra fournir un guide :
Procédures de géoréférencement

Etape 1 – Localiser et relever le point de localité
Les actions impliquées dans cette étape sont décrites dans Trouver les Coordonnées.

Etape 2 – Attribuer une valeur de confiance à la localité
Les actions impliquées dans cette étape sont décrites dans Attribuer les Valeurs de Confiance.

Etape 3 – Enregistrer les données de localité géoréférencées
C'est une étape importante mais souvent sous-estimée. La plupart des erreurs dans les données géoréférencées proviennent de données enregistrées incorrectement. Il est important que tous les champs nécessaires soient remplis aussi complètement que possible dans le bon format. L'administrateur devrait imposer des contraintes sur certains champs pour forcer à avoir le bon format.

Etape 4 – Documenter la logique du géoréférencement pour chaque enregistrement
Cette étape est critique parce qu'elle renseigne sur le processus de décision pour chaque enregistrement géoréférencé. Pour les enregistrements qui posent problème, tout comme les enregistrements qui posent problème, cette information est très importante pour permettre au personnel en charge du contrôle qualité et aux utilisateurs de la base de données de comprendre la logique derrière le choix du point de localité et de la valeur de confiance. Cette information sert aussi de journal de bord qui permet au personnel en charge du géoréférencement de communiquer ses idées et rapporter les problèmes. Cette documentation devrait être saisie dans la base avec les données de géoréférencement. Si cette saisie n'est pas possible du fait de limitations du logiciel de la base de données, alors il faudrait conserver cette information dans des documents électroniques.

Etape 5 – Marquer un enregistrement pour un examen plus approfondi, si nécessaire
Si la localité ne peut pas être trouvée ou est confuse, elle devrait être notée pour un examen par le personnel en charge du contrôle qualité. Cette indication peut être notée dans la base de données elle-même ou de quelqu'autre manière qui convienne, mais l'opérateur du géoréférencement devrait tenter de compléter l'enregistrement si possible pour faciliter le processus de vérification de la qualité. L'opérateur devrait aussi réunir autant de données pertinentes que possible sur la localité pour aider le contrôle qualité.

Extrait de MaPSTeDI (2004).

a. Tri d'enregistrements pour un géoréférencement par lots

Il faut aussi se demander s’il vaut mieux géoréférencer chaque enregistrement lors de sa saisie, ou bien mieux effectuer le géoréférencement par lots après la saisie d’un ensemble d'étiquettes. Il y a des arguments pour chaque méthode, et encore une fois les circonstances dans votre institution devraient déterminer le choix de la meilleure méthode pour vous. Si vos données sont rangées de manière taxonomique et non pas géographique (ce qui est le plus fréquent) il est souvent mieux de géoréférencer par lots en triant les données par localité électroniquement, car vous pourrez ainsi traiter de nombreux enregistrements en une fois sur la même carte, et éviter ainsi de devoir changer de carte en permanence. Dans d'autres cas, pour limiter les manipulations qui abîment les spécimens, vous souhaiterez peut-être les saisir dans la base lors de leur réception et avant de distribuer les doubles, ou lors des envois de prêts, ou vous aurez peut-être d'autres bonnes raisons pratiques de géoréférencer chaque spécimen lors de sa saisie. Un avantage de géoréférencer au fur et à mesure est que vous pourrez peut-être traiter toutes les collectes d'un même collecteur à la suite, et de ce fait, suivre virtuellement son itinéraire, réduisant ainsi les erreurs liées aux ambiguïtés éventuelles sur certaines localités.
Il est souvent avantageux de géoréférencer par lots (des outils comme §BioGeomancer, fonctionnement mieux de cette manière) ou en collaboration (MaNIS et MaPSTeDI ont trouvé que le géoréférencement en collaboration a entraîné d’importants gains d’efficacité), mais en vérifiant ensuite les enregistrements par collecteur et par date, ou sur le plan taxonomique pour détecter les cas aberrants, ou encore sous d'autres aspects qui permettent de tester la qualité des données. En fin de compte, il s’agit en général de choisir la méthode la mieux adaptée à votre institution, mais vous devriez commencer par examiner toutes les solutions avant de décider laquelle utiliser.

Les données, une fois saisies dans la base de données, peuvent être triées en utilisant le champ de la localité lui-même, ou d'autres champs comme la région, le toponyme le plus proche, etc. Vous allez peut-être pouvoir trier les données par :

- secteurs cartographiques (souvent utilisés pour les données marines, les cartes, les zones UTM, etc.)
- régions géographiques (pays, région, département, commune, etc.)
- toponyme (ville, fleuve)
- collecteur, numéro du collecteur, et date de la collecte.

Note! On peut gagner beaucoup en efficacité en effectuant le géoréférencement de manière groupée (par lots). Envisagez aussi un géoréférencement collaboratif avec d'autres chercheurs ou institutions aux buts similaires et ressources complémentaires.

b. Utiliser des enregistrements géoréférencés antérieurement

Il se peut que vous disposiez d’une fonction qui vous permette de rechercher dans la base de données des localités similaires qui ont déjà été géoréférencées. Par exemple, si vous avez un enregistrement avec comme localité “10 km NO de Campinas”, vous pouvez rechercher dans la base tous les enregistrements avec la localité “Campinas” et voir s’il y a d’autres enregistrements avec une expression qui signifie “10 km NO de Campinas” qui ont déjà été géoréférencés.

Une extension de cette méthode peut mettre à profit les avantages d'un système de données distribuées comme le Portail du Global Biodiversity Information Facility (GBIF). Une recherche peut effectuée pour voir si la localité a déjà été géoréférencée par une autre institution. Actuellement, on constate très souvent que plusieurs institutions ont géoréférencé différemment les doubles d'un même spécimen. Le problème est alors de savoir lequel de ces géoréférencements est le bon, et on a besoin de pouvoir se fier aux méthodes de géoréférencement et de détermination de la précision d'une autre institution. Cela renforce les arguments en faveur d'une bonne documentation sur le géoréférencement, la collaboration, et l'enregistrement de l'incertitude maximale.

Attention! Cette méthode peut ajouter des erreurs, si une erreur a été faite la première fois, elle pourrait se propager partout ailleurs.

c. Utilisation de BioGeomancer

Le Consortium BioGeomancer a mis en ligne une boîte à outils, des services Web, et des applications qui fournissent une fonction de géoréférencement à destination des collecteurs, des conservateurs, et des utilisateurs de spéimens d'histoire naturelle, y compris des logiciels qui exploitent les textes en langage naturel dans les enregistrements d'archive qui ont été collectés sous de nombreux formats et langages. La boîte à outils de BioGeomancer a été mise en service en septembre 2006. Elle regroupe les fonctionnalités de quatre applications.
BioGeomancer Classic, GEOLocate, DIVA-GIS, et le calculateur de géoréférencement de MaNIS, ainsi qu'un certain nombre d'innovations comme la formation assistée par ordinateur, l'édition de données spatiales, la validation de données et la détection de valeurs aberrantes.

BioGeomancer permet de soumettre des descriptions de localités, une par une ou groupées, et il renvoie les géoréférencements, avec une information sur l'incertitude. Il fait aussi passer aux données (et à d'autres données soumises par l'utilisateur) un ensemble de tests de validation pour détecter les erreurs éventuelles dans les données déjà géoréférencées et pour fournir une information supplémentaire dans les cas où plusieurs options existent en fonction de l'information donnée sur la localité.

7. Opérateurs de saisie

Le choix et la formation des opérateurs de saisie peuvent faire une grosse différence dans la qualité finale des données géoréférencées. Comme il a été mentionné plus haut, la mise à disposition de bonnes directives et de bonnes normes peut aider le processus de formation et permettre aux opérateurs saisie de renforcer leur formation au fil du temps. L'une des plus grandes sources d'erreur de géoréférencement est le processus de la saisie de données. Il est important que ce processus soit convivial, et soit mis en place de telle sorte que le nombre d'erreurs soit limité (par exemple à travers l'utilisation de menus déroulants, de contraintes sur les champs, etc.).
Géoréférencer les données patrimoniales

Le problème de loin le plus difficile dans le géoréférencement des données primaires d’occurrence d’espèces est l’énorme quantité de données patrimoniales conservées de par le monde dans les muséums, les herbiers, les universités, etc. La plupart des collecteurs modernes utilisent maintenant des GPS ou des cartes à grande échelle pour localiser leurs activités de collecte, et donc la plupart des nouvelles données saisies dans les institutions sont déjà géoréférencées. La plupart des muséums qui commencent à informatiser leurs collections, sont pourtant confrontés à l’énorme tâche qui consiste à géoréférencer la montagne de données accumulées dans leurs collections, dont beaucoup avec une information très limitée et vague sur la localisation. Cette section a pour but d’assister ces institutions dans le géoréférencement de leurs données patrimoniales.

Wieczorek et al. (2004) a identifié cinq étapes clés pour le géoréférencement. Celles-ci ont été ici légèrement modifiées afin d’inclure:

1. **Classifer la description de localité**

Les descriptions de localité des données primaires d’occurrence d’espèces englobent un large éventail de contenus dans une vaste gamme de formats, mais la plupart sont en texte libre. Il y a un nombre limité de catégories auxquelles on peut rattacher les descriptions de localité pour le géoréférencement. Le type de localité détermine la meilleure méthode de calcul des coordonnées et des incertitudes (voir l’annexe).

Une description de localité peut contenir de multiples propositions et peut entrer dans plus d’une catégorie. Si l’une de ces propositions tombe dans l’une des quatre catégories, ‘douteux’, ‘ne peut pas être localisé’, ‘pertinemment inexact’, ou ‘en captivité ou en culture’ (voir l’annexe), alors la localité ne doit pas être géoréférencée. A la place, une annotation doit être ajoutée à l'enregistrement de la localité, qui donne la raison pour laquelle celle-ci n’a pas été géoréférencée.

Note! Ces étapes doivent être envisagées en liaison avec l'annexe du présent document.

Reportez-vous au document original pour une explication détaillée. Nous avons extrait les principaux points et les avons développé ci-dessous.
Si la description de la localité ne tombe dans aucune de ces quatre catégories, la partie la plus spécifique de la description de localité devrait être utilisée pour le géoréférencement. Par exemple, une localité décrite comme ceci :

‘Pont au-dessus du fleuve Ste. Croix, 4 km N de Somerset’

devrait être géoréférencée en utilisant les coordonnées du pont plutôt que celles de Somerset puisque la localisation à partir de ce toponyme n’est qu’indirecte, via un cap et une distance. Une annotation devrait être portée pour refléter que le pont est le lieu qui a été géoréférencé. Si la partie la plus spécifique de la localité ne peut pas être identifiée de façon non ambiguë, alors une partie moins spécifique de la localité doit être géoréférencée et annotée en conséquence.

2. Trouver la latitude et la longitude

Comme il a été discuté auparavant dans ce document, les coordonnées géographiques peuvent être exprimées dans de nombreux formats et systèmes de coordonnées (degrés décimaux, degrés minutes secondes, degrés minutes décimales, UTM, etc.). Des conversions permettent de passer facilement d’un système à l’autre, mais ce sont les degrés décimaux qui fournissent les coordonnées les plus pratiques à utiliser pour le géoréférencement, pour la bonne raison que deux attributs suffisent alors à décrire une localité : latitude décimale et longitude décimale (Wieczorek 2001). Les degrés décimaux sont aussi le format le plus utilisé dans la plupart des Systèmes d’Information Géographiques (SIG).

La première étape dans la détermination des coordonnées d’une localité est d’identifier dans la description textuelle le toponyme le plus spécifique (dont la position est la plus précise et proche de la localité). Les coordonnées peuvent être tirées de dictionnaires géographiques, de bases de données de toponymes, de cartes, ou encore d'autres descriptions de localités dont on a déjà les coordonnées. Nous utilisons le terme « caractéristique » pour nous référer non seulement aux caractéristiques traditionnelles, mais aussi aux lieux qui n’ont pas de noms - carrefours, confluents, bornes kilométriques, mailles d’une grille, agglomérations-. La source et la précision des coordonnées devraient être enregistrées afin que la validité de la localité géoréférencée puisse être vérifiée. Le système de coordonnées original et le référentiel géodésique devraient aussi être enregistrés. Cette information aide à déterminer les sources et degrés d'incertitude maximale, surtout en ce qui concerne la précision des coordonnées originales.

3. Utiliser des décalages

Un décalage est un déplacement à partir d'un point de référence, toponyme, ou autre caractéristique, et est généralement accompagné d'une direction (ou cap). Certaines descriptions de localité donnent une méthode pour déterminer le décalage ('par la route', 'par le fleuve', 'par les airs', 'en remontant la vallée', etc.). Dans de tels cas, suivez le chemin indiqué dans la description à l’aide d’une carte à l’échelle la plus grande à votre disposition pour trouver les coordonnées du décalage à partir du point de référence. Il est parfois possible de déduire le chemin à suivre pour déterminer le décalage à partir d’informations supplémentaires dans la description de la localité. Par exemple la description

‘58 km NO de Haines Junction, Kluane Lake’

suggère une mesure effectuée par la route puisque les coordonnées obtenues par cette voie sont plus proches du lac qu’en se déplaçant de 58 km vers le NO en ligne droite. D'autres fois, vous devrez peut-être consulter des sources détaillées supplémentaires, comme des notes
de terrain, des itinéraires de collecteur, des journaux de bord, ou des collectes effectuées en séquence le même jour, pour déterminer cette information.

4. Trouver l'étendue

Chaque toponyme occupe un espace ou ‘étendue’ finie. L'étendue est généralement mesurée comme la distance entre le centre géographique de la zone qui définit la caractéristique, et l'extrémité la plus éloignée de cette zone.

Si la localité décrite est une zone irrégulière (par exemple une route ou une rivière sinueuse), il y a deux manières de calculer les coordonnées et de déterminer l'étendue. La première consiste à mesurer le long de la ligne sinueuse et à déterminer ainsi le point à milieu que l’on prend comme centre du toponyme. Cela n’est pas toujours facile, alors la deuxième méthode consiste à déterminer le centre géographique (c’est-à-dire le point à mi-chemin entre les latitudes et longitudes extrêmes) du toponyme. Cette méthode décrit un point dont l'incertitude liée à l'étendue du toponyme est minimisée. L'étendue est ensuite déterminée comme la distance du point ainsi déterminé au point le plus éloigné de la zone du toponyme. Si le centre géographique de la zone est utilisé et qu'il se trouve en dehors de la zone (par exemple, le centre géographique d'un segment d'une rivière ne se trouve généralement pas sur le parcours de la rivière) alors, c'est le point le plus proche du centre géographique qui se trouve dans la zone qui est la référence préférée pour le toponyme et qui est point à partir duquel l'étendue doit être calculée.

De nombreuses localités se réfèrent à des toponymes dont la taille a changé au cours du temps ; les cartes actuelles pourraient ne pas refléter fidèlement le périmètre des endroits où les spécimens ont été collectés. Si possible, les étendues devraient être déterminées à l’aide de cartes contemporaines des actes de collecte. Dans la plupart des cas, l’étendue actuelle d’un toponyme sera supérieure à l’ancienne étendue.

5. Calculer les incertitudes

Le calcul de l’incertitude sur les données géoréférencées fournit un élément essentiel pour déterminer l'aptitude à l’usage des données et donc leur qualité. Il existe de nombreuses méthodes pour déterminer l'incertitude maximale ; cependant la plupart sont compliquées, difficiles à enregistrer simplement dans la plupart des bases de données d'histoire naturelle, et sont souvent plus complexes que nécessaire au regard du niveau des données utilisées. A moyen terme, il est probable que l'enregistrement de l'incertitude se fera au moyen de polygones géographiques ; mais pour l’instant nous recommandons l'utilisation d’un simple couple point-rayon (voir Wieczorek et al. 2004) pour enregistrer la marge d’erreur. La méthode du point-rayon est conçue pour ne pas sous-estimer la véritable erreur. L'introduction de polygones permettra, par exemple, de découper le cercle là où il empiète sur l'océan pour des données terrestres, et d’obtenir ainsi une représentation bien plus précise de la localité.

A chaque fois que la subjectivité intervient, il vaut mieux surestimer l'erreur ou l'incertitude maximale. Les six sources d'incertitude suivantes sont les plus communément rencontrées et celles-ci sont détaillées ci-après dans l'annexe:

- l’étendue d'une localité
- référentiel géodésique inconnu
- imprécision dans les mesures de distance
- imprécision dans les mesures de direction
- imprécision dans les mesures des coordonnées
• échelle de la carte

a. Calculer l’incertitude due à un référentiel géodésique inconnu

Dans les collections d'histoire naturelle les coordonnées géographiques sont souvent enregistrées sans indication du référentiel géodésique. Même lors des collectes modernes qui utilisent un GPS pour enregistrer les coordonnées, le référentiel géodésique est généralement ignoré. Pourtant l’absence de cette référence introduit une ambiguïté, qui varie géographiquement et ajoute beaucoup à l'erreur inhérente au géoréférencement.

Il est donc important d'enregistrer le référentiel utilisé par la source des coordonnées (GPS, carte, dictionnaire géographique) lorsqu’il est connu, ou sinon d’enregistrer le fait qu’il est inconnu.

Les différences entre référentiels peuvent entraîner une erreur de localisation qui peut varier de quelques centimètres à environ 1000 mètres (US Navy n. dat.), ou même, dans certains cas extrêmes, jusqu'à 3,552 km (Wieczorek et al. 2004). Certaines différences moyennes et/ou maximales connues entre référentiels sont cités dans le Tableau 1. Notez que la transformation des coordonnées pour passer d’un référentiel à un autre ne suit pas une relation linéaire et peut même changer de sens. Par exemple, la différence entre des coordonnées selon NAD27 et selon WGS84 à proximité des États-Unis varie entre 0 et 104 m (Wieczorek et al. 2004).

