Algorithms and Probability (FS2025)
Week 11

Rui Zhang
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2 Content

2.1 Finding Arbitrarily Long Paths

Definition: Long Paths: Given a graph G and a number B, find out if there exists a path of length
at least B in G.

Theorem: If we can solve the long paths problem for graphs on n vertices in ¢(n) time, then we can
solve the hamiltonian cycle problem in ¢(2n — 2) + O(n?) time
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Figure 1: ambitious CS students realizing that we literally cannot have anything good in computer science
because of the P = NP Problem.

2.2 Copium: Finding Kinda, Sorta Long Paths

After learning that we likely won’t come up with an efficient solution to Long Paths, we go through the 5
stages of grief. Instead, we look at the following:

Definition: Kinda, Sorta Long Paths: Given a graph G find out if there exists a path of length at
least logn in G.

Our idea is the following: We will develop a probabilistic algorithm which does multiple iterations of the
following:



Quiz / Example:

Which of the following are colorful paths:
e 245
e 426
e 154
e 3.6,5
e 123
e 1,36
e 425
e 542
0234

e 35,6

First, let’s find an algorithm for finding colorful paths in a colored graph. Let us fix a number k. Given a
graph G = (V, E) and a coloring %W = [k]) we want to find colorful paths and determine in particular if
there exists a path of length & — 1 (edges). To this end, we will use the following DP algorithm (yay, your
favorite.)

Definition: DP-Definition: Let P;(v) be our DP entry defined as:

k
Pi(v) := {S € ( !1) | 3 a colorful path which ends in v and traverses exactly the colors in S }
i

And we define our base cases and recursion as:
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Figure 2: Pseudocode for the BUNT algorithm
Definition:
e Base Case:

e Recursion:

e Solution Extraction:

Quiz / Example:

What is P»(1) in this graph with these colors?
o P(1) = {{bg,r},{g.9.7}.{b.c;r} {e;rr}}
o Py(1) ={(r,9,0),(r.9.9), (r.b,9). (r,b,c). (r,r,), (.7, 9) }
e Po(1) = {{b,g,7},{b,c,r}}



L PZ(]-) = {(rvgvb)a (Ta b,g), (T’ bv C)}

Runtime Analysis "BUNT”:

Theorem: The runtime of "BUNT” is O ((k) 7 m) and the total runtime of the algorithm is

=
0( (Z)Zm> < O (2¥km)
i—1
. k  k n
where we used the equality ;" (7) =2

%

We are still not done, we proposed this algorithm with the idea in mind that we color the graph somehow
and run this previous algorithm. Thus, our idea is the following: we assign colors randomly and independently
to every vertex in each round / iteration with k = logn + 1 and then apply the algorithm with the same k.
Each iteration will take:

e O(n) time to color the vertices randomly
e O (26" (logn)m) (dominant factor)

Now, how often do we want to repeat this in total?
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Applying Theorem 2.74:
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O(N - 2¥km) = O(N2'°8™ (log n)m) = O(A(2¢)'°8 " (log n)m)

Quiz / Example:

This full algorithm we have shown either returns ”yes” or "no”:
e Output "yes” is always correct
e Output "no” is always correct
The BUNT subprocedure we have shown also either returns ”yes” or "no”:
e Output "yes” is always correct
e Output "no” is always correct

Assume we now want to apply this algorithm differently. We want to find paths of length k£ = 2 - logn
instead and we will repeat the random coloring process N = n - ¥ times What is the runtime and the error
probability for this algorithm then?
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2.3 Flow

Definition: A Network is a tuple N = (V, A, ¢, s,t), where
e (V, A) is a directed graph (where the edges are the pipes and the vertices are the intersections)
e s €V is the source (the point where water magically spawns out of)
o t € V' \ {s} is the target (the point where water disappears into the abyss)

ec:A— RS’ is the capacity function (which denotes how much water can flow through each pipe)

Definition: TLet N = (V, A, ¢, s,t) be a network. A flow in N is defined as a function f : A — R,
such that

e Forallec A, 0 < f(e) < c(e)
e For all v € V'\ {s,t} we have

Z f(ua v) = Z f(va u)

u€V s.t. (u,v)€EA u€V s.t. (v,u)€A

which we call conservation of flow (note that again, this does not apply for the source and the
target)

Definition: The value of a flow f is defined as

val(f) := netout flow(s) := Z f(s,u) — Z flu,s)

vEV s.t. (s,0)EA u€V s.t. (u,s)€EA
Definition: f is called an integer flow, iff f(e) € Z Ve € A

Lemma:

netinflow(t) := Z flu,t) — Z f(u, s) = netoutflow(s)

ueV s.t. (u,t)EA veEV s.t. (t,v)EA

Examples:
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Proof. We can alternatively prove that

0 = netoutflow(s) — netinflow(¢)

= Z f(s7u)— Z f(uvs)

veEV s.t. (s,v)EA u€eV s.t. (u,s)€EA

- > Flu,t) — > flu, s)

ueV s.t. (u,t)€A veEV s.t. (t,v)EA

:Z Z f(v’u)* Z f(uav)

veV \uevV s.t. (v,u)€A u€V s.t. (u,v)€EA

:vau quv (%x)

(v, (u,v)EA
=0

Definition: An s-t-Cut for a network (V, A, ¢, s,t) is a partition (S,T) of V (SWT = V) such that
s € S and t € T. The capacity of this cut is defined as

cap(9,T) := c(u, w)

(_,7 a\/—(T &jyg |
We have that g Oy Ty S —é_o’ T .

Lemma: Let f be a flow and (S,7T) an s-t-Cut in a network. Then we have that

val(f) < cap(S,T)



and with these definitions comes the formal version of the

Definition: (Maxflow-Mincut-Theorem) For every network (V, A, ¢, s,t), we have that

ma, al(f) = min cap(S,T
fa ﬂow}i(n NV (f) (S,T) s-t-Cut in N p( )

Quiz Time!

e N=(V,A,c,s,t) be anetwork and S and T and s-t-Cut. We have that cap(S,T) > 0

e What is the maximum flow in the following network?

2

e What is the capacity of the following network with S = {vy,ve,vs,v4}, T = {vs, vs,v7}
’L".) L"’-

e What is the capacity of the following network with S = {v1,v4,v5,v6}, T = {v2,v3,07}
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