
Algorithms and Probability (FS2025)
Week 11

Rui Zhang

May 7, 2025

Contents

1 Mini Quiz, Exercises, Corrections 1

2 Content 1
2.1 Finding Arbitrarily Long Paths . 1

2.2 Copium: Finding Kinda, Sorta Long Paths . 2

2.3 Flow . 7

1 Mini Quiz, Exercises, Corrections

?????????????????????????

2 Content

2.1 Finding Arbitrarily Long Paths

Definition: Long Paths: Given a graph G and a number B, find out if there exists a path of length

at least B in G.

Theorem: If we can solve the long paths problem for graphs on n vertices in t(n) time, then we can

solve the hamiltonian cycle problem in t(2n→ 2) +O(n
2
) time

1

Figure 1: ambitious CS students realizing that we literally cannot have anything good in computer science

because of the P = NP Problem.

2.2 Copium: Finding Kinda, Sorta Long Paths

After learning that we likely won’t come up with an e!cient solution to Long Paths, we go through the 5

stages of grief. Instead, we look at the following:

Definition: Kinda, Sorta Long Paths: Given a graph G find out if there exists a path of length at

least log n in G.

Our idea is the following: We will develop a probabilistic algorithm which does multiple iterations of the

following:

2

Quiz / Example:

Which of the following are colorful paths:

• 2,4,5

• 4,2,6

• 1,5,4

• 3,6,5

• 1,2,3

• 1,3,6

• 4,2,5

• 5,4,2

• 2,3,4

• 3,5,6

First, let’s find an algorithm for finding colorful paths in a colored graph. Let us fix a number k. Given a

graph G = (V,E) and a coloring ω : V ↑ [k] we want to find colorful paths and determine in particular if

there exists a path of length k → 1 (edges). To this end, we will use the following DP algorithm (yay, your

favorite.)

Definition: DP-Definition: Let Pi(v) be our DP entry defined as:

Pi(v) :=

{
S ↓

(
[k]

i+ 1

)
| ↔ a colorful path which ends in v and traverses exactly the colors in S

}

And we define our base cases and recursion as:

3

&

Figure 2: Pseudocode for the BUNT algorithm

Definition:

• Base Case:

• Recursion:

• Solution Extraction:

.

Quiz / Example:

What is P2(1) in this graph with these colors?

• P2(1) =
{
{b, g, r}, {g, g, r}, {b, c, r}, {c, r, r}

}

• P2(1) =
{
(r, g, b), (r, g, g), (r, b, g), (r, b, c), (r, r, c), (r, r, g)

}

• P2(1) =
{
{b, g, r}, {b, c, r}

}

4

Ich

• P2(1) =
{
(r, g, b), (r, b, g), (r, b, c)

}

Runtime Analysis ”BUNT”:

Theorem: The runtime of ”BUNT” is O

((k
i

)
· i ·m

)
and the total runtime of the algorithm is

O

(
k→1∑

i=1

(
k

i

)
· i ·m

)
↗ O

(
2
k
km

)

where we used the equality
∑k

i=0

(k
i

)
= 2

n

We are still not done, we proposed this algorithm with the idea in mind that we color the graph somehow

and run this previous algorithm. Thus, our idea is the following: we assign colors randomly and independently

to every vertex in each round / iteration with k = log n+ 1 and then apply the algorithm with the same k.

Each iteration will take:

• O(n) time to color the vertices randomly

• O
(
2
logn

(log n)m
)
(dominant factor)

Now, how often do we want to repeat this in total?

5

perror = 1→ k!

kk
↗ 1→ e

→k

Applying Theorem 2.74:

O(N · 2kkm) = O(N2
logn

(log n)m) = O(ε(2e)
logn

(log n)m)

Quiz / Example:

This full algorithm we have shown either returns ”yes” or ”no”:

• Output ”yes” is always correct

• Output ”no” is always correct

The BUNT subprocedure we have shown also either returns ”yes” or ”no”:

• Output ”yes” is always correct

• Output ”no” is always correct

Assume we now want to apply this algorithm di”erently. We want to find paths of length k = 2 · log n
instead and we will repeat the random coloring process N = n · ek times What is the runtime and the error

probability for this algorithm then?

6

More Calo ?

Los Vagas ?

log is binony log

2.3 Flow

Definition: A Network is a tuple N = (V,A, c, s, t), where

• (V,A) is a directed graph (where the edges are the pipes and the vertices are the intersections)

• s ↓ V is the source (the point where water magically spawns out of)

• t ↓ V \ {s} is the target (the point where water disappears into the abyss)

• c : A ↑ R+
0 is the capacity function (which denotes how much water can flow through each pipe)

Definition: Let N = (V,A, c, s, t) be a network. A flow in N is defined as a function f : A ↑ R,
such that

• For all e ↓ A, 0 ↗ f(e) ↗ c(e)

• For all v ↓ V \ {s, t} we have

∑

u↑V s.t. (u,v)↑A

f(u, v) =

∑

u↑V s.t. (v,u)↑A

f(v, u)

which we call conservation of flow (note that again, this does not apply for the source and the

target)

Definition: The value of a flow f is defined as

val(f) := netoutflow(s) :=

∑

v↑V s.t. (s,v)↑A

f(s, u)→
∑

u↑V s.t. (u,s)↑A

f(u, s)

Definition: f is called an integer flow, i” f(e) ↓ Z ↘e ↓ A

Lemma:

netinflow(t) :=

∑

u↑V s.t. (u,t)↑A

f(u, t)→
∑

v↑V s.t. (t,v)↑A

f(u, s) = netoutflow(s)

Examples:

7

=

04,92
1oh i-0

-S-t

Proof. We can alternatively prove that

0 = netoutflow(s)→ netinflow(t)

=




∑

v↑V s.t. (s,v)↑A

f(s, u)→
∑

u↑V s.t. (u,s)↑A

f(u, s)





→




∑

u↑V s.t. (u,t)↑A

f(u, t)→
∑

v↑V s.t. (t,v)↑A

f(u, s)





=

∑

v↑V




∑

u↑V s.t. (v,u)↑A

f(v, u)→
∑

u↑V s.t. (u,v)↑A

f(u, v)



 (ϑ)

=

∑

(v,u)↑A

f(v, u)→
∑

(u,v)↑A

f(u, v) (ϑϑ)

= 0

Definition: An s-t-Cut for a network (V,A, c, s, t) is a partition (S, T) of V (S ≃ T = V) such that

s ↓ S and t ↓ T . The capacity of this cut is defined as

cap(S, T) :=

∑

(u,w)↑(S↓T)↔A

c(u,w)

We have that

Lemma: Let f be a flow and (S, T) an s-t-Cut in a network. Then we have that

val(f) ↗ cap(S, T)

8

W

G
↳ only edges

going from S T !

and with these definitions comes the formal version of the

Definition: (Maxflow-Mincut-Theorem) For every network (V,A, c, s, t), we have that

max
fa flow in N

val(f) = min
(S,T) s-t-Cut in N

cap(S, T)

Quiz Time!

• N = (V,A, c, s, t) be a network and S and T and s-t-Cut. We have that cap(S, T) ⇐ 0

• What is the maximum flow in the following network?

• What is the capacity of the following network with S = {v1, v2, v3, v4}, T = {v5, v6, v7}

• What is the capacity of the following network with S = {v1, v4, v5, v6}, T = {v2, v3, v7}

9

10