<table>
<thead>
<tr>
<th>Référentiel de départ</th>
<th>Région ou Localité</th>
<th>Référentiel d'arrivée</th>
<th>Différence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGD66</td>
<td>Australie</td>
<td>AGD84</td>
<td>Max ± 0-5 m</td>
</tr>
<tr>
<td>AGD66/84</td>
<td>Australie</td>
<td>GDA94</td>
<td>Max ± 200 m</td>
</tr>
<tr>
<td>AGD66/84</td>
<td>Australie</td>
<td>WGS84</td>
<td>Max ± 200 m</td>
</tr>
<tr>
<td>GDA94</td>
<td>Australie</td>
<td>WGS84</td>
<td>Max ± <1 m</td>
</tr>
<tr>
<td>NAD 1983</td>
<td>Amérique du Nord</td>
<td>WGS84</td>
<td>Max ± <1 m</td>
</tr>
<tr>
<td>NAD27</td>
<td>Amérique du Nord</td>
<td>WGS84</td>
<td>Max ± 200 m</td>
</tr>
<tr>
<td>NAD 27</td>
<td>Environs des États-Unis</td>
<td>WGS84</td>
<td>Max ± 105 m</td>
</tr>
<tr>
<td>NAD 27</td>
<td>Îles Aléoutiennes, Alaska</td>
<td>WGS84</td>
<td>Max ± 235 m</td>
</tr>
<tr>
<td>NAD 27</td>
<td>Hawaï</td>
<td>WGS 84</td>
<td>~ 500 m</td>
</tr>
<tr>
<td>TOKYO</td>
<td>Japon</td>
<td>WGS84</td>
<td>Max ± 750 m</td>
</tr>
<tr>
<td>ED-50</td>
<td>Europe</td>
<td>WGS84</td>
<td>Max ± 175 m</td>
</tr>
<tr>
<td>ARC-50</td>
<td>Afrique</td>
<td>WGS84</td>
<td>Max ± 265 m</td>
</tr>
<tr>
<td>INDIAN 1975</td>
<td>Bangkok, Thaïlande</td>
<td>WGS84</td>
<td>~ 405 m</td>
</tr>
<tr>
<td>INDIAN 1956</td>
<td>Delhi, Inde</td>
<td>WGS84</td>
<td>~ 135 m</td>
</tr>
<tr>
<td>INDIAN 1956</td>
<td>Mumbai, Inde</td>
<td>WGS84</td>
<td>~ 120 m</td>
</tr>
<tr>
<td>HONG KONG 1973</td>
<td>Hong Kong</td>
<td>WGS84</td>
<td>~ 320 m</td>
</tr>
<tr>
<td>LUZON</td>
<td>Manille, Philippines</td>
<td>WGS84</td>
<td>~ 225 m</td>
</tr>
<tr>
<td>TOKYO-KOREA</td>
<td>Séoul, Corée du Sud</td>
<td>WGS84</td>
<td>~ 380 m</td>
</tr>
<tr>
<td>KERTAU 1948</td>
<td>Singapour</td>
<td>WGS84</td>
<td>~ 190 m</td>
</tr>
</tbody>
</table>

Tableau 1: Affiche les différences maximales sur l’ensemble de la région, ou les différences approximatives à un emplacement donné, pour un certain nombre de référentiels courants. Données provenant de la Marine américaine (US Navy n. dat.), Srivastava et Ramalingam (2006) et Wieczorek et al. (2004). Toutes les valeurs à l’exception des plus faibles ont été arrondies à 5 m. près.
b. Calculer l'incertitude liée à la distance

La précision peut être difficile à obtenir à partir d'une description de localité car elle est rarement, sinon jamais, explicitement enregistrée. En outre, un enregistrement peut ne pas refléter, ou refléter incorrectement, la précision inhérente aux mesures initiales, surtout lorsque la description de la localité dans la base de données a fait l'objet d'une normalisation, de reformatage, ou d'une interprétation secondaire de la description originale.

Il y a un certain nombre de façons de calculer l'incertitude à partir des distances. Dans ce document, nous avons adopté une approche prudente. La forme sous laquelle une distance est écrite peut souvent donner une indication sur la précision et donc sur l'incertitude. Une méthode consiste à utiliser la moitié de la précision (par exemple, 10,5 mi N de Bakersfield pourrait raisonnablement signifier 10½ mi et donc la distance être entre 10,25 et 10,75 mi N, ou 10,5 ±0,25 mi N de Bakersfield). L'incertitude sur la mesure est donc de 0,25 mi.

Une deuxième méthode, que nous recommandons ici, a été proposée par Wieczorek et al. (2004) et suppose que de nombreux enregistrements ont fait l'objet d'un certain degré d'interprétation ou de transformation lors de leur entrée dans la base de données, et que par exemple, la valeur 10¼ mi a pu être enregistrée dans la base de données sous la forme 10,25 mi. La précision dans la valeur 10,25 est alors une fausse précision (voir glossaire) et la distance ne doit pas être supposée être entre 10,24 et 10,26. La méthode de Wieczorek et al. (2004) fonde l'estimation de l'incertitude sur la partie « fractionnaire » de la distance, ce qui donne :

- pour 9 km, la fraction est 1/1 et donc l'incertitude est estimée à 1 km;
- pour 9,5 km, la fraction est ½ et l'incertitude est estimée à 0,5 km;
- pour 9,25 km, la fraction est ¼ et l'incertitude est estimée à 0,25 km;
- pour 9,6 km, la fraction est 1/10 et l'incertitude est estimée à 0,1 km.

Pour les mesures de distance qui sont des puissances entières positives de 10, l’estimation de l’incertitude est fondée sur 0,5 fois 10 à cette puissance (voir Tableau 2).

Une troisième méthode, suggérée par Frazier et al. (2004), est adaptée aux distances données comme multiples de 10, ou fractions de 100 comme 25 et 75. Cette méthode recommande d’utiliser 15% de la distance comme incertitude. Ainsi, pour 10 km, l’incertitude serait de 1,5 km; et pour 75 km elle serait de 11,25 km. Cela donne une plus petite incertitude que celle recommandée par Wieczorek et al. pour des distances entre 10 et 30 km, et une valeur supérieure pour les distances entre 40 et 90 km (Tableau 2).

<table>
<thead>
<tr>
<th>Exemple</th>
<th>Incertitude (Wieczorek et al. 2004)</th>
<th>Incertitude (Frazier et al. 2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,6 km N de Bakersfield</td>
<td>0,1 km</td>
<td></td>
</tr>
<tr>
<td>10,5 mi N de Bakersfield</td>
<td>0,5 mi</td>
<td></td>
</tr>
<tr>
<td>10 km N de Bakersfield</td>
<td>5 km</td>
<td>1,5 km</td>
</tr>
<tr>
<td>30 km N de Bakersfield</td>
<td>5 km</td>
<td>4,5 km</td>
</tr>
<tr>
<td>140 mi N de Bakersfield</td>
<td>5 mi</td>
<td>21 mi</td>
</tr>
<tr>
<td>200 mi N de Bakersfield</td>
<td>50 mi</td>
<td>30 mi</td>
</tr>
<tr>
<td>2000 m N de Bakersfield</td>
<td>500 m</td>
<td>300 m</td>
</tr>
</tbody>
</table>

Tableau 2. Calculer l'incertitude en utilisant la précision dans un enregistrement de distance.
La précision peut aussi être masquée ou perdue quand les mesures sont converties, comme de pieds en mètres, ou de miles en kilomètres.

Attention !
Faites attention à ce que la valeur que vous utilisez pour la précision lorsque vous calculez l'incertitude corresponde à une vraie précision et non à une fausse. Par exemple, convertir une distance de 16 miles (avec une précision de 1 mile) notée par le collecteur, en une distance de 25,6 km (avec une précision de 0,1 km) conduit à un degré de précision plus de 10 fois supérieur à l'original.

Note !

c. Calculer l'incertitude liée à l'étendue des localités

: calcul de l’Les étendues associées aux toponymes sont une source importante d'incertitude. Les points de référence des toponymes peuvent changer au cours du temps : les bureaux de postes et les palais de justices sont parfois transférés ailleurs, les villes changent de taille, les cours des fleuves varient, etc. De plus, il n'y a aucune garantie pour que le collecteur ait appliqué une convention particulière en positionnant une localité par rapport à un toponyme. Par exemple, dans

'4 km E de Bariloche'

la distance peut avoir été mesurée à partir du bureau de poste, de la place centrale, ou de la station de bus située à l'est de la ville, ou n'importe où ailleurs dans Bariloche. Quand on calcule un décalage, on n’a généralement aucun moyen de savoir où le collecteur a commencé à mesurer sa distance.

Nous recommandons de déterminer l'incertitude en mesurant la distance entre le point marqué par les coordonnées et le point le plus éloigné dans la zone du toponyme. L'ampleur de l'incertitude sera la plus petite si les coordonnées représentent le centre géographique du toponyme et l'incertitude maximale est alors la distance entre ce point et le point le plus éloigné de la zone associée. Dans la plupart des cas, l'étendue actuelle d'un toponyme sera plus grande que son étendue historique, et l'incertitude peut donc être quelque peu surestimée en utilisant les cartes actuelles. En documentant le processus de géoréférencement, il est recommandé que le toponyme, son étendue, et la source de l’information soient enregistrés.

d. Calculer l'incertitude liée à la direction

: calcul de l’Le calcul de l'incertitude à partir de la précision avec laquelle une direction a été enregistrée dépend de la distance depuis le point de référence. L'incertitude augmente à mesure que l’on s’éloigne du point de référence. Pour des calculs simples de la précision liée à la direction – voir le Tableau 3.

Note !
L'incertitude liée à des imprécisions de direction s'accroît avec la distance, donc elle ne peut être calculée qu’à partir de la combinaison de la distance et de la direction (voir ci-dessous).

<table>
<thead>
<tr>
<th>Précision</th>
<th>Interprétation</th>
<th>Exemple</th>
<th>Incertitude Directionnelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Entre NW et NE</td>
<td>10,6 km N de Bakersfield</td>
<td>45º</td>
</tr>
<tr>
<td>NE</td>
<td>Entre NNE et ENE</td>
<td>10,5 mi NE de Bakersfield</td>
<td>22,5º</td>
</tr>
<tr>
<td>NNE</td>
<td>Entre N de NNE et E de</td>
<td>10 km NNE de</td>
<td>11,25º</td>
</tr>
</tbody>
</table>
Tableau 3. Calculer l'incertitude en utilisant la précision de la direction enregistrée (extrait de Wieczorek et al. 2004).

<table>
<thead>
<tr>
<th>NNE</th>
<th>Bakersfield</th>
</tr>
</thead>
</table>

Fig. 1. Un diagramme simple montrant la précision directionnelle où
$x = d \cos(\theta)$, $y = d \sin(\theta)$, $x' = d \cos(\theta')$, et $y' = d \sin(\theta')$.

Extrait de Wieczorek et al. (2004).

En utilisant l'exemple

'10 km NE de Bakersfield'

si on ignore l'imprécision sur la distance, l'incertitude due à l'imprécision sur la direction (Figure 1) est matérialisée par un arc de cercle de 10 km (d) de rayon, le centre du cercle étant celui de Bakersfield, le milieu de l’arc étant (x,y) étant à un angle de 45 degrés (θ), et l’arc s'étendant à 22,5 degrés de part et d’autre du milieu. A cette échelle la distance (e) entre le centre de l'arc de cercle et le point le plus éloigné de l'arc de cercle (x',y') à un angle de 22,5 degrés (θ') depuis le centre de Bakersfield peut être approchée par le Théorème de Pythagore.

$$ e = \sqrt{(x'-x)^2 + (y'-y)^2} ; \text{l'incertitude dans l'exemple ci-dessus est de 3,9 km} $$

e. Calculer l'incertitude liée à la précision sur les coordonnées

: calcul de l’Les coordonnées géographiques devraient toujours être enregistrées en utilisant le plus de décimales possible ; la précision des coordonnées devrait être saisie séparément des coordonnées elles-mêmes, de préférence sous la forme d’une distance, ce qui lui conserve son sens quelque soit les transformations ultérieures sur les lieux et les coordonnées. Enregistrer les coordonnées avec une précision insuffisante peut entraîner des incertitudes inutiles. L'ampleur d'une incertitude est fonction non seulement de la précision avec laquelle les données ont été enregistrées, mais aussi du référentiel géodésique et des coordonnées elles-mêmes. C'est le résultat direct du fait qu'un degré d’arc ne correspond pas à la même distance sur toute la Terre.
Le Tableau 4 montre des exemples de contributions à l'incertitude pour différents niveaux de précision des coordonnées originales, utilisant l'ellipsoïde de référence (ou référentiel géodésique) WGS84. Les calculs sont basés sur le même degré d'imprécision pour les deux coordonnées et sont donnés pour plusieurs latitudes différentes. Des calculs approximatifs peuvent être effectués sur la base de ce tableau, cependant, des calculs plus précis peuvent être obtenus en utilisant le (voir ci-dessous pour une analyse plus détaillée).

À partir du Tableau 4, on peut voir qu'une observation enregistrée en degrés, minutes, et secondes (DMS) a une incertitude minimale entre 32 et 44 mètres.

<table>
<thead>
<tr>
<th>Précision</th>
<th>0 degré Latitude</th>
<th>30 degrés Latitude</th>
<th>60 degrés Latitude</th>
<th>85 degrés Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0 degré</td>
<td>156.904 m</td>
<td>146.962 m</td>
<td>124.605 m</td>
<td>112.109 m</td>
</tr>
<tr>
<td>0,1 degré</td>
<td>15.691 m</td>
<td>14.697 m</td>
<td>12.461 m</td>
<td>11.211 m</td>
</tr>
<tr>
<td>0,01 degré</td>
<td>1.570 m</td>
<td>1.470 m</td>
<td>1.246 m</td>
<td>1.121 m</td>
</tr>
<tr>
<td>0,001 degré</td>
<td>157 m</td>
<td>147 m</td>
<td>125 m</td>
<td>112 m</td>
</tr>
<tr>
<td>0,0001 degré</td>
<td>16 m</td>
<td>15 m</td>
<td>13 m</td>
<td>12 m</td>
</tr>
<tr>
<td>0,00001 degré</td>
<td>2 m</td>
<td>2 m</td>
<td>2 m</td>
<td>2 m</td>
</tr>
<tr>
<td>1,0 minute</td>
<td>2.615 m</td>
<td>2.450 m</td>
<td>2.077 m</td>
<td>1.869 m</td>
</tr>
<tr>
<td>0,1 minute</td>
<td>262 m</td>
<td>245 m</td>
<td>208 m</td>
<td>187 m</td>
</tr>
<tr>
<td>0,01 minute</td>
<td>27 m</td>
<td>25 m</td>
<td>21 m</td>
<td>19 m</td>
</tr>
<tr>
<td>0,001 minute</td>
<td>3 m</td>
<td>3 m</td>
<td>3 m</td>
<td>2 m</td>
</tr>
<tr>
<td>1,0 seconde</td>
<td>44 m</td>
<td>41 m</td>
<td>35 m</td>
<td>32 m</td>
</tr>
<tr>
<td>0,1 seconde</td>
<td>5 m</td>
<td>5 m</td>
<td>4 m</td>
<td>4 m</td>
</tr>
<tr>
<td>0,01 seconde</td>
<td>1 m</td>
<td>1 m</td>
<td>1 m</td>
<td>1 m</td>
</tr>
</tbody>
</table>

Attention ! Une fausse précision peut survenir lors de conversions de degrés minutes secondes en degrés décimaux dans la base de données (voir le Glossaire pour une analyse plus détaillée).

N'utilisez jamais la précision de la base de données comme un substitut à l'incertitude sur les coordonnées ; enregistrer plutôt l'incertitude explicitement, de préférence sous la forme d'une distance.

Note ! Le détail des calculs qui permettent de déterminer l'incertitude liée à la précision des coordonnées peut être trouvé dans Wieczorek (2001) et Wieczorek et al. (2004).

Exemple:
Lat: 10,27º Long: -123,6º Référentiel : WGS84
Dans cet exemple, la précision lat/long est de 0,01 degrés. Ainsi, la marge d'erreur sur la latitude = 1,1061 km, la marge d'erreur sur la longitude = 1,0955 km, et l'incertitude résultant des deux est de 1,5568 km.

f. Calculer l'incertitude liée à l'utilisation d'une carte

: calcul de l'L'une des méthodes les plus utilisées pour trouver les coordonnées d'un lieu est d'estimer sa position à l'aide d'une carte. L’utilisation de cartes peut être problématique et
produire divers degrés d'imprécision. Malheureusement, la précision de nombreuses cartes, en particulier les anciennes, n'est pas documentée. Les normes relatives à la précision indiquent généralement le niveau d'erreur physique toléré sur une carte imprimée, de sorte que l'incertitude liée à l'utilisation d'une carte dépend de son échelle. La lecture d'une carte demande un certain niveau de compétence pour déterminer des coordonnées avec précision, et les compétences varient avec les types de cartes. Les difficultés peuvent être liées au système de coordonnées de la carte (latitude et longitude, UTM, etc.), à son échelle, à la largeur des traits utilisés pour effectuer les divers tracés et dessins, à l'espacement des lignes du maillage, etc.

La précision d'une carte dépend de la précision des données originales utilisées pour la réaliser, du niveau de précision avec lequel ces données source ont été transférées sur la carte, et de la résolution à laquelle la carte a été imprimée ou affichée. Par exemple, les cartes USGS au 1:24.000ème et celles au1:100.000ème sont des produits différents. La précision dépend explicitement de l'échelle, mais elle est aussi liée aux différentes méthodes de préparation. Lorsque vous utilisez une carte, vous devez prendre en compte les limites auxquelles s'est heurté son créateur, comme l'acuité de sa vision, les procédés lithographiques, la méthodologie de cartographie, et la représentation des caractéristiques (dont un aspect est par exemple la largeur du trait) (NOAA 2001).

Avec les cartes topographiques imprimées, les contraintes du dessin peuvent restreindre la précision avec laquelle les lignes sont tracées sur la carte. Une ligne de 0,5 mm de large qui représente une route sur une carte au 1:250.000ème occupe une largeur de 125 mètres sur le terrain. Pour représenter une ligne de chemin de fer le long de la route, il faut d’abord respecter une séparation de 1 à 2 mm (soit, sur le terrain : 250 à 500 mètres), et il y a ensuite la ligne qui représente le chemin de fer (encore 0,5 mm, soit 125 mètres), ce qui fait un total de 500 à 750 m en largeur au minimum. Si l’on utilise de tels éléments pour déterminer le lieu d'une collecte, par exemple, alors l'incertitude minimale serait de l'ordre de 1 km. Si des lignes plus épaisses étaient utilisées, alors des ajustements appropriés seraient nécessaires (Chapman et al. 2005).

Note ! Une carte numérique n'est jamais plus précise que la carte originale dont elle découle ; et elle n’est pas plus précise lorsque vous zoomez dessus. La précision dépend strictement de l'échelle et de l'erreur de numérisation à partir de la carte originale.

