
Algorithms and Datastructures (HS2024)

Week 7

Rui Zhang

November 4, 2024

Contents

1 Revision Theory 1
1.1 Subset Sum . 1
1.2 Knapsack . 2
1.3 Longest Ascending Subsequence 2

2 Exercises 3
2.1 Exercise Sheet 7 - Priority List 3
2.2 Exercise Sheet 5 - Feedback . 3

3 Supplementary Exercises 3
3.1 HS21 T3 - Double Subsetsum . 4
3.2 Total Denomination of Coins . 4

1 Revision Theory

This week, you did even more dynamic programming. Instead of going through
the individual problems you did, repeating what was already written in the
lecture notes, I will give you the definition of the subproblem and a few other
pieces of information and from there, you will have to answer the rest of the
questions like as if you were doing a DP-Exercise. I hope this will help you in
actively recalling content from the lecture.

1.1 Subset Sum

Given an Array A[1, . . . , n] and b of natural numbers, we want to search for a
set of indices I such that all elements in A at those indices sum up to exactly
b. One naive approach is to try out all 2n possible subsets of indices.

To solve this problem more quickly, we introduce the following subproblem
/ DP-Entry-Definition:

1

DP [i][s] := true ⇔ ”There exists a subset of A[1, . . . , i] that sums up to s”

DP [i][s] := false ⇔ ”There exists no subset of A[1, . . . , i] that sums up to s”

With this, we can also realize that the base cases of this DP-Subproblem is

DP [i][0] := true, since we can just take the empty set of indices

DP [0][s] := false, for s ̸= 0 since we have the empty subarray A[1, . . . , 0]

From here, I would like you to solve the rest of the questions for DP yourself
as practice. If you cannot find the solution, then you are of course free to check
out the lecturen notes or just come to my exercise session and ask me directly.
I will explain it to you.

1.2 Knapsack

Imagine you are an evil criminal ETH student stealing the exam solutions for
the A&D Exam for this semester. You have a backpack that can hold at most
W many sheets of solutions. Now, you have arrived at Professor Lengler’s desk.
He had been tirelessly working on the solutions. Too bad somebody’s gonna
steal them now. There are n problems on the exam and each problem gi has
a solution that consists of wi many sheets of paper. Stealing these solutions
would be worth a value of pi, as this exercise grants pi many points.

Essentially, you are searching for the subset of indices I representing the
exact problems whose solutions you will steal such that the sum

∑
i∈I wi ≤ W

of all sheets is less than or equal to the amount of sheets that fit in your backpack
and

∑
i∈I pi is maximal.

Let us define the following subproblem: DP [i][w] := ”Maximum value reach-
able by solution sheets that fit into the backpack”.

Given this subproblem, explain why the following recursion relation holds
and solve all other questions required for a complete DP-Exercise (Base Cases,
DP Dimensions, Runtime, etc.):

DP [i][w] = max(DP [i− 1][w], pi +DP [i− 1][W − wi])

For wi ≤ W , else DP [i][w] = DP [i− 1][w].

1.3 Longest Ascending Subsequence

Given an array A[1, . . . , n] of integers, find the length of the longest ascending
subsequence of this array. This subsequence is NOT a subarray, which means
that a subsequence does not have to be continuous. To solve this problem, we
use the DP-Definition: DP [i][l] is the smallest possible ending of an ascending
subsequence of length l in A[1, . . . , i]. Based off of this, answer the classic DP

2

questions again. At this point, I want to note that you have settled on this
solution in the lecture since it had a better runtime than all other DP-attempts
you had in the lecture. The reason for this is that this DP-Definition
encoded the most amount of information out of all attempts, which
reduced the amount of loops we had to take to calculate each entry
and thus the overall runtime.

2 Exercises

2.1 Exercise Sheet 7 - Priority List

Again, top is most important, bottom is least important.

1. 7.2, 7.5 - Good DP Exercises that could appear in exams

2. 7.1 - Still a bonus question, so could also be exam relevant

3. 7.4 - Clarifies the subtle (!) brute-force character of dynamic programming

4. 7.3 - unlikely to be an exam DP exercise judging based on recent exams.
Do not quote me on this though. Anything can happen at ETH ;)

2.2 Exercise Sheet 5 - Feedback

1. Many of you misunderstood the heapify task and the definition of a level.
The idea is that the bottom-most layer is height(T) and the top-most
layer is 0. This means that for this heapify algorithm, you would have
had to do the induction step for t → t− 1, not t → t+ 1.

2. Additionally, in the same task, many of you failed to mention that the
heapify algorithm, after swapping the parent and a child, follows the par-
ent and continues swapping until the node in quesion reaches a point in
which the heap-condition is fulfilled. This procedure is essential and it
happens in the innermost loop.

3. In exercise 5.3), many of you also did induction. It is awesome to see
so much love towards induction, but in my opinion, induction feels a bit
overkill in this case, especially since it does not become that clear where
the induction hypothesis should be used in a sensical manner in the in-
duction step. A simple explanation elaborating upon the individual sum-
mands of the recursive formula by pointing to the pseudocode with valid
arguments is enough.

3 Supplementary Exercises

Dynamic Programming Exercises are often to be found on Leet Code. Go check
that website out for more material.

3

3.1 HS21 T3 - Double Subsetsum

This is another exercise from an old exam. You can find the solution on VIS
Community Solutions.

Given n natural numbers a1, a2, a3, . . . , an and A,B ∈ N, determine if there
is a subset I ⊆ {1, . . . , n} such that

∑
i∈I ai = A and

∑
i∈I a

2
i = B. The

runtime should be at most O(n ·A ·B)

3.2 Total Denomination of Coins

Check out the following link of a dynamic programming exercise that I find
especially interesting and that is similar to the one we did in class last week (see
notes week 6 - coins) Total Denomination of Coins

4

https://www.techiedelight.com/coin-change-problem-find-total-number-ways-get-denomination-coins/

	Revision Theory
	Subset Sum
	Knapsack
	Longest Ascending Subsequence

	Exercises
	Exercise Sheet 7 - Priority List
	Exercise Sheet 5 - Feedback

	Supplementary Exercises
	HS21 T3 - Double Subsetsum
	Total Denomination of Coins

