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1 Revision Theory

1.1 Why is Dijkstra not enough?

Last week, we introduced Dijkstra algorithm. This algorithm has a very impor-
tant caveat though: It only works for a graph with only positive edge costs.

If we have negative edge costs, Dijkstra may fail and calculate completely
wrong minimum distances. As an exercise, find a graph where this happens. The
reason why Dijkstra fails in some graphs with negative edge weights is because
Dijkstra is what we call a ”greedy” algorithm. We sorted the vertices that we
explore by their current distances from the starting vertex s and removed them
from the priority queue, only to mark them as visited and therefore prevent
any future visiting and thus updating of their minimum distances from s. This
did help us achieve a linear runtime, however, this is what ultimately leads to
Dijkstra’s demise.



1.2 Bellman-Ford

Now, we consider an algorithm that removes this restriction. Meet the Bellman-
Ford-Algorithm which can find shortest paths to every vertex starting at some
vertex s and even detect negative cycles in O(n - m)

One way you can view Bellman-Ford is ”Dijkstra but less greedy”. We also
start off with an array of minimum distances from a starting vertex s, called d
(then, d[v] := minimum distance of vertex v from s). In Dijkstra however, we
only considered the edges incident to the vertices we have explored. Using these
edges, we would update the minimum distances of the vertices. Now, we will go
through all edges in each iteration of the Bellman-Ford algorithm and update
the minimum distances of the vertices, just like in Dijkstra via the formula

dlv] = min d[u] + c(u,v)
(u,v)EE

In the exercise class, we saw an example of this in action. And, you have already
seen one in the lecture as well. What you might have noticed is that for each
iteration, we are basically using another edge. Thus we conclude that in the first
iteration, we calculate shortest distances for paths of length 1 (using 1 edge), in
the second, we calculate shortest distances for paths of length 2 (using 2 edges)
and so on.

Thus, we only need to do this procedure we just mentioned n—1 times. This
would result in a total runtime of O(n - m). This is because iff we did an n-th
iteration, we would be considering shortest paths of n edges, but that would be
n+ 1 vertices, which would imply a cycle somewhere, as we only have n vertices.
Since we are computing shortest paths, cycles cannot be helpful, computing the
n-th iteration would not help us much then,....

Unless...

1.2.1 Detecting Negative Cycles

Pause. In science, always challenge your own assumptions. Trust nobody. Not
even yourself. Who said cycles cannot be helpful? What if that cycle if is a
cycle with a negative total cost? Then computing the n — th iteration would
indeed lead to better distances. Pause again. Negative cycles are the achilles’
heel of our current problem of finding shortest distances! because if a negative
cycle exists, we can just repeat that cycle and therefore we would not actually
have a shortest path.

Hey look! Now we have found a way to detect negative cycles. We just com-
pute the n-th iteration of Bellman-Ford and check if any distance was updated
/ improved. If yes, then we have a negative cycle.

1.3 Minimum Spanning Trees (MST)

Given a directed, weighted and connected graph G = (V, E,c), with non-
negative edge-costs ¢ : E — RZ% we now want to find a subset of edges A C F
with minimum total summed up cost such that the induced graph G' = (V, A)



is still connected. Note that such a graph is always a tree. Otherwise, we would
have a cycle and we could remove any edge from that cycle to receive a subset
A of less total cost.

Our intuition might tell us that the edges we want to include in this tree are
the edges of minimum cost. That intuition is correct. Indeed, safe edges are
edges that are present in every MST and the cut-principle confirms that edges
of minimum cost are the safe edges. From this, we develop our first algorithm:

1.3.1 Boruvka’s Algorithm

Boruvka’s Algorithm starts with just the vertices from the graph (no edges).
Note that if we have n vertices in the original graph, we would have n connected
components now. We will construct an MST by adding edges that connect
different connected component. By the cut principle, these edges will have to
be the edges of least cost connecting different connected components. After
each iteration, our connected components will grow in size, and the number of
connected components will be reduced. And after a certain amount of iterations,
we will have only one connected component (our MST) left.

The runtime of this algorithm can be analyzed as follows: in each iteartion, to
find the connected components we may apply DFS. Then, we would go through
all edges and check if they connect different connected components. For each
connected component, we would find a minimal incident edge. This will take
O(n +m). Now we only need to know the number of iterations.

in each iteration, the worst case is if every two connected components share
the same minimal edge. In this case, we would at least halve the number
of connected components each iteration. Since we start off with n connected
components, we will need less than log(n) many iterations, with a total runtime

of O(nlog(n)).

1.3.2 Prim’s Algorithm

In Boruvka, we started off with all vertices at once. But using the cut-principle,
we may also just start off with one vertex and expand the MST from there.
That is precisely the idea behind Prim’s algorithm.

Prim’s algorithm starts off at some vertex s and marks it as ”visited” /
”added to the MST”. In each iteration of Prim’s algorithm, we find all edges
incident to the ”visited” vertices and take only those that connect to non-visited
vertices too. We find the minimum of all these edges (cut-principle) and adds
this edge and its succeeding vertex to the MST and its set of "visited” vertices.
Once all vertices are "explored”, we may return the edges we have collected as
the MST.

Now, let us take a look at the pseudocode:

Prim(G, s): // s is the starting vertex, G = (V, E, c)
P = PriorityQueue(V) // all vertices get a priority of infinity
decreaseKey (P, s, 0)



while !'isEmpty(P):

u = extractMin(P)
mark u as visited
for (u, v) in E, v not visited:

decreaseKey (P, v, min{current key of v in P, c(u,v)})

As you will notice, this is literally just Dijkstra, but instead of visiting the
vertices / edges in order of their distances to the starting vertex s, we order
them by their edge costs via cut principle.

Same as with Dijkstra, we have a runtime of O((n + m) - log(n)).
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Exercise Sheet

Exercise Sheet 11 - Priority List

- 11.4 - in past exams, this type of exercise has always been very relevant

2. - 11.3 - although not bonus, this exercise has often been exam relevant. It

2.2

3

3.1

communicates the idea of what I like to call ”layered graph modelling”
- 11.1, 11.2 - you would not want to miss out on bonus points

- 11.5 - T wish to exclaim my disdain towards the Deutsche Bahn.

Exercise Sheet 9 - Feedback

When writing the dimensions of a DP table, please do not only specify
that it has n entries, or that it has one dimension. Write something like
1xn

As mentioned in a moodle message from the Head-TAs, you should answer
the ”calculation order” questions in DP via a pseudocode of nested loops

Many of you had trouble with exercise 9.4. Most of you defined a table
entry just like the hint specified, but your recursion was something like
DPli] = max(y, ., )epDP[j]+ 1 however, this would mean that v; is a
successor of v;. For one, this recursion would not make any sense then.
Additionally, since often this recursion was combined with a calculation
order consistent with topological ordering, D P[j] was not even calculated
at the point of calculating DPi].

The actual solution was to create a reversed Adjacency List.

Supplementary Exercises

Why Dijkstra is not enough

Find a example of a graph where Dijkstra fails to calculate minimum distances
correctly. You will need to assign negative edge weights / costs
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