Le Tableau 5 montre la précision inhérente à un certain nombre de cartes à différentes échelles. Le tableau donne les incertitudes pour une ligne de 0,5 mm de large à plusieurs échelles. Une valeur d'erreur de 1 mm peut être utilisée avec les cartes pour lesquelles les normes ne sont pas publiées. Cette valeur correspond à peu près à trois fois l'erreur graphique détectable, elle devrait fournir une bonne estimation de l'incertitude pour la plupart des cartes.
<table>
<thead>
<tr>
<th>Echelle de la carte</th>
<th>Incertitude horizontale de la carte (Géosciences Australie) 7</th>
<th>Incertitude horizontale de la carte (USGS 8)</th>
<th>Production NIMA</th>
<th>Précision de la production NIMA (Marine américaine) 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1000</td>
<td>0,5 m</td>
<td>2,8 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:10,000</td>
<td>5 m</td>
<td>28 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:25,000</td>
<td>12,5 m</td>
<td>70 ft</td>
<td>City Graphic</td>
<td>>50 m</td>
</tr>
<tr>
<td>1:50,000</td>
<td>25 m</td>
<td>139 ft</td>
<td>Topo</td>
<td>50 m</td>
</tr>
<tr>
<td>1:75,000</td>
<td></td>
<td>Nautical</td>
<td></td>
<td>75 m</td>
</tr>
<tr>
<td>1:100,000</td>
<td>50 m</td>
<td>278 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:250,000</td>
<td>160-300 m</td>
<td>695 ft</td>
<td>JOG</td>
<td>250 m</td>
</tr>
<tr>
<td>1:500,000</td>
<td></td>
<td>TPC</td>
<td></td>
<td>1.000 m</td>
</tr>
<tr>
<td>1:1 million</td>
<td>500 m</td>
<td>2.777 ft</td>
<td>ONC</td>
<td>2.000 m</td>
</tr>
</tbody>
</table>

Tableau 5. Incertitude et précision horizontales associées à une épaisseur de trait de 0,5 mm sur des cartes à différentes échelles

Le tableau utilise des données provenant de plusieurs sources. Les cartes de la série TOPO250K fournissent la meilleure résolution pour une couverture complète du continent australien. Elles sont réalisées à partir de données topographiques au 1:250.000ème, pour lesquelles Géoscience Australie (2003) définit la précision comme “pas plus de 10% des points bien définis entachés d’une erreur de plus de 160 mètres ; et dans le pire des cas, un point bien défini est entaché d’une erreur de 300 mètres”. L’incertitude horizontale des cartes USGS est calculée à partir des stipulations du Bureau du Budget américain (1947) qui établit que “pour les cartes publiées à des échelles au delà de 1:20.000ème, pas plus de 10 % des points testés ne pourront être entachés d’une erreur de plus de 1/30 pouce, mesurée en utilisant l’échelle de la publication ; et pour les cartes à des échelles en deçà de 1:20.000ème, la tolérance descend à 1/50 pouce.” Ces valeurs doivent être prises en compte lorsque vous déterminez l’incertitude de votre géoréférencement. Le troisième ensemble de valeurs a été fourni par la Marine américaine, elles font référence à diverses productions de l’agence NIMA (« National Image and Mapping Agency »).

Si vous utilisez des éléments naturels sans délimitations bien distinctes pour déterminer une localité (comme les sols, la végétation, la géologie, les ressources forestières, etc.) vous devrez prendre une marge de prudence en déterminant la valeur de l’incertitude. En effet, les limites de ces éléments sont rarement exactes, et souvent définies à une échelle de 1:1 million ou pire, et se trouvent de ce fait entachées d’une incertitude d’au moins 1 à 5 km. Faites aussi attention au fait que les lignes de côtes varient grandement d’une échelle à une autre (voir Chapman et al. 2005) et que les cours d’eau sont souvent représentés plus rectilignes sur les cartes à petite échelle. Ceci qui peut induire des incertitudes bien plus grandes qu’annoncé du fait que la précision affichée sur les cartes est déterminée à partir de points “sûrs” tels que des immeubles, des intersections de routes, etc. De plus les lignes de côtes et

7 Fondé sur une précision de 0.5mm par unité d’échelle, sauf pour les séries de cartes au 1:250.000ème où l’on a utilisé les chiffres fournis avec les données.
8 Tiré des normes nationales américaines sur la précision cartographique (Bureau du Budget des Etats-Unis 1947) http://rockyweb.cr.usgs.gov/nmpstds/acrodocs/nmas/NMAS647.PDF
9 Navigateur de la Marine https://www.navigator.navy.mil/navigator/accuracy_0009.ppt
les cours d'eau peuvent changer de manière importante au cours du temps (Bannerman 1999) et donc la date de la carte doit être prise en compte pour déterminer l'incertitude.

Pour l'altitude associée aux contours tracés sur la carte, l'incertitude verticale est souvent décrite comme étant la moitié de l'intervalle d'altitude entre contours successifs.

Attention ! Des précautions doivent être prises lorsque vous utilisez une carte numérique où l'échelle est enregistrée sous forme textuelle (1:100.000ème, etc.) plutôt qu'à l'aide d'une barre d'échelle. En effet, la résolution de l'écran et le niveau de zoom change l'échelle apparente de la carte affichée (alors que cela ne change pas l'échelle à laquelle la carte a été établie). Ceci vaut également pour les cartes imprimées à partir d'une carte numérique. Lors de la préparation des cartes numériques, toujours inclure l'échelle sous forme d'une barre d'échelle et ne pas juste enregistrer l'échelle sous forme textuelle (comme par exemple 1:20.000ème).

g. Calculer des incertitudes combinées

Pour combiner des incertitudes provenant de différentes sources, il ne suffit pas de prendre la moyenne et de les ajouter. Les incertitudes inhérentes à la localisation d'un toponyme, à son étendue, à la direction et à la distance du décalage, sont déjà quatre sources qui doivent être combinées pour obtenir une incertitude globale. Une analyse détaillée des calculs impliqués peut être trouvée dans Wieczorek (2001) et Wieczorek et al. (2004), et comme moyen pratique de calculer les incertitudes de localisation, nous recommandons l'utilisation du **calculateur de géoréférencement de MaNIS**. Dans l'annexe de ce document, nous fournissons un certain nombre d'exemples.

h. Utilisation du calculateur de géoréférencement de MaNIS

Le **calculateur de géoréférencement de MaNIS** (Figure 2), est un applet java créé pour aider au géoréférencement des localités descriptives telles qu'on les trouve dans les collections d'histoire naturelle des musées. Il a été spécialement conçu pour le projet **MaNIS** (Système d'Information en Réseau sur les Mammifères, en anglais “Mammal Networked Information System”) et a été adopté aussi par HerpNet (reptiles), ORNIS (oiseaux), et d'autres initiatives de bases de données collaboratives.

L'application effectue les calculs en utilisant les méthodes décrites dans les **directives sur le géoréférencement** communes à MaNIS, HerpNet et ORNIS (Wieczorek 2001). Nous recommandons son utilisation de manière générale à toutes les institutions d'histoire naturelle pour calculer l'incertitude sur les données de localisation sans qu’il soit nécessaire de comprendre dans le détail les algorithmes complexes sous-jacents. Plus il y aura d'institutions qui utilisent cette méthode, plus la qualité des données sera cohérente dans et entre les institutions, ce qui facilite l’appréciation de la qualité des données par les utilisateurs. Nous recommandons de lire aussi bien Wieczorek (2001) que le **manuel du calculateur de géoréférencement de MaNIS** (Wieczorek 2002) pour comprendre les calculs en question et comprendre comment fonctionne le calculateur.

Les algorithmes développés pour le calculateur de géoréférencement de MaNIS ont également été intégrés dans les calculs d'incertitude utilisés dans les outils de géoréférencement de BioGeomancer. Ceci contribuera aussi à normaliser la détermination de cet aspect important pour documenter la qualité des données.
6. Déterminer l’ajustement spatial

L’ajustement spatial est un nouveau concept du géoréférencement créé pour permettre de mesurer combien une représentation géométrique donnée correspond à la représentation spatiale originale. Ceci est utile quand des transformations spatiales changent la manière dont une localité est représentée, que ce soit pour masquer ses détails ou pour correspondre à un schéma convenu d’échange de données (comme caler des emplacements sur les mailles d’une grille).

Un ajustement spatial d’une valeur de 1 dénote une correspondance parfaite, avec un recouvrement de 100 %. Si la géométrie considérée n’englobe pas totalement la représentation spatiale originale, alors l’ajustement spatial est de zéro (c’est le cas lorsqu’une partie de l’espace original tombe en dehors de la version transformée, ce qui est considéré comme un manque d’ajustement). Si une forme transformée n’englobe pas totalement sa représentation spatiale originale, alors la valeur de l’ajustement spatial est le rapport entre la surface de la géométrie transformée et la surface de sa représentation spatiale originale. Cas particulier : si la représentation originale est un point et que sa représentation géométrique n’est pas un point, alors l’ajustement spatial n’est pas défini. La gamme des valeurs est 0, 1, supérieur à 1, ou indéfini.

Un exemple d'application de l'ajustement spatial est donné par le cas où un point représentant une collecte terrestre se trouve à proximité de la côte, et où le rayon d'incertitude calculé englobe une zone marine. Dans ce cas l’ajustement spatial sera supérieur à 1 car l’incertitude affichée est supérieure à l’incertitude réelle.
La figure 3 représente quelques exemples de définition de l'ajustement spatial ; ces exemples sont détaillés ci-dessous :

1) Supposons que la représentation spatiale originale soit donnée par le polygone rouge de superficie A.

<table>
<thead>
<tr>
<th>Ajustement spatial</th>
<th>Formule</th>
</tr>
</thead>
<tbody>
<tr>
<td>du cercle jaune</td>
<td>$\frac{(\pi r_2^2)}{A}$</td>
</tr>
<tr>
<td>de la boîte verte</td>
<td>$\frac{2r_2^2}{A}$</td>
</tr>
<tr>
<td>du cercle noir (r_1)</td>
<td>$\frac{(\pi r_1^2)}{A}$</td>
</tr>
<tr>
<td>du polygone rouge</td>
<td>1</td>
</tr>
<tr>
<td>du point C</td>
<td>0</td>
</tr>
</tbody>
</table>

2) Supposons que la représentation spatiale originale soit donnée par la boîte verte de superficie $2r_2^2$.

<table>
<thead>
<tr>
<th>Ajustement spatial</th>
<th>Formule</th>
</tr>
</thead>
<tbody>
<tr>
<td>du cercle jaune</td>
<td>$\frac{(\pi r_2^2)}{2r_2^2}$</td>
</tr>
<tr>
<td>de la boîte verte</td>
<td>1</td>
</tr>
<tr>
<td>du cercle noir (r_1)</td>
<td>0</td>
</tr>
<tr>
<td>du polygone rouge</td>
<td>0</td>
</tr>
<tr>
<td>du point C</td>
<td>0</td>
</tr>
</tbody>
</table>

3) Supposons que la représentation spatiale originale soit donnée par le cercle noir de superficie πr_1^2.

<table>
<thead>
<tr>
<th>Ajustement spatial</th>
<th>Formule</th>
</tr>
</thead>
<tbody>
<tr>
<td>du cercle jaune</td>
<td>$\frac{r_2^2}{r_1^2}$</td>
</tr>
<tr>
<td>de la boîte verte</td>
<td>0</td>
</tr>
<tr>
<td>du cercle noir (r_1)</td>
<td>1</td>
</tr>
<tr>
<td>du polygone rouge</td>
<td>0</td>
</tr>
<tr>
<td>du point C</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 3. Un diagramme illustrant l'ajustement spatial de quelques localisations qui peuvent être représentées par un polygone, une grille ou un point.
4) Supposez que la représentation spatiale originale soit donnée par le point C.

<table>
<thead>
<tr>
<th>Forme de la figure</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>cercle jaune</td>
<td>Indéfini</td>
</tr>
<tr>
<td>boîte verte</td>
<td>Indéfini</td>
</tr>
<tr>
<td>cercle noir (r₁)</td>
<td>Indéfini</td>
</tr>
<tr>
<td>polygone rouge</td>
<td>Indéfini</td>
</tr>
<tr>
<td>point C</td>
<td>1</td>
</tr>
</tbody>
</table>
Maintenir la qualité des données

Les données qui ont été incorporées dans la base et géoréférencées ont besoin d'être maintenues et contrôlées quant à leur qualité. Le processus de contrôle qualité comprend un certain nombre d'étapes, y compris la réception de retour d'information de la part des utilisateurs, l'envoi de retour d'information aux collecteurs, et l'exécution de différents tests de validation. Pour plus d'informations sur la qualité des données et ce qu'elle signifie pour les données primaires de collecte d'espèces, voir Chapman (2005b). Deux grands principes liés à la qualité des données et au nettoyage des données sont les suivants :

- La prévention de l'erreur est préférable à la correction de l'erreur.
- Plus tôt vous pouvez détecter une erreur dans la chaîne d'information, moins cher ce sera de la corriger.

1. Retour d'information vers les collecteurs

Maintenir la qualité des données peut exiger un retour d'information vers les autres. Par exemple, si vous trouvez qu'un collecteur particulier n'enregistre pas son information de collecte correctement (par exemple, parce qu'il n'enregistre pas le référentiel géodésique avec les informations de géoréférencement), alors vous devez lui fournir un retour d'information afin que les enregistrements ultérieurs aient un niveau plus faible d'erreur et donc une meilleure qualité. Voir le chapitre précédent sur Collecter et enregistrer les données sur le terrain. Les principales questions qui peuvent exiger un retour d'information vers les collecteurs sont :

- S'assurer que le référentiel géodésique est enregistré avec toutes les lectures GPS
- Encourager l'utilisation cohérente d'un système de coordonnées normalisé (par exemple, encourager les collecteurs à utiliser des degrés décimaux à chaque fois que c'est possible)
- Enregistrer les localités d'une manière cohérente et claire
 - Utiliser le toponyme le plus proche avec le décalage approprié
 - Enregistrer “par la route” ou “par les airs”
- Utiliser un altimètre barométrique pour enregistrer l'altitude.

2. Accepter le retour d'information de la part des utilisateurs

Le retour d'information de la part des utilisateurs peut être l'une des meilleures ressources pour maintenir la qualité de ses collectes. Mais pour que cela fonctionne, l'institution doit mettre en place un mécanisme efficace de retour d’information. Il faut prévoir un processus dans lequel tous les retours d'information relatifs à la qualité sont vérifiés et les résultats documentés (voir Chapman 2005a, b). Les retours d’information peuvent provenir soit d'autres institutions détenant des doubles de certains de vos spécimens, soit d'utilisateurs qui effectuent des analyses sur de grandes quantités de données et qui trouvent des enregistrements qui sont mal géoréférencés, ou mal identifiés, soit d'utilisateurs qui effectuent un contrôle qualité sur des enregistrements associés. Chaque retour d’information est important, et aucun ne devrait être ignoré. Les contrôles effectués devraient aussi être toujours documentés afin que l'on ne détecte pas éternellement la même “erreur”.
3. Contrôler et nettoyer les données

Un aspect important mais souvent négligé dans tout projet de géoréférencement est le contrôle des données géoréférencées qui entrent dans la base de données. Cet aspect est souvent négligé en raison du manque de fonds ou de personnel. Cependant comme le but de tout projet de géoréférencement est de produire des coordonnées géographiques reliant un spécimen à un endroit sur une carte ou à des données environnementales, il est important que les coordonnées choisies soient vraiment les meilleures pour le lieu en question. Non seulement cela améliore la qualité des données, mais on identifie également les tendances et les habitudes de géoréférencement qu’il peut falloir corriger. C’est souvent un assistant diplômé, un stagiaire, ou quelqu'un ayant plus d'expérience qui fera la plupart des contrôles de qualité.

a. Saisir les données

L'une des principales sources d'erreurs dans le géoréférencement est l’étape de saisie des données. Le taux d’erreur peut être réduit par la mise en place de bonnes procédures de saisie – utilisation de menus déroulants, de contraintes sur les champs, etc., - qui réduisent les risques d’erreur. Mais une fois ces procédures en place et en œuvre, encore faut-il effectuer régulièrement des contrôles sur les opérateurs et le processus de saisie. Plusieurs méthodes de contrôle qualité peuvent être utilisées, mais nous recommandons les deux suivantes, extraites des directives de géoréférencement de MapSTeDI.

Il faut d’abord vérifier la précision du géoréférencement. Ceci se fait en vérifiant un certain nombre d’enregistrements pour chaque opérateur de géoréférencement. Sur la base de divers essais, il est recommandé que les 200 premiers enregistrements d’un nouvel opérateur soient contrôlés sur le plan de la précision. Ce contrôle initial est non seulement bénéfique pour la précision des données, mais il est aussi essentiel pour permettre aux opérateurs de progresser et d’apprendre de leurs erreurs. Si des problèmes importants subsistent après les 200 premiers enregistrements, un lot supplémentaire de 100 autres enregistrements devraient être vérifiés. Lorsque le contrôleur de la qualité, généralement un opérateur de géoréférencement très expérimenté, est satisfait des capacités du nouvel opérateur, le contrôle qualité se réduit ensuite à vérifier 10 enregistrements choisis au hasard sur 100 saisis. Si plus de deux enregistrements sur ces 10 sont jugés incorrects, 20 enregistrements supplémentaires devraient être vérifiés. Le contrôleur de la qualité peut demander à l’opérateur de saisir de nouveau les 100 enregistrements si trop de problèmes subsistent. Après une période avec peu d’erreurs, le contrôle est réduit à la vérification de cinq enregistrements sur 100 ou à tout autre rythme à la discrétion du contrôleur.

Pour résumer::

- Les 200 premiers enregistrements devraient être contrôlés. Si des problèmes subsistent, poursuivez la vérification par groupes de 100 jusqu’à être satisfait des capacités de l’opérateur.
- Contrôler régulièrement 10 enregistrements choisis au hasard pour chaque tranche de 100.
- S'il y a plus de 2 enregistrements incorrects, le contrôleur de la qualité devrait contrôler 20 autres enregistrements et demander à l’opérateur de saisir de nouveau tous les 100.
- Après un certain temps, les contrôles réguliers peuvent être réduits à 5 enregistrements pour chaque tranche de 100.

