Algorithms and Probability (FS2025) Week 9

Rui Zhang

April 16, 2025

Contents

1 Content			1
1.1 Target Shooting			1
1.2 Hashing			2
1.3 Bloom Filters			3
2 Kahoot!!	25 (:ovs :	. 0	4
1.	estions: Monte-lanto-Theorem Hopefully cheatshed	holds for Progre	ct 2 2 cm cuell
1 Content 7	of askully chemisters	2 m Ala end	4 sec
2.	(tope, any conditions)	Zo wie en	ο, ες
1.1 Target Shooting		_	= 1 ZIsCU,
1.1 Target Shooting		7	= N 2 -s(4,)
		7	7 120
	ting Algorithm which performs Λ	I iterations, the output Z	is a
random variable, which has expecta	tion $ S / U $ and variance		
	(1.50) (1.50) 2	(0)	
	$\frac{1}{N}\left(\frac{ S }{ U } - \left(\frac{ S }{ U }\right)^2\right)$		
	$N \setminus U \setminus U / \int$	(41	
	,		

Theorem: Let $\delta, \varepsilon > 0$. If we let Target Shooting run with at least $N \geq 3 \frac{|U|}{|S|} \varepsilon^{-2} \ln \left(\frac{2}{\delta}\right)$, iterations, then the result Z is within the interval

$$\left[(1 - \varepsilon) \frac{|S|}{|U|}, (1 + \varepsilon) \frac{|S|}{|U|} \right]$$

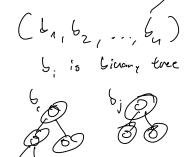
with probability at least $1 - \delta$

$$|PC| = \frac{|S|}{|U|} \le \frac{|S|}{|U|} = 1 - \frac{|S|}{$$

1.2 Hashing

Hashing is a technique used often in programming to speed up data structures and processes. We will look at one such example here: Assume you have an array of n elements $D=(s_1,s_2,\ldots,s_n)$. A pair is a duplicate (i,j) if $s_i=s_j$. Our job now is to find all duplicates in this array.

Naive Solution:



Hashing Solution:

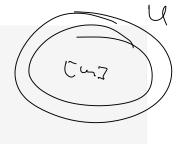
But what if accessing elements / comparing elements is very expensive?

Theorem: Formally, a hash function is a function

$$h:U\to [m]$$

such that

$$\forall u \in U \ \forall i \in [m] \quad \Pr[h(u) = i] = \frac{1}{m}$$



Theorem: Let $s, t \in U$, then $s = t \Rightarrow h(s) = h(t)$

Note that the other direction does not hold.

Definition: Collisions are the unwanted false positives we get from this approach: i.e. when we have two elements s, t such that $s \neq t$ but h(s) = h(t) still holds because we got unlucky. The algorithm would then say "oh no there's a duplicate here!" But in reality there is only a duplicate on the level of the hashes, not the original elements.

We will now analyze how often we get collisions:

Let $K_{i,j}$ be the indicator variable for the event "(i, j) is a collision". We have

$$\Pr[K_{i,j} = 1] = \begin{cases} 1/m & \text{if } s_i \neq s_j \\ 0 & \text{else} \end{cases} \Rightarrow \mathbb{E}[K_{i,j}] \leq 1/m$$

$$\text{In } S_i \neq s_j \text{ in } S_i \neq s_j \text$$

$$\text{Eight} = \sum_{1 \leq i < j \leq n} \text{Eight} = \binom{n}{2} \frac{A}{m}$$
 And with the number of collisions being $K = \sum_{1 \leq i < j \leq n} K_{i,j}$, we apply linearity of expectation and get

$$\mathbb{E}[K] \leq \binom{n}{2} \frac{1}{m} = \frac{\mathsf{LL}(\mathsf{L}-\mathsf{L})}{2} \quad \frac{1}{\mathsf{L}^2} \leq \frac{1}{2} \leq \mathcal{O}(\mathsf{L})$$

And if we choose $m=n^2$, we get that the expected number of collisions is less than 1, and we can deal with

And if we choose ...

that!