Le second objectif du contrôle qualité est de permettre aux opérateurs de géoréférencement de se référer pour les enregistrements difficiles ou confus au contrôleur de la qualité pour

b. Valider les données

La validation des données (vérification et recherche d’erreurs) peut être un processus fastidieux ; c’est pourtant l'un des processus les plus importants auquel vous puissiez soumettre vos données. Il n'est pas pratique de vérifier chaque enregistrement individuellement : de ce fait, le recours à des techniques de traitement par lots et à des procédures de détection de valeurs aberrantes, entre autres, est essentiel. Heureusement, bon nombre de ces techniques ont été implémentées et sont disponibles sous forme de logiciels ou de services en ligne. La plupart de ces outils sont détaillés dans le document Principes et méthodes du nettoyage des données primaires et d’occurrence d’espèces publié par le GBIF (Chapman 2005b) et les informations qui s’y trouvent ne seront pas répétées ici. Nous vous recommandons de télécharger et d'utiliser ce document comme un complément à celui-ci.

Il y a de nombreuses méthodes pour contrôler les erreurs dans les données géoréférencées. Celles-ci comprennent notamment :

- l'utilisation de bases de données extérieures (itinéraires de collecteurs, gazetiers, etc),
- la comparaison à d’autres champs dans votre propre base de données (en s'assurant que le géoréférencement corresponde au bon pays, à la bonne région, etc.),
- l'utilisation d'un SIG pour rechercher des enregistrements qui tombent en dehors de polygones représentant des régions biogéographiques, des d'administrations locales,
- l'utilisation de méthodes statistiques comme les diagrammes en boîte, la mise en portefeuille inverse, les courbes de fréquence cumulée, et l'analyse par grappes pour identifier les valeurs aberrantes en latitude ou en longitude,
- l'utilisation de logiciels de modélisation en liaison avec l'analyse statistique pour identifier les valeurs aberrantes selon une dimension environnementale (le climat, par exemple).

Quelques-unes de ces techniques seront bientôt disponibles en ligne sur le et sur le site Web de BioGeomancer, et d'autres encore sont disponibles dans le logiciel de SIG DIVA-GIS (Hijmans et al. 2005).

c. Faire des corrections

Quand vous faites des corrections dans votre base de données, nous recommandons fortement que vous ajoutiez toujours et ne remplaciez jamais ni n'effacez. Pour rendre cela possible,
d. La vérité dans l'étiquetage

'La vérité dans l'étiquetage’ est un aspect important de la documentation de la qualité des données. Particulièrement lorsque les données sont mises à la disposition d’un large public, par exemple via les points nodaux du GBIF. Nous recommandons que la documentation des données et de leur qualité soit honnête et facile d’accès. L'erreur est un élément inévitable dans tout jeu de données, et il devrait être reconnu comme un attribut fondamental de ces données. Toutes les bases de données comportent des erreurs, et il n’est dans l'intérêt de personne de les cacher. Au contraire, révéler les données leur donne en fait la possibilité d’être révisées, validées et corrigées grâce au retour d’information des utilisateurs, alors que les cacher garantirait plutôt qu’elles restent entachées d’erreur et de peu de valeur à long terme.

4. Responsabilités du gestionnaire

Il est important que le gestionnaire maintienne de bons jeux de documents (directives, documents sur les bonnes pratiques, etc), qu'il s'assure que de bons mécanismes de retour d’information sont en place, et qu’il s'assure que les procédures de contrôle qualité sont maintenues, tenues à jours, et mises en œuvre. Pour plus de détail sur ces responsabilités, nous vous renvoyons au document Principes de la qualité des données (Chapman 2005a) qui devrait être lu en complément de ce document.

5. Responsabilités du superviseur

Le superviseur du géoréférencement est le principal responsable du maintien de la qualité des données au quotidien. Les éléments clés en sont les procédures de saisie de données (voir Saisie des données, ci-dessus), et les processus de validation, de contrôle et de nettoyage des données. Il s’agit d’un rôle clé dans tout processus de géoréférencement, avec celui des opérateurs de saisie. Il est important que les devoirs et les responsabilités soient documentés dans les directives et les manuels de bonnes pratiques de l'institution.

6. Formation

La formation est une responsabilité majeure pour toute institution qui entame et réalise le géoréférencement de sa ou ses collections. Une bonne formation peut réduire le niveau d'erreur, réduire les coûts et améliorer la qualité des données. Un Kit de formation au géoréférencement et au nettoyage des données est prévu et devrait être développé dans les prochaines années. Il aidera les institutions à former leurs opérateurs de saisies et leurs superviseurs dans tous les aspects du géoréférencement et dans les processus de contrôle de la qualité des données.
7. Critères de performance

L’élaboration de critères de performance est un bon moyen pour s'assurer d'un bon niveau de performance, précision et qualité dans la base de données. Les critères de performance peuvent se rapporter à un individu (opérateur de saisie, superviseur, etc.) ou au processus dans son ensemble. Ils peuvent se rapporter au nombre d'enregistrements saisis chaque semaine, mais nous recommandons qu'ils se rapportent d'avantage à la qualité de la saisie. Lorsque cela est possible, les critères de performance devraient être chiffrés avec des domaines de valeurs bien définis, afin que la performance aux regard de ces critères puisse être documentée. Voici quelques exemples :

- 90% des enregistrements seront soumis au contrôle de validation dans les 6 mois à compter de la saisie,
- tous les enregistrements suspects identifiés au cours des procédures de validation seront vérifiés et corrigés dans les 30 jours ouvrables,
- le retour d’information des utilisateurs sur les erreurs sera contrôlé et l'utilisateur sera informé des résultats dans les deux semaines,
- tous les documents de contrôle de validation seront complets et tenus à jour.

8. Indicateur d'incertitude spatiale

Un indicateur d'incertitude spatiale peut être développé et documenté pour le jeu de données dans son ensemble pour permettre une évaluation d'ensemble de la qualité du jeu de données. Cet indicateur viendrait compléter un indicateur similaire concernant les autres données dans la base, comme un indicateur sur l'incertitude taxonomique, et serait généralement réservé à un usage interne. Actuellement, un tel indicateur universel sur les données primaires d'occurrence d'espèces n'existe pas, mais les institutions peuvent envisager d'élaborer leur propre indicateur et de tester leur utilité. De tels indicateurs devraient, à chaque fois que c’est possible, être générés automatiquement et produits dans le cadre des requêtes à la base de donnée, intégrés dans les métadonnées qui accompagnent la réponse à la requête. Un tel indicateur pourrait servir de base pour aider les utilisateurs à déterminer la qualité de la base de données pour leur usage particulier. Les auteurs du présent document seraient intéressés par tout retour d’information de la part des institutions qui élaborent un tel indicateur. L'indicateur devrait faire partie intégrante des métadonnées de la collection et pourrait comprendre, pour la partie géoréférencement de la base de données :

1. Indicateur de complétude

- pourcentage d'enregistrements avec des champs de géoréférencement renseignés
- pourcentage d'enregistrements avec des champs d'étendue renseignés
- pourcentage d'enregistrements avec des champs d'incertitude renseignés
- pourcentage d'enregistrements avec des champs de précision sur les coordonnées renseignés
- pourcentage d'enregistrements avec des champs de référentiel géodésique renseignés avec un référentiel connu

2. Indicateur d'incertitude
• moyenne et écart-type de la valeur de l’« incertitude » pour les enregistrements renseignés
• pourcentage d'enregistrements avec une valeur d'incertitude maximale dans chacune des classes suivantes :
 a <100 m
 b 100-1.000 m
 c 1.000-2.000 m
 d 2.000-5.000 m
 e 5.000-10.000 m
 f >10.000 m
 g non déterminée

3. Indicateur d’actualité
• temps écoulé depuis la dernière saisie de donnée
• temps écoulé depuis le dernier contrôle de validation

4. Indicateur de validation
• pourcentage d'enregistrements qui ont subi des contrôles de validation de nature x
• pourcentage d'enregistrements qui ont subi des contrôles de validation de nature y, etc.
• pourcentage d'enregistrements identifiés comme suspects lors des contrôles de validation
• pourcentage d'enregistrements suspects jugés effectivement erronés

9. Documentation
La documentation est l'un des éléments clés de n'importe quel processus de géoréférencement. La documentation concerne tous les aspects, depuis le niveau de l’enregistrement, comme :
• comment le géoréférencement a été déterminé,
• quelle méthode a été utilisée pour déterminer l'étendue et l'erreur,
• quelles modifications ont été effectuées (par exemple, si un opérateur modifie une localisation sur l'écran et la déplace du point ‘a’ au point ‘b’, la bonne pratique consiste à préciser “pourquoi” la localisation a été déplacée, au lieu de se contenter d'enregistrer que la localisation a été déplacée du point ‘a’ au point ‘b’ par l'opérateur),
• tous les contrôles de validation qui ont été effectués, par qui et quand,
• des marqueurs qui peuvent indiquer une incertitude, etc.
jusqu’aux métadonnées relatives à la collection dans son ensemble, qui peuvent inclure :
• le niveau global de la qualité des données,
• les contrôles généraux effectués sur l'ensemble du jeu de données,
• les unités de mesure et autres normes adoptées,
• les directives suivies,
• l'indicateur d'incertitude (voir plus haut dans ce chapitre).

Un deuxième série de documents a trait
• au document sur les “bonnes pratiques” de l'institution dont nous recommandons qu’il soit tiré du présent manuel, et adapté aux besoins spécifiques de l'institution,
• aux manuels de formation,
• à la documentation classique de toute base de données,
• aux directives et aux normes utilisées.

Nous recommandons que la documentation soit une partie intégrante de tout processus de géoréférencement.
Rémerciements

Texte
Références bibliographiques

références complémentaires

Logiciels et outils en ligne

- **BioGeomancer**
 http://www.biogeomancer.org
- **BioGeoMancer Classique**
 http://biogeomancer.org
- **DIVA-GIS**
 http://www.DIVA-GIS.org
- **GeoCalc**
- **GeoLoc – CRIA**
 http://splink.cria.org.br/geoloc?&setlang=en
- **GEOLocate**
 http://www.museum.tulane.edu/geolocate/
- **Calculateur de géoréférencement de MaNIS**
 http://manisnet.org/gc.html
- **NGDC Calculateur de déclinaison magnétique**

Gazetiers en ligne

- **Gazetier en ligne de la bibliothèque numérique Alexander**
- **Fuzzyg – gazetier “flou”**
 http://tomcat-dmaweb1.jrc.it/fuzzyg/query/Gazetier mondial
- **Serveur de toponymes de GEOnet**
 http://gnswwww.nga.mil/geonames/GNS/index.jsp
Annexe 1 : Directives pour géoréférencer les types de localités

TOPONYME

Définition :

Les descriptions de localités les plus simples consistent en la seule mention d’un toponyme, qui est souvent trouvé dans la liste d’un gazetier classique, et qui doit pouvoir être localisé sur une carte à l’échelle appropriée. Les catégories de toponymes sont notamment :

- ville, banlieue, zone habitée, ou lieu dit,
- source, forage, réservoir, puits, ou trou d’eau
- île, récif coralien, ou cayes
- port, baie, golfe, ou installation portuaire
- aéroport, bouée, dock, ou jetée
- pointe, cap, ou péninsule
- grotte
- barrage, ou retenue naturelle
- colline, pic, col, ou montagne
- repère géodésique
- parc, réserve, ou zone forestière
- croisement de deux chemins (routes, rivières, courbe de niveau, frontières, etc.)

Quelque soit la manière sont ils sont représentés dans un gazetier ou sur une carte, ces toponymes ne sont pas limités à un point ; ils ont une certaine étendue spatiale, bien que leur délimitation ne soit pas toujours évidente. Dans de très rares cas (comme pour un repère géodésique), l’étendue est très petite puisque ce sont des point repérés avec précision. Ce qui importe est d’essayer de saisir non seulement la position, mais aussi sa précision (c’est-à-dire l’étendue du toponyme).

Certains toponymes (comme un confluent de rivières ou un croisement de routes, ou un pont) peuvent ne pas être répertoriés dans les gazetiers, tandis que d’autres (comme les propriétés) peuvent ne pas apparaître sur les collections de cartes classiques. Ces genres de toponymes peuvent être difficiles à situer : ce sont donc les références géographiques parmi les moins efficaces à utiliser. Néanmoins, en faisant appel à d’autres ressources, comme le Web et les notes de terrain, on arrive souvent à débusquer leur localisation.

Exemples :

- Exemple 1 : “Bakersfield”
- Exemple 2 : “Point Lookout”
- Exemple 3 : “Trou d’eau de Bennetts”
- Exemple 4 : “Ila Tiburon”
- Exemple 5 : “Récif corailien de Lorne”
- Exemple 6 : “Parc national du Yosemite”
- Exemple 7 : “Mt Hypipamee”
- Exemple 8 : “Croisement de Dwight Avenue et de Derby Street”
- Exemple 9 : “Réserve forestière d’Etat 607”
- Exemple 10 : “Là où Dalby Road croise la limite du Parc national de Bunya Mountains”
- Exemple 11 : “confluent de Labarge Creek et de South Labarge Creek”
- Exemple 12 : “A 100 m de la délimitation sur Black street”
- Exemple 13 : “confluent du Rio Claro et du Rio La Hondura”
- Exemple 13 : “Station de Victoria River” [Territoire du Nord, Australie]

Procédure de géoréférencement :

Toponymes avec une étendue spatiale évidente — utiliser le centre géographique (par exemple, le point milieu entre les valeurs extrêmes de la latitude et de la longitude) pour déterminer les coordonnées. Si le centre géographique ne tombe pas à l’intérieur de la zone du toponyme, prendre alors le point de la zone le plus proche du centre (voir la Figure 4). Utiliser comme étendue la distance entre les coordonnées obtenues et le point le plus éloigné de la zone du toponyme. Certains gazetiers fournissant des boîtes de délimitation pour décrire les étendues des grandes zones, et vous pouvez les utiliser pour déterminer l’étendue en les mesurant sur une carte ou en utilisant un calculateur de distance géographique comme le Calculateur de distance perpendiculaire 12 du Centre de Biodiversité et Conservation (CBC).

Toponymes sans étendue spatiale évidente — certains toponymes ne sont pas représentés sur la carte par une zone colorée ni par un symbole topographique de bâtiment (En particulier pour les localités hors de Etats-Unis). Certains de ces toponymes peuvent avoir de étendues importantes, mais mal délimitées (montagnes, lignes de pièges). D’autres toponymes peuvent être relativemment petits (sources, croisements ou confluent), sans étendue apparente sur une carte. Déterminer au mieux leurs coordonnées, et leur étendue pour les toponymes de grande dimension, en documentant votre raisonnement ; pour les toponymes de surface réduite, utiliser les étendues types sur la base de la catégorie du toponyme. L’étendue des croisements de routes, par exemple, ne peut pas être mesurée sur une carte : utiliser dans ce cas les recommandations suivantes de Frazier et al. (2004) relatives aux étendues :

- Pour des rues ou des routes à 2 voies, l’étendue est de 10 m.
- Pour des routes à 4 voies, l’étendue est de 20 m.
- Pour des routes larges dotées d’une séparation médiane, l’étendue est de 30 m.
- Si le type de rue ou de route est inconnu, utiliser par défaut 15 m.

Il est intéressant de créer un tableau des étendues par types de toponyme, que vous pouvez inclure dans votre documentation institutionnelle sur les bonnes pratiques, afin d’assurer une cohérence entre les étendues des toponymes dont la dimension ne peut pas être mesurée sans aller sur le terrain.

Localisations ‘Exactes’ — si l’emplacement semble correspondre ‘exactement’ à la localité citée (selon les coordonnées fournies par le GPS) utiliser la précision fournie par le GPS comme valeur de l’étendue.

Dans certains cas – par exemple, un repère géodésique enregistré avec précision – l’étendue et l’incertitude peuvent être identiques, cependant, les collectes sont rarement effectuées exactement sur la localité citée (par exemple, exactement sur le repère géodésique), l’étendue est donc habituellement beaucoup plus grande que la précision de la position de la localité pourrait le laisser penser.

Si vous choisissez un gazetier pour obtenir les coordonnées, gardez à l’esprit que celles-ci peuvent ne pas être au centre géographique du toponyme. Par exemple, les coordonnées d’une agglomération peuvent correspondre à la poste principale ou au palais de justice (s’il s’agit d’un chef lieu). Les coordonnées des rivières et cours d’eau sont habituellement placées à l’embouchure. Pour cette raison, il est conseillé d’utiliser les coordonnées du gazetier pour localiser le toponyme sur une carte, et ensuite d’utiliser la carte pour trouver le centre géographique du toponyme.

Lorsque vous enregistrez la méthode de détermination des coordonnées et l’incertitude dans les remarques, utilisez ‘mesuré depuis la poste principale’, ou ‘mesuré depuis le centre géographique de Bakersfield’, etc.

Attention ! Certains anciens gazetiers référencent le coin gauche de la zone lorsque le toponyme apparaît sur une carte imprimée, plutôt que la position du centre du toponyme. La plupart des gazetiers ont été corrigés ces dernières années, mais il faut faire attention lorsqu’on utilise un gazetier que l’on ne connaît pas. Vérifiez toujours sur la carte, dont vous aurez besoin de toutes façons pour calculer l’étendue.

Subdivisions d’un toponyme — par exemple, “partie Nord du lac Mono” calculez l’étendue correspondant seulement à la subdivision et procédez ensuite comme vous le feriez avec une localité correspondant à un toponyme doté d’une étendue spatiale.

Propriétés (ranches, fermes, stations, etc.) — si vous ne pouvez pas les localiser dans un gazetier ou sur des cartes ordinaires, il se peut que vous deviez utiliser une carte cadastrale, ou que vous deviez rechercher si vous pouvez les localiser par rapport à des villes proches ou d’autres entités géographiques. Si vous ne pouvez en distinguer les limites, et donc ne pouvez pas en déterminer le centre géographique, utilisez alors les coordonnées du lieu dit ou des bâtiments principaux de la propriété, et estimez la taille de la propriété à partir de la position d’autres bâtiments qui ne sont pas sur la propriété.

Grottes — utilisez les coordonnées de l’entrée de la grotte. C’est la localisation qui sera habituellement fournie dans un gazetier ou sur une carte ordinaire.

Incertitude :

Utilisez le [Calculateur de géoréférencement de MaNIS](http://manisnet.org/gc.html) pour déterminer la “Distance d’incertitude maximale”.

- Comme **Type de calcul** utilisez :
 “Erreur – entrez Lat/Long de la localité”

- Comme **Type de localité** utilisez :
 “Toponyme seulement”.

Voir l’Exemple 1, ci-dessous

<table>
<thead>
<tr>
<th>Exemple 1.</th>
</tr>
</thead>
</table>
| **Localité** : “Bakersfield”
Supposons que les coordonnées de Bakersfield ont été obtenues dans la base de données du GNIS (un gazetier) et que la distance du centre de Bakersfield à la limite la plus éloignée de la ville est 3 km. |
| **Système de coordonnées** : degrés minutes secondes
Latitude : 35° 22’ 24” N
Longitude : 119 ° 1’ 4” W
Référentiel géodésique : non enregistré ; 79 m d’incertitude
Précision des coordonnées : seconde la plus proche ; 40 m d’incertitude
Source des coordonnées : gazetier
Etendue du toponyme : 3 km
Unité de distance : km
Latitude décimale : 35.37333
Longitude décimale : -119.01778
Distance d’incertitude maximale : 3,119 km |
A PROXIMITE D’UN TOponyme

Définition :
Une localité donnée sans position exacte, mais avec “à proximité de”, “dans les environs de”, “adjacent à”, ou une relation similaire au toponyme cité.

De telles descriptions de localités indiquent un décalage à partir d’un toponyme sans direction ou distance précises.

Exemples :
- Exemple 1 : “Prés de Las Vegas”
- Exemple 2 : “dans les environs de Tumbarumba”
- Exemple 3 : “Environs de Big Bay”
- Exemple 4 : “Près de MS 117 sur Dalton Hwy”
- Exemple 5 : “Près du Bend 43 sur Great Western Hwy”
- Exemple 6 : “Environs du pont sur la Condamine River sur Warrego Highway”
- Exemple 7 : “Adjacent au tunnel ferroviaire sur Smith Street”
- Exemple 8 : “Zone du confluent des rivières Black et Oshetna”

Procédure de géoréférencement :
Dans de tels cas utilisez le centre géographique du toponyme comme coordonnées géographiques.

Si vous n’êtes pas en mesure de déterminer les coordonnées exactes de la localité, utilisez alors des coordonnées aussi poches que possible de la localité géoréférencée (et le long du tracé si c’est pertinent).

Etendue :
L’étendue devrait être calculée comme la valeur la plus grande entre 2 km et 200% de l’étendue du toponyme. Il y a ici clairement une dose de subjectivité et vous devriez juger en fonction des éléments issus d’autres sources. Le bon sens doit prévaloir, et vous devez documenter les hypothèses utilisées.

Incertitude :
Effectuez le calcul comme pour un ‘Toponyme’ mais notez l’augmentation de l’étendue.
ENTRE DEUX TOPONYMES

Définition :
Une localité citée comme ‘entre’ deux entités géographiques ou toponymes

Exemples :
Exemple 1 : "entre Point Reyes et Inverness"

Image

Fig. 5. Le diagramme ci-dessus illustre le cas général d’une description de localité du type "Entre A et B.

Procédure de géoréférencement :
Trouver les coordonnées du point milieu entre les centres des deux toponymes (le point e sur la Figure 5).

Etendue :
Utilisez la moitié de la distance entre les centres de A et B.

Incertitude :
Effectuez le même calcul que pour un ‘Toponyme’.
Définition :

La localité est donnée par une adresse dans une rue – habituellement avec un numéro, un nom e rue, et un nom d’entité.

Dans certains endroits, les numéros de rue dans les zones rurales représentent la distance métrique depuis le début de la rue ou de la route.

Exemples:

Exemple 1 : “1 Orchard Lane, Berkeley, CA”
Exemple 2 : “21054 Baldersleigh Road, Guyra, NSW” (indique que la localité est à 21,054 km du début de Baldersleigh Road).
Exemple 3 : “Cour intérieure du 593 sur West Street, Louisville, Boulder County, Colorado”
Exemple 4 : “Serre au 20 sur Broadway, Boulder, Boulder County, Colorado”

Procédure de géoréférencement :

Les adresses sont parfois données lorsque les spécimens sont collectés en ville. Lorsque c’est possible, localisez le point indiqué à l’aide d’une carte locale ou d’un outil de cartographie comme Google Maps®, Maporama® ou Mapquest®, l’annuaire ou les pages jaunes, ou un GPS. Si l’adresse exacte est introuvable, estimez au mieux la position. Rappelez-vous que de nombreuses adresses reflètent un système de numérotation. Par exemple, les adresses entre la 12ème rue et la 13ème rue devraient être entre 1200 et 1300. Soyez conscient cependant que les noms de rue changent au cours du temps. Localisez au mieux la zone sur la carte ou avec le logiciel de cartographie que vous utilisez pour obtenir les coordonnées, si le gazetier électronique ne les donnent pas automatiquement.

Des noms de bâtiments sont souvent donnés pour préciser la position dans une ville. Ces bâtiments ont rarement leurs coordonnées indiquées dans un gazetier, cependant, ils peuvent parfois être localisés en utilisant les pages jaunes, qui peuvent être consultables sur Internet. À la différence des entités naturelles, la plupart des bâtiments voient leurs noms changer ou disparaître au cours du temps, donc vérifiez que le bâtiment nommé dans l’enregistrement existait bien à cet endroit à l’époque de la collecte.

Etendue :

Prenez comme étendue la plus petite zone identifiable et qui ne peut correspondre à une autre adresse. Si vous n’arrivez pas à déterminer la position et la dimension d’une adresse dans un quartier, prenez la moitié de la longueur d’un quartier de la ville comme étendue et notez-le dans les remarques sur le géoréférencement.

Incertitude :

Effectuez le même calcul que pour un ‘Toponyme’.
TOPONYMES LINEAIRES

Définition :

La localité est une entité linéaire, comme une route, une piste, une frontière, une rivière, une courbe de niveau ou une délimitation. La localité peut aussi se référer à une partie (ou subdivision) d’une entité linéaire (voir les exemples 5 à 7). Les localités indiquées sans position exacte, mais citées comme ‘près de’, ‘dans les environs de’, ‘adjacent à’, un tracé linéaire tel que celui d’une route, d’une rivière, etc. (voir les exemples 8 et 9) sont traitées comme les autres localités linéaires, avec éventuellement une empreinte plus large - voir aussi le paragraphe ‘À proximité d’un toponyme’, co-dessus.

Attention ! L’entité linéaire dans la description d’une localité doit souvent être utilisée en combinaison avec d’autres éléments. La forme de la localité peut être affectée par la relation entre l’entité linéaire et les autres éléments. Par exemple, une description qui mentionne une entité linéaire suivie d’un décalage à partir d’un toponyme selon un cap -Hwy 101, 2 mi N Santa Rosa- doit être en fait dans ce cas interprétée comme correspondant à ‘un décalage à partir d’un toponyme selon un cap le long d’une entité linéaire’, plutôt que comme l’intersection entre l’entité linéaire et ‘un décalage selon un cap à partir d’un toponyme’.

(Dans l’exemple cité, il faut remonter le long de la Hwy 101 sur 2 miles vers le Nord à partir de Santa Rosa, plutôt que de chercher le croisement entre la Hwy et la méridienne passant par Santa Rosa à environ 2 miles au Nord. NdT)

Exemples :

Exemple 1 : “Hwy 1”
Exemple 2 : “Nepean River”
Exemple 3 : “à 100 m le long de la ligne de délimitation”
Exemple 4 : “N. Boulder Creek, 1,3 miles au dessus des Chutes de Boulder”
Exemple 5 : “embouchure de la Goodpaster River”
Exemple 6 : “source de Mooney Creek”
Exemple 7 : “partie Est de Logan Motorway”
Exemple 8 : “environs de Uyamitqua Ck.”
Exemple 9 : “adjacent à la limite Est du Parc Foz do Iguaçu”

Procédure de géoréférencement :

Routes — un parcours linéaire peut être défini par un toponyme (voir la note ci-dessous). Il peut avoir un impact sur le positionnement des coordonnées. À défaut d’information particulière, traitez la route de la même manière qu’une rivière, comme expliqué ci-dessous. En cas de référence à un décalage ou à une position sur le parcours, traitez la localité comme tout autre toponyme, et référez-vous à la section appropriée, comme ‘Décalage’ ou ‘Toponyme’.

Rivières — Si vous ne parvenez pas à reconstituer le cours de la rivière pour trouver son centre géographique, tracez une ligne droite de l’embouchure à la source (ou entre les points extrêmes du parcours à l’intérieur du département, de la région, du pays, etc. qui vous intéresse). Trouver le centre de cette ligne, et placez vos coordonnées sur le point du parcours le plus proche du centre de la ligne (voir Figure 6). Cette méthode peut conduire à des erreurs importantes dans le cas de rivières dont le cours connaît des changements considérables de direction. Dans ce cas, faites jouer votre bon sens pour déterminer le point le plus approprié, en gardant à l’esprit les méthodes suggérées ci-dessus.

L’embouchure d’une rivière n’est pas toujours facile à déterminer, mais elle est habituellement considérée comme formant une ligne droite à travers la rivière là où celle-ci rejoint une étendue d’eau ou un cours d’eau plus important (mer, baie, lac, autre rivière, etc.). Dans certains cas rares, elle peut désigner la partie aval du cours13, où la rivière change de nom. C’est en tout cas le lieu le plus bas de la rivière.

13 Comme par exemple la Gironde pour la Garonne, en France (NdT).
De même, la source d’une rivière (là où commence la rivière) peut aussi être difficile à localiser. Bien que la source soit toujours le point le plus haut sur le parcours portant le nom de la rivière, elle peut se situer dans une montagne, dans un canyon, ou dans un lac, et il peut être nécessaire d’estimer sa position si sa dimension réduite, ou sa division en plusieurs ruisseaux, la rendent difficile à identifier avec précision sur une carte.

‘Embouchure de la rivière (Exemple 5) et ‘source de la rivière’ (Exemple 6) doivent habituellement être traités comme pour les ‘Toponymes’.

Attention ! En utilisant des cartes anciennes, il faut savoir que le cours des rivières peut avoir changé et qu’ils peuvent s’être trouvés ailleurs au moment de la collecte, que leur position indiquée sur la carte lorsqu’elle a été tracée. En outre, la position apparente de l’embouchure d’une rivière peut être fortement influencée par l’échelle de la carte utilisée.

Notez ! Ne pas utiliser directement les coordonnées fournies par les gazetiers : en effet, celles-ci correspondent habituellement à l’embouchure, pas au centre géographique.

Courbes de niveau — Si la courbe de niveau est entièrement comprise dans la zone d’intérêt, traitez la comme pour une rivière. Si la courbe de niveau est fermée (c’est-à-dire si elle forme un polygone autour d’une colline ou d’une montagne, etc.), traitez alors l’aire délimitée par la courbe fermée comme vous le ferez pour un ‘Toponyme’ et utilisez le centre géographique du polygone pour déterminer les coordonnées.

Subdivisions d’une entité linéaire — lorsque la subdivision d’une entité linéaire constitue une nouvelle entité, continuez à la traiter comme un route, une rivière, une courbe de niveau ou une délimitation comme indiqué plus haut. Dans l’Exemple 7, par exemple, vous pouvez prendre le point milieu sur la Logan Motorway comme limite Ouest de la subdivision désignée par ‘la portion Est’. Basez-vous sur cette limite pour déterminer à la fois les coordonnées et l’étendue.
Fig. 6. Un exemple de détermination des coordonnées et de l’étendue d’une entité linéaire (dans ce cas, la Darling River dans les Nouvelles Galles du Sud, en Australie). Utilisation d’un polygone d’incertitude donnerait une représentation plus précise de l’incertitude maximale que la méthode du ‘point-rayon’.

Étendue :

L’étendue est la distance entre le point le plus proche du centre géographique de l’entité linéaire, et le point sur l’entité le plus éloigné de ce centre. Assurez-vous de calculer la position du centre en vous basant uniquement sur la portion de l’entité qui est contenue dans la zone d’intérêt.

Incertitude :

Effectuez le même calcul que pour un ‘Toponyme’.
Entre deux entités linéaires

Définition :
Une localité citée comme étant entre deux entités linéaires (deux routes, deux rivières, une route et une rivière, etc.).

Exemples :
- **Exemple 1 :** "entre la Tanama River et Clearwater Creek."
- **Exemple 2 :** "en les rues Aldersley et Bridge" (ce sont deux rues qui ne se croisent pas)
- **Exemple 3 :** "sur la Hwy 14, entre la highway et la barrière adjacente"

Procédure de géoréférencement :
Créez un polygone à partir des deux entités linéaires et de leurs extrémités – par exemple, la frontière de l’État, où la rivière rejoint une autre rivière ou change de nom, un croisement de routes, etc. (voir la Figure 7).
Une fois le polygone tracé – alors les coordonnées sont déterminées de la même manière que pour un ‘Toponyme’, voir ci-dessus.

Image :

![Fig. 7. Un exemple de détermination des coordonnées et de l’étendue pour une position placée entre deux entités linéaires (dans ce cas “entre la Bruce Highway et la voie ferrée, à l’Ouest de Plain Creek et avant le croisement de la voie ferrée et de la Highway”). Crée de fond fourni par Geosciences Australia (2005).](image)

Etendue :
Une fois le polygone tracé comme ci-dessus, l’étendue est alors déterminée de la même manière que pour un ‘Toponyme’.

Incertitude :
Effectuez le même calcul que pour un ‘Toponyme’.
DISTANCE DE DECALAGE

Définition :

La localité est décrite à l’aide d’un décalage à partir d’un toponyme sans qu’aucune direction soit spécifiée.

Exemples :

Exemple 1 : “5 km à l’extérieur de Calgary”
Exemple 2 : “à 15 km de Recife”

Image :

Fig. 8. Un exemple de détermination des coordonnées et de l’étendue d’une position indiquée avec seulement une distance de décalage par rapport à un toponyme (dans ce cas, “à 5 km du Lac Vättern, Suède”). Les coordonnées sont 14,56°, 58,30°. La distance de décalage est de 5 km, l’étendue du toponyme (le Lac Vättern) est 61,2 km. Ces valeurs sont alors utilisées dans le Calculateur de géoréférencement de MaNIS pour déterminer l’incertitude maximale.

Procédure de géoréférencement :

Enregistrez les coordonnées géographique du centre du toponyme, comme vous le feriez pour un ‘Toponyme’ ordinaire.

Il arrive que l’information sur le décalage soit vague, soit en direction, soit en distance. Si l’information de direction est vague, enregistrez les coordonnées géographique du centre du toponyme et incluez la distance du décalage dans la détermination de l’incertitude maximale (voir la Figure 8).

Etendue :

Utilisez l’étendue du toponyme.

Incertainitude :

Utilisez le Calculateur de géoréférencement de MaNIS (http://manisnet.org/gc.html) pour déterminer la “Distance d’incertitude maximale”.

• Comme Type de calcul utilisez
“Erreur – entrez la Lat/Long de la localité”

- Comme Type de localité utilisez “Distance seulement (par exemple, à 5 mi de Bakersfield)”.

Exemple 1.

Localité : “à 5 mi de Bakersfield”

Supposons que les coordonnées de Bakersfield proviennent de Topozone® avec les coordonnées sur la carte projetées dans NAD27. Supposons aussi que la distance depuis le centre de Bakersfield jusqu’à la limite extrême de la ville est de 2 mi.

Système de coordonnées : degrés décimaux
Latitude : 35,373
Longitude : -119,018
Référentiel géodésique : NAD27; pas d’incertitude
Précision sur les coordonnées : 0,001 degrés ; 0,089 mi d’incertitude
Source des coordonnées : gazetier
Distance de décalage : 5 mi
Etendue du toponyme : 2 mi
Unité de distance : mi
Latitude décimale : 35,373
Longitude décimale : -119,018
Distance d’incertitude maximale : 8,089 mi

Exemple 2.

Localité : “à 5 km du Lac Vättern, Suède” (voir Figure 8).

Système de coordonnées : degrés décimaux
Latitude : 58,30
Longitude : 14,56
Référentiel géodésique : inconnu
Précision sur les coordonnées : 0,001 degrés, 1520 m d’incertitude
Source des coordonnées : gazetier
Distance de décalage : 5 km
Etendue du toponyme : 61,2 km
Unité de distance : km
Latitude décimale : 58,30
Longitude décimale : 14,56
Distance d’incertitude maximale : 68,559 km

Définition :

La localité est décrite à l’aide d’une direction à partir d’un toponyme sans indication de distance.

Exemples :

Exemple 1 : “Nord de Palmetto”
Exemple 2 : “Ouest de Jondaryan”

Image :

![Diagramme](image)

Fig. 9. Un exemple de description de localité du type “sur un cap à partir de B”. Dans ce diagramme l’exemple spécifique est “Ouest de B”. La zone correspondant à “Ouest de B” est comprise dans le triangle en jaune vif qui relie les trois points b, i, et g. Le triangle orange serait interprété comme “Est de A” et le triangle vert serait interprété comme “Sud de A”.

Il y a plusieurs façons de calculer les coordonnées, l’étendue et l’incertitude dans ce scénario compliqué, dont certaines sont décrites ci-dessous en utilisant les valeurs indiquées sur la Figure 9.
Alternative 1 :

Coordonnées : Placez les coordonnées au point \(f \), qui est à une distance \(r / \cos(\alpha) \) à l'Ouest du centre de B, où \(r \) est la moitié de la distance entre les centres de A et B, et \(\alpha \) est l'angle entre l'Ouest et la direction du centre de B au centre de A.

Etendue : Le rayon de \(f \), qui est \(r / \cos(\alpha) \).

Inconvénient : Cette alternative ignore une partie du triangle (\(\text{big} \)).

Avantages :
1. Le centre du rayon d'incertitude est le point exactement à l'Ouest le plus éloigné du centre de B à l'intérieur du triangle (\(\text{big} \)).
2. C'est la plus simple des trois alternatives pour le calcul.

Alternative 2 :

Coordonnées : Placez les coordonnées au point \(f' \), comme dans l’Alternative 1.

Etendue : Le rayon de \(f'' \), qui est l'étendue de B plus \(r \sqrt{2} / (2 \cos(\alpha) \sin(\theta - \alpha)) \), où l'angle \(\theta \) est basé sur l'incertitude de direction (45 degrés pour l'Ouest).

Inconvénient : Le rayon d'incertitude est plus grand que nécessaire pour couvrir la zone que l'on pourrait appeler 'Ouest de B'.

Avantage :
1. Cette alternative ne néglige rien du triangle (\(\text{big} \)).
2. Elle donne place le centre sur le point le plus éloigné exactement à l'Ouest du centre de B à l'intérieur du triangle (\(\text{big} \)).

Alternative 3 :

Coordonnées : Placez les coordonnées au point \(j \), qui est à mi-chemin entre les points \(i \) et \(g \). Les coordonnées de ce point dépassent le capacités de discernement d’un opérateur de géoréférencement.