With this solution, we still keep a relatively good runtime and $O(n \log n)$...

saving the hash values, which is doable.

Your like: Sovering: $O(n \log n)$ Sovering: $O(n \log n)$ $O(n \log n)$

Definition: A repeated entry in $D = (s_1, \dots, s_n)$ is an index $j \in [n]$ such that there exists a previous index $i \in [j-1]$ which has the same element $s_i = s_j$

Definition: Let $m, k \in \mathbb{N}$ and $h_1, \ldots, h_k : U \to [m]$ be k random hash functions and M a boolean array of length m initially set to all 0's.

Then, a bloom filter operates as follows:

1. Iterate through the array of elements D

- 2. For each element $s \in D$, calculate the hash vector $v = (h_1(s), \dots h_k(s))$
- 3. For each entry $h_i(s) \in v$ of the hash vector, check if $M[h_i(s)]$ is set to 1. If not, set to 1.
- 4. If all $h_i(s)$ was set to 1/4 then add s to the list of repeated entries L

Note that with this procedure, just like with hashing, we only have false positives yet not false negatives:

Theorem: If s_i is a repeated entry, then its index i will be in list L:

$$s_i \in \{s_1, \dots, s_{i-1}\} \Rightarrow i \in L$$

We will from now refer to the false positives (entries in L but which are not repeated entries) as "incorrect entries" and would like to calculate $\mathbb{E}[\text{number of incorrect entries in } L]$. To this end define the indicator variable

 X_i = "indicator variable for when i is in incorrect entry"

$$X_i = 1 \Leftrightarrow egin{cases} s_i
otin (s_i, \dots s_{i-1}) \text{ and} \\ M[h_1(s_i)] = M[h_2(s_i)] = \dots = M[h_k(s_i)] = 1 \end{cases}$$

l: Non of non-representates in
$$\{1, \dots, i-1\}$$

 $\{1, \dots, i-1\}$

$$\Pr\left[M[h_1(s_i)] = 0\right] = \left(1 - \frac{1}{m}\right)^{kl} \ge \left(1 - \frac{1}{m}\right)^{k(i-1)}$$

where l is the number of non-repeated entries in the i-1 previous elements the algorithm had to go through before reaching s_i . Note that this inequality is true as the base is less than 1 and the exponent is larger on the right hand side. It leaves us with the information that

$$\Pr[M[h_1(s_i)] = 1] = 1 - \Pr[M[h_1(s_i)] = 0] \le 1 - (1 - \frac{1}{m})^{k(i-1)}$$

$$\Pr[X_i = 1] = \Pr[\forall j \in [1]] M[h_j(s_i)] = 1] \stackrel{\leq}{\approx} (1 - (1 - \frac{1}{m})^{k(i-1)})^k$$

and with $\mathbb{E}[X_i] = \Pr[X_i = 1]$ and number of incorrect entries in $L = X_1 + X_2 + \cdots + X_n$, we get

$$\mathbb{E}[\text{number of incorrect entries}] \leq n \cdot (1 - (1 - \frac{1}{m})^{k(i-1)})^k \leq n \left(1 - (e^{-\frac{kn}{n}})\right)^k$$

$$\leq n \cdot (1 - e^{-kn/m})^k$$

$$\leq n \cdot (1 - e^{-kn/m})^k$$

$$\leq n \cdot (1 - e^{-kn/m})^k$$

$$= n \cdot (n \cdot e^{-kn/m})^k$$
And choosing $k = \ln n$ and $m = n \ln n$ gives us a constant number on the right hand side. This gives us $\approx \sqrt{n}$

a runtime of kn hashing operations and an extra required space of m for the array M

2 Kahoot!!

https://quizizz.com/admin/quiz/67ffa780c785c72c8d5c6259