Etendue : Le rayon de \(j' \), qui est l'étendue de B plus \(r \sqrt{2} (\tan^2(\theta - \alpha) + 1) / (2 \tan(\theta - \alpha)) \), où \(\theta \) est la l'incertitude de direction (45 degrés pour l'Ouest).

Inconvénient :
1. Cette alternative ignore une partie du triangle (\(\text{big} \)).
2. Les coordonnées du point \(j \) ne peuvent pas être déterminées directement sur une carte ; elles doivent être calculées.
3. L'incertitude pour cette alternative est la plus complexe à calculer.
4. Le centre de l'incertitude n'est pas exactement à l'Ouest du centre de B.

Avantage :
1. Cette alternative ne néglige rien du triangle (\(\text{big} \)).
2. La taille du rayon d’incertitude est aussi réduite que possible, tout en englobant l’ensemble du triangle (\(\text{big} \)).

Alternative 4 :

Pas de géoréférencement car : "aucune distance de décalage n’est fournie".

Inconvénient :
1. Aucun géoréférencement n’est produit.

Avantage :
1. Cette alternative évite toute la subjectivité nécessaire pour interpréter cette description vague.

Procédure de géoréférencement :
Lorsqu'on a seulement un décalage sans distance, il est virtuellement impossible de réaliser un géoréférencement correct sans information complémentaire. Par exemple, si l’on a une description comme ‘à l’Est d’Albuquerque’ sans autre information, on n’a pas d’indication claire de la distance à laquelle on doit aller ‘vers l’Est’ pour trouver la localité : jusqu’au toponyme le plus proche ? jusqu’au toponyme le plus proche et de taille comparable ? ou plus loin ? En réalité, une telle description pourrait désigner la moitié de la surface de la Terre. C’est pour cette raison que nous recommandons d’utiliser de préférence l’Alternative 4 ci-dessus.

Une telle information est habituellement associée à d’autres informations qui la complètent. Par exemple, la localité peut être précisée par un autre information à plus grande échelle, comme ‘à l’Est d’Albuquerque, dans le Conté de Bernalillo, au Nouveau Mexique’. Cela vous donne une limite (la frontière du Conté), et devrait vous permettre alors de géoréférencer la localité.

Incertitude :

Le *Calculateur de géoréférencement de MaNIS* (http://manisnet.org/gc.html) ne calcule pas explicitement les coordonnées et l’incertitude pour ce type de localité. Toutefois, l’incertitude peut être calculée pour chacune des trois premières alternatives ci-dessus pourvu que l’on détermine d’abord les coordonnées et l’étendue. Le Calculateur de géoréférencement peut être utilisé en deux étapes pour géoréférencer en utilisant l’Alternative 1 ci-dessus. Pour la première étape, déterminez les coordonnées du point f :

- Comme **Type de calcul** utilisez “Coordonnées et erreur”
- Comme **Type de localité** utilisez “Distance selon un cap”.

![Fig. 10. Extrait de la carte numérique TOPO250K montrant Jondaryan, Queensland, Australie. Carte fournie par Geosciences Australia (2005).](image)

Exemple 1. Étape 1. (voir Figure 10)

Localité : “à l'Ouest de Jondaryan”

Supposons que les coordonnées de Jondaryan proviennent d’un gazetier qui utilise le référentiel géodésique australien de 1984 (AGD84). Malu est la zone habitée la plus proche vers l’Ouest à partir de Jondaryan à une distance de 3,65 et un cap de 305°. L’échelle de la carte est
1:250,000ème et les métadonnées associées à la carte indiquent une incertitude de ~160 m (voir le Tableau 5).

<table>
<thead>
<tr>
<th>Système de coordonnées</th>
<th>: degrés, minutes, secondes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Référentiel géodésique : AGD 84; pas d’incertitude</td>
<td></td>
</tr>
<tr>
<td>Précision des coordonnées : 1 seconde</td>
<td></td>
</tr>
<tr>
<td>Distance de décalage : 4,46 km (r/cos(alpha) où r = 3,65 km et alpha est la différence entre le cap 305º et l’Ouest 270º, soit 35º).</td>
<td>Direction : Ouest</td>
</tr>
<tr>
<td>Latitude décimale : -27,36389 (pour le point f)</td>
<td>Longitude décimale : 151,53797 (pour le point f)</td>
</tr>
<tr>
<td>Distance d’incertitude maximale : 1,592 km</td>
<td></td>
</tr>
</tbody>
</table>

Pour la seconde étape, déterminez la distance d’incertitude maximale à partir du point f' :

- Comme Type de calcul utilisez
 “Erreur – entrez la Lat/Long pour la localité”
- Comme Type de localité utilisez
 “Toponyme seulement”.

Exemple 1. Etape 2.

<table>
<thead>
<tr>
<th>Système de coordonnées</th>
<th>: degrés, minutes, secondes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude : 27º 21’ 50” S</td>
<td>Longitude : 151º 32’ 16.69” E (basée on the Decimal Longitude from Step 1)</td>
</tr>
<tr>
<td>Référentiel géodésique : AGD 84; pas d’incertitude</td>
<td></td>
</tr>
<tr>
<td>Précision des coordonnées : 1 seconde</td>
<td></td>
</tr>
<tr>
<td>Source des coordonnées : carte non-USGS : 1:250,000 ; 0,16 km d’incertitude.</td>
<td></td>
</tr>
<tr>
<td>Etendue du toponyme : 4,46 km (rayon de f' sur la Figure 9)</td>
<td></td>
</tr>
<tr>
<td>Unité de distance : km</td>
<td></td>
</tr>
<tr>
<td>Précision de la distance : 1/100 km</td>
<td></td>
</tr>
<tr>
<td>Latitude décimale : -27,36389</td>
<td>Longitude décimale : 151,53797</td>
</tr>
<tr>
<td>Distance d’incertitude maximale : 4,751 km</td>
<td></td>
</tr>
</tbody>
</table>
Décalage selon un cap

Définition :
La description de la localité contient une distance dans une direction donnée à partir d’une entité ou toponyme. Il y a plusieurs variations dans ce type de description.

Les descriptions qui fournissent un décalage linéaire mesuré à partir d’un toponyme, mais ne spécifient pas comment cette mesure a été réalisée (voir Exemple 1, ci-dessous) doivent être jugées au cas par cas. Le jugement lui-même doit être documenté dans les remarques associées à la détermination (par exemple, ‘Supposé « à vol d’oiseau » - pas de route à l’Est de Yuma’, ou ‘Supposé « par la route » sur la Hwy 80’). Dans ce cas, la remarque devrait être formulée de la manière suivante : ‘L’incertitude englobe à la fois la distance à vol d’oiseau et la distance par la route sur la Hwy 80’.

Dans l’Exemple 2, la localité est sur la rive Est de la rivière, dans l’Illinois, plutôt que sur la rive Ouest, dans le Missouri. Dans cet exemple, les 16 miles sont supposés mesurés ‘à vol d’oiseau’ – mais voir aussi l’exemple similaire dans le prochain Type de localité : Décalage le long d’une entité linéaire.

L’ajout d’un modifiant adverbial à la distance indiquée dans la description de la localité, tout en étant une observation honnête, ne devrait pas affecter la détermination des coordonnées géographiques ni l’incertitude maximale. Dans l’Exemple 3, ci-dessous, traitez la localité comme s’il était indiqué “25 km ONO de Campinas”

Exemples :

- **Exemple 1** : “10,2 mi E de Yuma”
- **Exemple 2** : “16 mi de St Louis sur la rive gauche du Mississippi – vers l’aval”
- **Exemple 3** : “environ 25 km ONO de Campinas”
- **Exemple 4** : “10 mi E (à vol d’oiseau) Bakersfield”

Procédure de géoréférencement :

Lorsque la description et les autres informations disponibles ne permettent pas de déterminer la méthode de mesure du décalage, et qu’il n’y a pas de trajet au sol qui s’impose le long duquel la distance aurait pu être mesurée, supposez que celle-ci a été mesurée à vol d’oiseau.

Si le choix entre ‘par la route’ ou ‘à vol d’oiseau’ ne s’impose pas clairement, vous avez la possibilité d’utiliser les géographiques du point milieu entre les deux solutions, et d’assigner une incertitude suffisante pour englober les coordonnées et incertitudes qu’auraient données les deux méthodes. Mais nous ne recommandons pas de procéder ainsi, pour deux raisons. D’abord, les coordonnées résultantes ne correspondront à aucune des deux interprétations possibles. Ensuite, le calcul sera environ trois fois plus long du fait que vous devrez passer par chacune des deux interprétations avant d’en déduire la solution médiane. Comme le décalage selon un cap ‘à vol d’oiseau’ est en général supérieur à l’alternative par la route, c’est l’option que nous recommandons. Vous pouvez augmenter l’incertitude maximale afin d’englober l’autre alternative. Encore une fois, cette recommandation s’applique si rien ne vous incite à privilégier un trajet au sol pour la mesure du décalage.

Pour calculer les coordonnées, utiliser le centre géographique du toponyme comme point de départ (dans l’Exemple 1 ci-dessus, utilisez le centre de Yuma) et entrez ses coordonnées et son étendue dans le **Calculateur de géoréférencement de MaNIS** en utilisant comme Type de calcul ‘Coordonnées et erreur’. Saisissez la distance et la direction indiquées dans la description – (assurez-vous que les paramètres nécessaires sont renseignés ou
sélectionnés, comme le référentiel géodésique, la direction, la distance de décalage, l’unité de distance et la précision associée, et la source des coordonnées, le système de coordonnées utilisé et leur précision) et cliquez sur « Calculate ». Les nouvelles coordonnées qui apparaissent en bas de l’écran du calculateur sont celles que vous pouvez maintenant saisir dans votre base de données. Elles devraient être différentes de celles que vous aviez saisies dans les champs ‘Latitude’ et ‘Longitude’ – si ce n’est pas le cas, vérifiez que vous avez sélectionné le bon Type de calcul. Vous devriez aussi vérifier les coordonnées résultantes sur une carte (ou, pour les États-Unis, dans Topozone.com), pour vous assurer qu’elles ont un sens. Attention de bien choisir le même référentiel géodésique que pour les coordonnées originales lorsque vous visualisez le résultat.

Etendue :
L’étendue est celle de votre point de départ – habituellement un toponyme comme une ville, un croisement ou un confluent.

Incertitude :
Utilisez le Calculateur de géoréférencement de MaNIS pour déterminer la “Distance d’incertitude maximale”.

- Comme Type de calcul utilisez “Coordonnées et erreur”
- Comme Type de localité utilisez “Distance selon un cap”.

Exemple 1.
Localité : “10 mi E (à vol d’oiseau) de Bakersfield”
Supposons que les coordonnées de Bakersfield ont été tirées de la base de données du GNIS (un gazetier) et que les coordonnées de la localité ont été calculées à la seconde près, et que la distance du centre de Bakersfield à la limite la plus éloignée de la ville est 2 mi.

Système de coordonnées : degrés minutes secondes
Latitude : 35° 22’ 24” N
Longitude : 119 ° 1’ 4” W
Référentiel géodésique : non enregistré ; 0,049 mi d’incertitude
Précision des coordonnées : seconde la plus proche ; 0,024 mi d’incertitude
Source des coordonnées : gazetier (dont le référentiel géodésique est inconnu)
Distance de décalage : 10 mi
Etendue du toponyme : 2 mi
Unité de distance : mi
Précision sur la distance : 1 mi
Latitude décimale : 35,37333
Longitude décimale : -119,01778
Distance d’incertitude maximale : 16,588 mi
Exemple 2.

Localité : “10 mi ENE (à vol d’oiseau) de Bakersfield”
Supposons que les coordonnées de la localité ont été interpolées à la seconde à partir d’une carte USGS Gosford au 1:24.000ème et que la distance du centre de Bakersfield à la limite la plus éloignée de la ville est 2 mi.

Système de coordonnées : degrés minutes secondes
Latitude : 35° 24’ 21” N
Longitude : 118° 51’ 25” W
Référentiel géodésique : NAD27; pas d'incertitude
Précision des coordonnées : seconde la plus proche ; 0,024 mi d’incertitude
Source des coordonnées : carte USGS au 1:24.000ème ; 0,008 mi d’incertitude
Distance de décalage : 10 mi
Etendue du toponyme : 2 mi
Unité de distance : mi
Précision sur la distance : 10 mi
Précision sur la direction : ENE (11.25 degrés de part et d’autre de ENE)
Latitude décimale : 35,46134
Longitude décimale : -118,69326
Distance d’incertitude maximale : 12,379 mi
Définition :

La localité est décrite à l’aide d’un parcours à partir d’un toponyme.

Si la distance est indiquée comme ayant été mesurée le long d’une entité linéaire comme une route ou une rivière, reprendre cette méthode de mesure plutôt qu’une ligne droite pour localiser la collecte, en utilisant la distance et la direction indiquées. Il n’y a dans ce cas pas d’incertitude liée à l’imprécision sur la direction.

Exemples :

Exemple 1 : “7,9 mi N Beatty, sur la US 95”
Exemple 2 : “13 mi E (par la route) depuis Bakersfield”
Exemple 3 : “18 km O de Guyra, sur Baldersleigh Road”
Exemple 4 : “2 km en aval des chutes Wallaman”
Exemple 5 : “3 km en amont de Anita Grande sur le Rio Jimenez”
Exemple 6 : “rive gauche du Mississippi, à 16 mi en aval de St. Louis”

Procédure de géoréférencement :

Si la route est spécifiée dans la description, ou s’il y a une route importante évidente que l’on peut suivre et qui corresponde exactement à la direction et à la distance indiquées, vous pouvez supposer que le collecteur s’est déplacé par la route. S’il y a le choix entre plusieurs routes qui correspondent à cette description, choisissez l’une d’elles pour effectuer le géoréférencement et augmentez l’erreur afin d’englober les autres choix possibles.

Utilisez le centre du point de départ (dans l’Exemple 1 ci-dessus, utilisez le centre de Beatty), et utilisez l’outil de mesure trouvé dans Terrain Navigator®14 (seulement pour les États-Unis), ou bien votre propre application appropriée, afin de suivre la route jusqu’à la distance indiquée. Prenez les coordonnées de ce point d’arrivée. Assurez-vous de noter dans les remarques le nom de la route suivie s’il n’est pas déjà dans la description.

Etendue :

L’étendue est celle de votre point de départ – habituellement un toponyme comme une ville, un carrefour ou un confluent.

Incertitude :

Utilisez le Calculateur de géoréférencement de MaNIS pour déterminer la “Distance d’incertitude maximale”.

- Comme Type de calcul utilisez “Erreur – entrez la Lat/Long de la localité”
- Comme Type de localité utilisez “Distance le long d’une entité linéaire”.

Exemple 1.

Localité : “13 mi E (par la route) de Bakersfield”

Supposons que les coordonnées de cette localité ont été interpolées au 1/10ème de minute près à l’aide de la carte USGS Taft au 1:100.000ème et que la distance du centre de Bakersfield à la limite extrême de la ville est de 2 mi.

Système de coordonnées : degrés minutes décimales
Latitude : 35° 26.1’ N
Longitude : 118° 48.1’ W
Référentiel géodésique : NAD27; pas d’incertitude
Précision des coordonnées : 0,1 minutes; 0,148 mi d’incertitude
Source des coordonnées : carte USGS au 1:100.000ème ; 0,032 mi d’incertitude
Etendue du toponyme : 2 mi
Unité de distance : mi
Précision sur la distance : 1 mi
Latitude décimale : 35,43500
Longitude décimale : -118,80167
Distance d’incertitude maximale : 3,180 mi
Définition :
La description de la localité consiste en une distance linéaire selon deux directions orthogonales à partir d’un toponyme (Figures 11 et 12).

Exemples :
Exemple 1 : “2 mi E et 1.5 mi N de Bakersfield”
Exemple 2 : “6 km N et 4 km O de Welna”
Exemple 3 : “2 miles Nord, 1 mile Est des chutes de Boulder, Conté de Boulder, Colorado”

Procédure de géoréférencement :
Lorsque les descriptions comportent deux distances orthogonales, on doit toujours supposer qu’elles sont mesurées ‘à vol d’oiseau’ sauf indication contraire.

Utilisez le centre du point de départ (par exemple, dans l’Exemple 2 ci-dessus, utilisez le centre de Welna), et entrez ses coordonnées et étendue dans le Calculateur de géoréférencement de MaNIS en utilisant le Type de calcul « Coordonnées et erreur ». Saisissez les deux couples de distances et directions donnés, et cliquez sur « Calculate ». Les nouvelles coordonnées qui apparaissent en bas de l’écran du calculateur sont celles que vous pouvez maintenant saisir dans votre base de données. Elles doivent être différentes des coordonnées que vous avez saisies dans les champs ‘Latitude’ et ‘Longitude’ – si ce n’est pas le cas, assurez-vous que vous avez bien sélectionné le bon Type de calcul.

Figures :

Fig. 11. Exemple de calcul de la distance d’incertitude maximale utilisant l’imprécision sur la distance pour deux décalages orthogonaux à partir du centre d’un toponyme. Extrait de Wieczorek (2001).
Fig. 12. Calcul de l’incertitude maximale combinant l’imprécision sur la distance et l’étendue. Extrait de Wieczorek (2001).

Étendue :

L’étendue est celle de votre point de départ – habituellement une ville, un carrefour ou un confluent.

Incertitude :

Utilisez le [Calculateur de géoréférencement de MaNIS](#) pour déterminer la “Distance d’incertitude maximale”.

- Comme **Type de calcul** utilisez
 “Coordonnées et erreur”
- Comme **Type de localité** utilisez
 “Distance le long de deux directions orthogonales”.
Exemple 1.

Localité : “2 mi E et 3 mi N de Bakersfield”

Supposons que les coordonnées de Bakersfield (le toponyme) ont été tirées de la base de données du GNIS (un gazetier) et que les coordonnées de la localité sont données à la seconde près, et que la distance du centre de Bakersfield à la limite la plus éloignée de la ville est 2 mi.

Système de coordonnées : degrés, minutes, secondes
Latitude : 35° 25’ 4” N
Longitude : 118° 58’ 54” O
Référentiel géodésique : non enregistré ; 0,049 mi d’incertitude
Précision des coordonnées : à la seconde près ; 0,024 mi d’incertitude
Source des coordonnées : gazetier
Distance de décalage Nord ou Sud : 3 mi
Direction de décalage Nord ou Sud : N
Distance de décalage Est ou Ouest : 2 mi
Direction de décalage Est ou Ouest : E
Etendue du toponyme : 2 mi
Unité de distance : mi
Précision de la distance : 1 mi
Latitude décimale : 35.4621
Longitude décimale : -118.94623
Distance d’incertitude maximale : 4,337 mi
DECALAGE SELON DEUX ENTITES LINEAIRES DISTINCTES

Définition :

La localité est décrite à l’aide d’une distance de décalage selon deux entités linéaires distinctes. C’est une situation assez inhabituelle, mais cela arrive.

Exemples :

Exemple 1 : “1,5 mi E de la LA Hwy. 1026 et 2 mi S de U.S. 190”

Procédure de géoréférencement :

Localiser les coordonnées d’une position de ce genre est difficile. Pour ce faire, vous devez tracer un chemin, sur la distance et dans le sens indiqués, le long de chaque route de référence. L’endroit où ils se croisent est le point (normalement il n’y en a qu’un seul) dont vous devez prendre les coordonnées.

Etendue :

Utilisez l’étendue de la plus large des deux routes sur lesquelles vous effectuez les mesures. L’incertitude liée à la largeur de la voie la plus large englobera complètement celle liée à la plus étroite. Dans l’Exemple 1 ci-dessus, la route inter États 190 est à quatre voies, alors que la LA 1026 n’en a que deux. Puisque les routes sont ici perpendiculaires, l’étendue de chaque mesure serait la moitié de la largeur de l’autre route. Comme l’inter États 190 est la plus large des deux, l’étendue liée à sa largeur englobe complètement celle liée à la largeur de la LA 1026.

Pour connaître les étendues normalisées des routes, utilisez les valeurs données dans la rubrique Type de localité ‘Toponyme’ ci-dessus.

Incertitude :

Utilisez le **Calculateur de géoréférencement de MaNIS** pour déterminer la “Distance d’incertitude maximale”.

- Comme **Type de calcul** utilisez “Erreur – entrez la Lat/Long de la localité”
- Comme **Type de localité** utilisez “Distance le long d’une entité linéaire”. **Note** : ce n’est pas vraiment le type de localité correct, mais il vous donne tous les paramètres dont vous avez besoin pour calculer l’incertitude correcte.
Définition :

La description de la localité consiste en un point représenté par ses coordonnées sous forme d’une latitude et d’une longitude. L’information peut être de la forme :
- Degrés, Minutes et Seconds (DMS),
- Degrés et Minutes Décimales (en anglais, « Degrees and Decimal Minutes » : DDM), ou
- Degrés Décimaux (DD).

Les enregistrements devraient spécifier une hémisphère (E ou O et N ou S) ou, avec les Degrés Décimaux, des signes moins (–) pour indiquer les hémisphères Ouest et/ou Sud.

Exemples :

Exemple 1 : “36° 31’ 21.4" N ; 114° 09’ 50.6" O” (DMS)

Exemple 2 : “36° 31.4566’N ; 114° 09.8433’O” (DDM)

Exemple 3 : “36.524276º S ; 114.164055º O” (DD)

Exemple 4 : “-36.524276 ; -114.164055” (DD utilisant des signes moins pour indiquer les hémisphères Sud et Ouest)

Procédure de géoréférencement :

Si une localisation a des coordonnées associées cohérentes avec le reste de la description de la localité, il n’y a généralement rien d’autre à faire que de déterminer l’incertitude maximale.

Etendue :

L’étendue d’une localité ne devrait jamais être nulle, si un GPS a été utilisé pour déterminer les coordonnées, la précision du GPS au moment de la collecte (voir la section Utiliser un GPS, ci-dessus) devrait être utilisée comme étendue, (ou bien voir les estimées dans la rubrique ‘Coordonnées UTM’ ci-dessous). Si les coordonnées ont été déterminées avec un moyen autre ou inconnu, utilisez une étendue minimum raisonnable pour la localité, en vous fondant sur le reste de la description. Par exemple, si les coordonnées sont associées à un point sur une ligne de pièges, utilisez la distance entre les coordonnées et l’extrémité la plus éloignée de la ligne de pièges comme étendue.

Incertitude :

Utilisez le Calculateur de géoréférencement de MaNIS pour déterminer la “Distance d’incertitude maximale”.

- Comme Type de calcul utilisez “Erreur – entrez la Lat/Long de la localité”
- Comme Type de localité utilisez “Coordonnées seulement”
Exemple 1.

Localité : “35º 22’ 24” N, 119º1’ 4” O”

Système de coordonnées : degrés, minutes, secondes

Latitude : 35º 22’ 24” N
Longitude : 119º 1’ 4” O

Référentiel géodésique : non enregistré ; 79 m d’incertitude

Précision des coordonnées : à la seconde près ; 40 m d’incertitude

Source des coordonnées : description de la localité

Unité de distance : km, m, mi, yds, ou ft

Latitude décimale : 35,37333
Longitude décimale : -119,01778

Distance d’incertitude maximale : 0,119 km, 119 m, 0,074 mi, 130 yds, ou 390 ft

Exemple 2.

Localité : “35,37,-119,02, NAD27, USGS Gosford Quad 1:24000”

Système de coordonnées : degrés, minutes, secondes

Latitude : 35,27
Longitude : -119,02

Référentiel géodésique : NAD27; pas d’incertitude

Précision des coordonnées : 0,01 degrés ; 1434 m d’incertitude

Source des coordonnées : carte USGS au 1:24.000; 12 m d’incertitude

Unité de distance : km, m, mi, yds, ou ft

Latitude décimale : 35,37
Longitude décimale : -119,02

Distance d’incertitude maximale : 1,446 km, 1446 m, 0,899 mi, 1582 yds, ou 4745 ft
Définition :
La description de la localité consiste en un point représenté par ses coordonnées au format UTM (Universal Transverse Mercator) ou un système de coordonnées voisin (voir la Note ci-dessous). Lorsque vous saisissez des coordonnées UTM, précisez bien dans la base de données à quelle zone elles se rapportent. Sans cela, les données seront de peu de valeur en dehors de cette zone ou combinées à des données d’autres zones, puisqu’on ne pourra pas les transcrire dans d’autres systèmes de coordonnées. Il arrive souvent que la zone ne soit pas inscrite lorsque la région d’intérêt (la Tasmanie, par exemple) est parfaitement incluse dans une zone UTM. Il faut aussi savoir que les zones UTM ne sot valides qu’entre 84 °N et 80 °S.

Note ! De nombreux maillages nationaux et locaux dérivent du système UTM et fonctionnent de la même manière : c’est le cas du maillage cartographique de l’Australie (en anglais, « Australian Map Grid », AMG).

Exemples :
Exemple 1 : “UTM N 4291492 ; E 456156” (Note : aune zone citée).
Exemple 2 : “AMG Zone 56, x : 301545 y : 7011991”
Exemple 3 : “56 : 301545,2 ; 7011991,4”

Procédure de géoréférencement :
Dans l’Exemple 1, où aucune zone n’est citée, il faut d’abord déterminer la zone UTM à l’aide d’un site qui répertorie les zones de maillage UTM dans le monde, comme UTM Grid Zones of the World (Morton 2006), et de toute information complémentaire trouvée dans la description de la localité, comme le nom du pays, de la province ou de l’Etat, du comté, etc.

Ensuite, il faut saisir les données UTM dans un convertisseur qui les traduira en longitude et latitude, comme Geographic/UTM Coordinate Converter (Taylor 2003). Gardez en tête que x correspond à la longitude et y à la latitude.

Attention ! Attention lors des conversions à l’inversion de l’ordre. Dans les systèmes de coordonnées de type latitude-longitude, la latitude est en général mentionnée avant la longitude. Alors que dans les systèmes UTM, c’est l’inverse : x pour longitude, puis y pour latitude.

Etendue :
Voir les recommandations dans la rubrique ‘Coordonnées latitude et longitude’, ci-dessus.

Incertitude :
Effecctuez le même calcul que pour ‘Coordonnées latitude et longitude’.
Si vous ne pouvez pas utiliser le Calculateur de géoréférencement, vous pouvez prendre comme valeur de l’incertitude les ordres de grandeur empiriques suivants :

• 30 mètres si les données ont été fournies par un GPS après le 2 Mai 2000 à 00 : 00 UTC (meridien de Greenwich), et que le référentiel géodésique a été enregistré ;
• 100 mètres pour une mesure par GPS avant après le 2 Mai 2000 à 00 : 00 UTC, si le référentiel géodésique a été enregistré ;
• 200 mètres au moins (selon l’endroit) pour une mesure par GPS sans enregistrement du référentiel géodésique ;
• Variable, selon l’échelle de la carte, si les coordonnées sont tirées d’une carte (voir le Tableau 5, dans le présent document).
MAILLAGE DES ETATS-UNIS, DIT « TOWNSHIP, RANGE, SECTION »

Définition :
Le maillage des Etats-Unis, dit « Township, Range et Section » (TRS) ou « Public Land Survey System » (PLSS) (système pour l’inventaire terrestre public) est un découpage du territoire du centre et de l’Ouest des Etats-Unis. Les « Sections » sont habituellement des carrés de 1 mi de côté. Des maillages similaires sont utilisés dans d’autres pays, et devraient être traités dans les calculs de la même manière, une fois que les dimensions des mailles ont été déterminées. Certaines cartes sont parfois aussi structurées et utilisables pour les calculs de la même manière.

Une description dite « TRS » ne diffère pas fondamentalement d’une autre description de toponyme. Il faut cependant bien comprendre comment elle est constituée avant de l’utiliser dans le géoréférencement. Voir les Références, ci-dessous à la fin de cette rubrique pour les liens vers une information complémentaire sur le système TRS et sa signification.

Note ! Bien que le système TRS ne s’applique qu’aux Etats-Unis, certains pays peuvent avoir des équivalents et les principes développés ici devraient alors être suivis là aussi.

Exemples :
- Exemple 1 : “T3S, R42E, SEC.2”
- Exemple 2 : “E de Bakersfield, T29S R29E Sec. 34 NE 1/4”

Procédure de géoréférencement :
S’il vous n’avez pas d’autres données utilisables sur la localité, ou si l’information TRS est la plus spécifique que vous trouviez dans la description de la localité, placez alors le point au centre de la section ou du quart de section TRS. Sinon, il vaut mieux n’utiliser l’information TRS que comme l’un des paramètres permettant de déterminer les coordonnées.

Pour connaître les coordonnées du centre de la section ou quart de section TRS, utilisez le site de données TRS de l’Université du Montana (Gustafson et Wefald 2003) et renseignez les champs appropriés. Assurez-vous de prendre le bon Etat. Le site Web vous donnera le centre géographique de votre section selon le référentiel géodésique WGS84.

Si la description de la localité mentionne quelque chose comme "SW .25 Sec 15", il va falloir procéder par étapes. Pour géoréférencer des quarts de section, il faut prendre les coordonnées que vous fournit le site de données TRS, et les utiliser sur le site Topozone.com, qui vous indiquera les frontières de la section. Placez le point obtenu sur le site TRS dans la portion appropriée de la section et lisez les nouvelles coordonnées en haut de la carte. Assurez-vous d’enregistrer le référentiel géodésique utilisé pour les coordonnées fournies par Topozone, dont vous aurez besoin pour paramétrer les cartes numériques où vous pourrez ensuite utiliser les coordonnées.

Vous pouvez aussi trouver le centre d’un quartier de section en déterminant d’abord le centre de la section, puis en calculant les coordonnées du quartier de section en utilisant un décalage de 0,25 mi dans les directions appropriées à partir de ces coordonnées. Par exemple, le centre du quartier NW de la section 13 serait à 0,25 mi au Nord et 0,25 mi à l’Ouest du centre de la section.

Note ! Les sections TRS ne sont pas toutes carrées. Il vaut mieux utiliser une carte pour trouver le centre d’une subdivision (par exemple un quartier) d’une section.

Étendue :
Pour les sections, l’étendue est la moitié de la longueur de la diagonale de la section, soit 0,707 mi (la moitié de la racine carrée de 2). Pour les quartiers de sections, l’étendue est la moitié de cette valeur, soit 0,354 mi. (voir le Tableau 6) ci-dessous.
<table>
<thead>
<tr>
<th>Division</th>
<th>Exemple</th>
<th>Etendue (mi)</th>
<th>Etendue (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Township¹⁵</td>
<td>T6S R14E</td>
<td>4,243</td>
<td>6828</td>
</tr>
<tr>
<td>Section</td>
<td>T6S R14E Sec. 23</td>
<td>0,707</td>
<td>1138</td>
</tr>
<tr>
<td>¼ Section</td>
<td>T6N R14E Sec. 23 NE ¼</td>
<td>0,354</td>
<td>570</td>
</tr>
<tr>
<td>¼ de ¼ Section</td>
<td>T6N R14E Sec. 23 NE ¼ SW ¼</td>
<td>0,177</td>
<td>285</td>
</tr>
<tr>
<td>¼ de ¼ de ¼ Section</td>
<td>T6N R14E Sec. 23 NW ¼ NE ¼ SW ¼</td>
<td>0,089</td>
<td>143</td>
</tr>
</tbody>
</table>

Incertitude :

Effectuez le même calcul que pour 'Toponyme'.

Si vous ne pouvez pas utiliser le Calculateur de géoréférencement, utilisez le Tableau 6 ci-dessus. L'estimée de l'incertitude sera l'étendue, plus l'incertitude due à la précision des coordonnées utilisées – pourvu que le référentiel géodésique soit enregistré.

Références :

Information sur « Township, Range, Section » :

http://www.esg.montana.edu/gl/trs-data.html

¹⁵ Les “Townships” sont des méridiens espacés d’environ 6 miles ; les “Ranges” sont des divisions similaires en latitude ; les “Sections” sont les rectangles (approximativement carrés) délimités par les Townships et les Ranges (voir la référence http://www.esg.montana.edu/gl/trs-data.html ci-dessus) (NdT)
CAS DOUTEURS

Définition :

Il peut arriver que les descriptions de localité soient particulièrement vagues. Les raisons peuvent en être nombreuses, mais c'est particulièrement fréquent avec les spécimens anciens collectés dans des endroits où on ne pouvait à l'époque se référer à aucun toponyme.

Le cas extrême est celui où l'on a un doute sur la localité décrite. Dans ce cas, il vaut mieux ne pas géoréférencer. Le doute peut être dû à une erreur de saisie et il est recommandé de vérifier les répertoires, les carnets de terrain, les étiquettes des spécimens, etc. afin de lever le doute et de pouvoir procéder au géoréférencement.

Dans les Exemples 1 à 3 ci-dessous, les descriptions indiquent explicitement que l'information contenue est douteuse. Dans l'Exemple 4, la localisation n'est pas suffisamment délimitée pour que l'identification de la localité ait un sens. Dans ce dernier cas, une information complémentaire (comme l'identité du collecteur et la date) pourrait permettre de mieux cerner la collecte à partir du journal de bord ou d'autres informations publiées.

Exemples :

Exemple 1 : "peut-être Isla Boca Brava"
Exemple 2 : "vraisemblablement le centre du Chili"
Exemple 3 : "Bakersfield"
Exemple 4 : "Nova Hollandia"

Procédure de géoréférencement :

Ne procédez pas au géoréférencement si la description de la localité indique explicitement que l'information contenue est douteuse.

Documentez dans les remarques la raison de renoncer au géoréférencement, par exemple : « la description est trop vague pour géoréférencer », « localité douteuse », etc.

Notez qu'une information subsidiaire pourrait peut-être vous aider à mieux cerner une localisation douteuse.

Etendue :

Sans objet.

Incertitude :

Sans objet.
LOCALISATION IMPOSSIBLE

Définition :
La localité citée ne peut pas être localisée. Ceci peut être dû à des raisons diverses, parmi lesquelles :

- Il n’y a pas d’indication sur la localité (Exemple 1),
- Les champs relatifs à la localité contiennent une information qui ne concerne pas la localisation (Exemple 2),
- On ne peut pas choisir entre plusieurs localités candidates possibles (Exemples 3 et 4), ou
- On ne peut pas trouver la localité avec les références disponibles.

Exemples :
Exemple 1 : "localité non enregistrée"
Exemple 2 : "Bob Jones"
Exemple 3 : "sommet"
Exemple 4 : "San Jose, Mexico"

Procédure de géoréférencement :
Ne géoréférencez pas.
Documentez dans les Remarques la raison pour laquelle vous renoncez à géoréférencer, par exemple : "la localité ne peut pas être trouvée avec les références disponibles", etc.
Renseignez cependant le champ ‘Ressources pour le géoréférencement’ dans votre base de données afin que le prochain chercheur ne perde pas de temps à réessayer la même ressource pour trouver la localité.

Etendue :
Sans objet.

Incertitude :
Sans objet.
Définition :

La description contient des incohérences manifestes.

Le pire cas en matière de géoréférencement est celui d’une description de localité qui contient des informations contradictoires. Les causes possibles d’une telle incohérence sont multiples. Plutôt que de déterminer les coordonnées pour de telles localités, il vaut mieux l’annoter en indiquant la nature de l’incohérence et se tourner vers l’institution source ou vers le collecteur pour lever l’incohérence. C’est généralement l’altitude qui est incohérente avec le reste de la description, et c’est souvent l’altitude qui est erronée (voir l’Exemple 2).

Il arrive souvent aussi que la description ne corresponde pas à la division administrative où la localité est censée se trouver. Parfois, cette division administrative est visiblement erronée, et la localité peut être déterminée (voir l’Exemple 3). Dans ce cas, on géoréférence la localité et on l’annote pour décrire le problème.

Il arrive aussi souvent qu’on ne puisse déterminer si c’est la division administrative ou une autre information qui est erronée. Dans l’Exemple 4, le comté peut être faux, la distance aussi, ou encore la direction. L’ambiguïté ne peut pas être levée sans faire appel à l’institution d’origine, aux carnets de récolte ou au collecteur lui-même.

Exemples :

Exemple 1 : "Comté de Sonoma du côté de la rivière Gualala, Comté de Mendocino"
Exemple 2 : "10 mi O de Bakersfield, 6000 ft" (Il n’y a aucun endroit dans la zone des 10 mi à l’Ouest de Bakersfield qui soit à une altitude de 6000 ft)
Exemple 3 : "Delano, Tulare Co." (Delano est dans Kern Co. –le Comté de Kern-)
Exemple 4 : "5 mi N de Delano, Kern Co." (5 mi N placerait la localité dans Tulare Co.)

Procédure de géoréférencement :

Ne pas géoréférencer. Enregistrer dans les remarques « la localité contient des contradictions inconciliables ».

Etendue :

Sans objet.

Incertitude :

Sans objet.
EN CAPTIVITE OU EN CULTURE

Définition :
La collecte correspond à un animal en captivité ou à une plante cultivée, ailleurs que dans une collection vivante (zoo, aquarium, jardin botanique, etc.).

Exemples :
- **Exemple 1** : "né en laboratoire"
- **Exemple 2** : "appâts"
- **Exemple 3** : "Cultivé dans des jardins botaniques à partir de graines obtenues à Bourke, Nouvelles Galles du Sud."

Procédure de géoréférencement :
Ne pas géoréférencer les animaux en captivité en utilisant les champs de géoréférencement classiques.

Ne pas géoréférencer les plantes cultivées en utilisant les champs de géoréférencement ordinaires. Si vous devez fournir un géoréférencement (par exemple localiser la plante parente dont vient la graine), enregistrez-le dans un champ à part, pas dans les champs généraux.

Documenter dans les remarques “pas géoréférencé - captivité/culture”, etc.

Etendue :
Sans objet.

Incertitude :
Sans objet.
Glossaire

Altitude : l’altitude d’une localisation géographique est sa hauteur au-dessus du niveau moyen de la mer ou d’un autre niveau de référence. L’altitude peut être un nombre négatif dans les zones où la surface de la Terre est au-dessous du niveau de la mer. L’altitude peut être enregistrée sur des cartes sous la forme de lignes de niveau reliant les points d’égale altitude, ou sous la forme de hauteurs ponctuelles indiquées sur des points de référence : habituellement les sommets de montagnes, et rarement les points bas. Le terme altitude peut être utilisé pour un point de la surface terrestre, ou bien pour un point au-dessus de la surface terrestre, par exemple pour un avion, et le terme de profondeur est utilisé pour des positions sous la surface (dans un lac, dans la mer, etc.).

Cadastre : un registre où sont inscrites les frontières des terrains publics et/ou privés.

Cap : la direction depuis une localisation de départ, donné sous forme de points du compas comme E, NO, ou N15°O, etc. Habituellement utilisé conjointement avec des écarts fin de donner une distance et une direction depuis un lieu dit. Voir les explications sur le Nord vrai et le Nord magnétique dans la section sur « Enregistrer les caps » de ce document.

Carte cadastrale : une carte qui montre les frontières du cadastre.

Centre géographique : le centre géographique d’une forme est la moyenne des latitudes et longitudes extrêmes de cette forme. Si le résultat ne se situe pas à l’intérieur de la forme elle-même, choisir à la place le point de la forme le plus proche du centre géographique calculé.

Coordonnées : une séquence de nombres qui définit la position d’un point dans un espace à n dimension [ISO 19111]. Par exemple, à deux dimensions, le couple Longitude / Latitude et les coordonnées UTM (Universal Transverse Mercator).

Correspondance spatiale : une mesure de la manière dont la représentation géométrique correspond à la représentation spatiale originale. Voir l’explication ailleurs dans ce document.

Décalage : un déplacement à partir d’un point de référence, un lieu dit ou un autre objet. Utilisé ici comme la distance depuis un lieu dit avec la localisation du lieu dit comme point de départ. Habituellement utilisé conjointement avec le cap pour fournir une distance et une direction depuis un lieu dit.

Degrés décimaux : degrés exprimés par un seul nombre réel (exemple : -22,343456) plutôt que par un composé de degrés, minutes, secondes, et direction (exemple : 7° 54' 18,32'' E). Noter que le signe « moins » (-) est utilisé pour indiquer les hémisphères sud et ouest.

Estimation du maximum d’incertitude : la valeur numérique de la limite supérieure de la distance entre les coordonnées d’une localité et l’extrémité la plus éloignée de la zone (souvent un cercle) dans laquelle la totalité de la localité décrite est circonscrite.

Etendue : désigne la zone géographique qu’une localisation peut représenter. Dans le cas d’une ville, l’étendue est le polygone qui marque les limites de la ville. Dans ce document, on se réfère habituellement à l’étendue linéaire : la distance depuis le centre géographique d’une localisation jusqu’au point le plus éloigné de son périmètre.

Exactitude : mesure à quel point la donnée représente bien la vraie valeur.

Fausse précision : survient lorsque des données sont enregistrées avec un plus grand nombre de décimales que n’en induisent les données originales. Ceci arrive souvent à l’issue de transformations d’une unité ou d’un système de coordonnées à un autre, par exemple de pieds en mètres, ou bien de degrés, minutes et secondes, en degrés décimaux. En général, la précision ne peut pas être conservée lors de transformation métriques ; toutefois, elle est souvent enregistrée comme telle. Par exemple, la valeur de 10° 20’ stockée dans une base de données en degrés décimaux est de ~10,3°. Mais, exportée depuis certaines bases de données, elle deviendra 10,333333333 avec une précision de dix décimales au lieu d’une, conduisant à une incertitude de mesure d’environ 0,02 mm alors que l’incertitude réelle est d’environ 15km. Ceci n’est
pas une précision véritable au regard de la donnée originale, mais une fausse précision importée de la base de données.

Gazetier : un dictionnaire géographique ou index des **noms d’objets**, incluant aussi habituellement une indication de la position à la surface de la Terre selon l’un des nombreux **systèmes de coordonnées géographiques**, la plupart du temps sous forme de **latitude et longitude**.

Géocodage : le processus de détermination des coordonnées d’une adresse de rue. Est aussi parfois utilisé comme synonyme de **géoréférencement**.

Géoréférencement : l’action de traduire la description d’une localisation en une représentation que l’on peut positionner sur une carte, ou le produit de cette action.

GPS (Global Positioning System) : un système de navigation par satellite qui fournit 24 heures sur 24 une position en trois dimensions, la vitesse et le temps aux utilisateurs disposant des outils appropriés (c’est-à-dire disposant d’un récepteur GPS) partout sur ou près de la surface de la Terre. Voir les explications sur la précision ailleurs dans ce document.

Gazetier* : un dictionnaire géographique ou index des noms d’objets, incluant aussi habituellement une indication de la position à la surface de la Terre selon l’un des nombreux systèmes de coordonnées géographiques, la plupart du temps sous forme de latitude et longitude.

Géocodage : le processus de détermination des coordonnées d’une adresse de rue. Est aussi parfois utilisé comme synonyme de **géoréférencement**.

Géoréférencement : l’action de traduire la description d’une localisation en une représentation que l’on peut positionner sur une carte, ou le produit de cette action.

GPS (Global Positioning System) : un système de navigation par satellite qui fournit 24 heures sur 24 une position en trois dimensions, la vitesse et le temps aux utilisateurs disposant des outils appropriés (c’est-à-dire disposant d’un récepteur GPS) partout sur ou près de la surface de la Terre. Voir les explications sur la précision ailleurs dans ce document.

Incertitude : une « mesure de l’incomplétude de la connaissance ou de l’information sur une quantité inconnue, dont la vraie valeur pourrait être établie si d’on disposait d’un dispositif de mesure parfait » (Cullen & Frey 1999). L’incertitude est une propriété de la compréhension des données par l’observateur. Dans ce document, nous utilisons **Estimation du maximum d’incertitude** comme la manière d’enregistrer et de documenter l’incertitude.

Latitude : la distance angulaire d’une localisation par rapport à l’équateur, vers le Nord ou vers le Sud, mesurée le long de la ligne méridienne passant par la localisation.

Latitude décimale : la coordonnée de latitude (en degrés décimaux) au centre d’un cercle incluant la totalité d’une localité donnée. Par convention, les latitudes décimales au Nord de l’équateur sont des nombres positifs inférieurs ou égaux à 90, tandis que les latitudes Sud sont des nombres négatifs supérieurs ou égaux à -90.

Exemple : -42,5100 degrés (ce qui correspond à peu près à 42° 30’ 36’’ S).

Lignes Est-Ouest et Nord-Sud : dans un système de coordonnées (comme celui fourni par un GPS ou un maillage de référence cartographique), les lignes Est-Ouest sont des lignes verticales courant du haut en bas (du Nord au Sud) qui délimitent sur une carte le découpage Est-Ouest du maillage ; et les lignes Nord-Sud sont des lignes horizontales courant de gauche à droite (de l’Ouest à l’Est) qui délimitent sur une carte le découpage Nord-Sud du maillage. Les carrés délimités par l’intersection des lignes sont appelés les mailles. Sur des cartes au 1 :100.000ème chaque maille représente une surface de 100 hectares, soit 1 kilomètre carré.

Localisation : a) la position d’un objet dans l’espace, définie à l’aide de coordonnées, ou d’un autre système de référencement géographique, comme une adresse, un écart par rapport à un point de référence, etc. ; b) la représentation textuelle de cette position (description de la localisation).

Longitude : la distance angulaire d’une localisation par rapport au méridien de référence de Greenwich, vers l’Est ou vers l’Ouest, mesurée le long de la ligne parallèle passant par la localisation.

Longitude décimale : la coordonnée de longitude (en degrés décimaux) au centre d’un cercle incluant la totalité d’une localité donnée. Par convention, les longitudes décimales à l’Est du méridien de Greenwich l’émetteur sont des nombres positifs inférieurs ou égaux à 180, tandis que les longitudes Ouest sont des nombres négatifs supérieurs ou égaux à -180.

Exemple : -122,4900 degrés (ce qui correspond à peu près à 122° 29’ 24’’ O).

Méridien : l’intersection, dans une hémisphère, de la surface de la Terre avec un plan passant par les pôles ; correspond à une ligne de longitude constante, ou « ligne de longitude »..

Méridien de référence : le méridien à partir duquel la longitude Est ou Ouest est mesurée, le méridien de référence actuel est celui qui passe par la ville de Greenwich, en Angleterre.

Modèle numérique d’altitude : une représentation numérique de l’altitude des localisations à la surface de la Terre, habituellement sous la forme d’un maillage rectangulaire.

Nom d’objet : un nom valide appliqué à un **objet**, comme le nom (ou toponyme) d’un lieu dit.

Objet : un objet naturel ou construit par l’homme, ou une observation, qui peut être représenté dans l’espace. Le terme « objet » peut se référer à des catégories d’objet, ou **types d’objet** (comme des montagnes, des
routes, ou des villes) ou à des *instances d'objet* particulières (par exemple, le Mont Blanc, la Nationale 7, ou Paris), auxquelles on se réfère aussi parfois par « lieu dits ».

Point de référence : un point inventorié de position connue, servant de référence pour le calcul d’autres positions. Il s’agit souvent d’un point élevé (sommet de montagne, etc.) et habituellement marqué par une petite structure pyramidale ou un pilier. Une localisation est déterminée à partir de plusieurs points de référence par triangulation.

Précision : avec les mesures et les valeurs, elle décrit l’unité de mesure la plus fine utilisée pour exprimer cette valeur (par exemple, si un enregistrement est noté à la minute la plus proche, la précision est des 1/3600ème de degré ; si un degré décimal est noté avec deux décimales, la précision est de 0,01 degré). Il est important de toujours calculer à partir des données originales et de leurs unités de mesure. Voir aussi *fausse précision*.

Projection cartographique : une méthode de représentation de la surface en trois dimensions de la Terre sur une surface en deux dimensions. Ceci fait normalement appel à un modèle mathématique (il y en a beaucoup) qui transforme les localisations des objets à la surface de la Terre en localisations sur une surface à deux dimensions. De telles représentations distordent un ou plus des paramètres de la surface de la Terre comme la distance, la surface, la forme, ou la direction.

Référentiel géodésique : un modèle de la Terre utilisé dans les calculs géodésiques. Un référentiel géodésique décrit la taille, la forme, l’origine, et l’orientation d’un système de coordonnées pour cartographier la surface de la Terre (NAD27, SAD69, WGS84, etc.). Dans ce document, on utilise le terme pour désigner le *référentiel horizontal*, et pas le *référentiel vertical*.

Les référentiels géodésiques sont souvent enregistrés sur des cartes et dans des gazetiers, et on peut les utiliser pour régler la plupart des GPS afin que les mesures correspondent au référentiel choisi. Indiquer « non enregistré » lorsque le référentiel n’est pas connu.

Référentiel horizontal : la partie du *référentiel géodésique* qui se réfère à la position horizontale des objets cartographiés, relativement aux parallèles et aux méridiens, ou aux lignes Est-Ouest et Nord-Sud du maillage sur une carte, par opposition au *référentiel vertical*.

Référentiel vertical : la partie du *référentiel géodésique* qui se réfère à la position verticale des objets cartographiés, relativement à un point de référence (comme le niveau moyen de la mer à un endroit donné) et à partir duquel toutes les altitudes sont déterminées. Voir les commentaires sur la précision dans la section sur la précision du GPS dans ce document.

Système de coordonnées : un système utilisé pour définir des positions de manière absolue ou relative au moyen de *coordonnées*.

Système de coordonnées de référence : un système de référence qui relie une séquence de nombres ou *coordonnées* au monde réel via un *référentiel géodésique*.

Système de coordonnées géographiques : le réseau de lignes de latitude (parallèles) numérotés de 0° à 90° au nord et au sud de l’équateur, et de lignes de longitude (méridiens) numérotés de 0° à 180° à l’est et à l’ouest du méridien de référence de Greenwich, utilisé pour définir les localisations sur la surface de la Terre (en ignorant l’altitude) à l’aide de mesures angulaires (degrés, minutes et secondes d’arc).

Il s’agit du système de coordonnées global traditionnel fondé sur la latitude et la longitude.

Toponyme : une entité géographique dotée d’un nom ; utilisé aussi de manière extrapolée pour des entité géographiques sans nom, comme des croisements de routes, des confluents de rivières, des bornes kilométriques, ou des les mailles d’un quadrillage de l’espace.
Unité du maximum d’incertitude : l’unité de longueur dans laquelle l’estimation du maximum d’incertitude est enregistrée (par exemple, m, km, mn, mi, ft). La distance du maximum d’incertitude devrait être enregistrée avec la même unité que les distances indiquées dans la description de la localité.

UTM (Universal Transverse Mercator) : un système de coordonnées normalisé fondé sur un maillage métrique rectangulaire et une division de la Terre en soixante zones de 6 degrés de longitude. Les zones sont numérotées de manière consécutive, la zone 1 allant de 180 à 174 degrés de longitude Ouest. Le système UTM ne couvre la Terre qu’entre les latitudes 84° Nord et 80° Sud. Lorsqu’on indique des coordonnées UTM, il est indispensable de préciser de quelle zone UTM il s’agit.

WGS84 (World Geodetic System 1984) : un *système de coordonnées de référence* d’utilisation courante à une échelle globale qui s’adapte aussi bien que possible à la forme de la Terre dans son ensemble à l’aide d’un seul ellipsoïde. D’autres ellipsoïdes sont couramment utilisés à des échelles plus fines afin d’obtenir une meilleure adaptation à la forme de la Terre dans une région donnée.
Index

actualité ... 44
altitude ... 85
altitude ... 85
enregistrement .. 11
aptitude à l’usage ... 87
BioGeoMancer .. 23, 24, 50
BioGeoMancer Classic ... 3, 5, 24
bonne pratique ... 1
bonne pratique ... 1
principes ... 1
principes ... 1
accessibilité .. 2
effectivité ... 2
efficacité .. 2
fiabilité ... 2
opportunité ... 2
pertinence .. 2
transparence .. 2
cadastre ... 85
calcul de l’incertitude quand le référentiel géodésique est
inconnu .. 28
calculateur de distance perpendiculaire 52
calculateur de géoréférencement de MaNIS 24, 32, 50
calculateur de géoréférencement de MaNIS ... 35
calculateur de géoréférencement de MaNIS le manuel ... 35
calculer l’incertitude ... 27
cap ... 85
caractéristique ... 26
carte cadastrale ... 85
catégorie d’objet .. 87
Centre de Biodiversité et Conservation (CBC) 52
centre géographique ... 85
Centre de Referencia en Informacion Ambiental ... 1
Centre de Referencia en Informacion Ambiental (CRIA)
... 5
classifier la description de localité 25
Comisión Nacional para el Conocimiento y Uso de la
Biodiversidad .. 6
complétude ... 43
CONABIO, voir Comisión Nacional para el
Conocimiento y Uso de la Biodiversidad 1
contraintes .. 20
cordonnées ... 85, 87
coordonnées .. 18
verbatim .. 18
coorodonnées géographiques 26
correspondance spatiale 85
courbes de niveau .. 58
critères de performance 43
croisement de routes ... 52
Darwin Core .. 18
décadal ... 85
décadal ... 85
de longue d’une entité linéaire 70
selon deux entités linéaires distinctes 75
donner un cap ... 67
degres décimaux ... 85
direction de décalage .. 63
directives de géoréférencement de
MaNIS/HerpNet/ORNIS 5
distance .. 29
distance de décalage .. 61
DIVA-GIS .. 5, 24, 41
documentation ... 13, 44
données écologiques .. 19
ecart ... 85
empreinte ... 85
enregistrement ... 85
données des petites étiquettes 13
localités ... 8
référentiel géodésique .. 10
entité linéaire ... 60
entre deux .. 58
subdivision ... 60
gazetier mondial .. 50
GBIF ... 14
GeoCalc .. 50
géocodage .. 86
GeoLoc - CRIA .. 50
GEOLocate .. 1, 5, 24, 50
géoréférencement .. 86
géoréférencement déterminé par 19
étapes préliminaires ... 15
état de vérification .. 18
par lots ... 22
protocole ... 18
remarques .. 19
sources .. 19
géoréférencier les données patrimoniales 25
gestionnaire .. 42
Global Biodiversity Information Facility
portail ... 41
Global Positioning System (GPS) 86
GPS .. 86
GPS différentiel temps réel 10
Principes de la bonne pratique sur le géoréférencement
<table>
<thead>
<tr>
<th>kullanılan</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>9</td>
</tr>
<tr>
<td>UTM</td>
<td>88</td>
</tr>
<tr>
<td>validation</td>
<td></td>
</tr>
<tr>
<td>indicateur</td>
<td>44</td>
</tr>
<tr>
<td>validation des données</td>
<td>41</td>
</tr>
<tr>
<td>vérification des données</td>
<td>40</td>
</tr>
<tr>
<td>vérité dans l'étiquetage</td>
<td>42</td>
</tr>
<tr>
<td>WGS84</td>
<td>88</td>
</tr>
<tr>
<td>Wide Area Augmentation System (WAAS)</td>
<td>10</td>
</tr>
<tr>
<td>World Geodetic System 1984</td>
<td>88</td>
</tr>
</tbody>
</table>