Algorithms and Datastructures (HS2024)
Week 3

Rui Zhang
October 7, 2024

Contents
|1 Revision Theory| 1
[1.1 Maximum Subarray dum| 2
1.1.1 aive orithm| 2
T.1.2 Recursive Algorithm] v oo v v v i it 2
1.1.3 DP Algorithm| 3
1.1.4 Can we do better (Than O(m))?. 4
[L.2__O-Notationl 4
21 Motivationl 4
[L.2.2 Definitionl oo 5
3 _O©-Notationl e 5
3.1 Motivationl 5
[.3.2 Definitionl 5
2_Exercises| 5
2.1 Exercise Sheet 3 - Priority List| 5
2.2 Exercise Sheet 1 - Feedbackl 6
13 Supplementary Exercises| 6
B.1 _©O-Notationl 6
B2 ©-Notationl 6
B.3 Fxtra Fxam Fxercises) o000 6

1 Revision Theory

This time, we have Maximum Subarray Sum (MSS) and two other topics that are
probably only covered in the next exericise sheet. Focus on MSS first (come back
to this summary once the summary is finished, otherwise revise the professor’s
notes), and then take a look at Q and © to prepare for next week.

1.1 Maximum Subarray Sum

Given an array of n numbers representing the change in price of a stock across
multiple days, where each entry of the array stands for the change in price after
that day, we want to calculate the perfect time to buy a stock and then sell
the stock (to make the most profit). This problem corresponds to calculating
the maximum sum of a continuous subarray. That is why this problem is called
Maximum Subarray Sum.

Here, we consider the number of additions performed as the elementary
operations.

1.1.1 Naive Algorithm

Again, we start off with the most simple solution. Let us say a subarray ranges
from the i-th position to the j-th position:

a1,0a2,03,04,05, 06, - . . 7an0
=2,4,1,6,34,59,...,10
In this example, if ¢ = 2, 7 = 5, then the subarray would be

a2,0a3, 04, 05

=4,1,6,34

And its sum would be S;; = So5 = as + a3 +as+a5s =4+ 146+ 34
Now, we need to calculate the subarray sum for all possible subarrays, so for
all combinations of ¢ and j. How many combinations are there? There are n
possibilities for ¢ and n — i + 1 corresponding possibilites for j for each i we
fix (those possibilities are j = ¢,i +1,i +2,i + 3,...,n — 1,n). For the first
possibility (¢ = j = 1), we only have one element as the subarray, so there
aren’t any additions. For all further possibilites of j, we can just take the last
possibility j — 1, and add the a; to the previous sum: S; ; =S; ;1 +a;. Soin
total, for each possibility of ¢, we have (n —i+ 1) — 1 = n — ¢ many additions
(the n — i+ 1 comes from the number of possibilities for j and the —1 comes
from not needing an addition for the first possibility).
Thus, in total we have:

n n—1
. . n(n—1)
Z n—i= Z =
=1 =0
number of additions. That is in ©(n?).

1.1.2 Recursive Algorithm

A faster algorithm consists of splitting the array into two halves and solving the
MSS Problem for those two halves recursively. But we have a problem. If we
do this, we will find the maximum subarray sum of both halves. But what if

for the full array, the maximum subarray sum is not a sum of a subarray that
is strictly in the left or right half, but is the sum of a subarray which starts in
the first half (i < n/2) and ends in the second half (j > n/2)? We can find
this subarray sum by finding the largest subarray sum that begins somewhere
in the left partition (at ¢) and ends at n/2 and adding it to the sum of the
largest subarray sum that begins at n/2 4+ 1 and ends somewhere in the right
partition (at j). Doing this is just applying the previous naive algorithm but
with one variable fixed and the other iterating over every possibility. From the
previous section, we had a total of n — i additions. This time, since we only
have half of the array and we go through all n/2 possibilites for the non-fixed
variable (i for the left half and j for the right half), we have n/2 — 1 additions
per halve. That’s n — 1 additions in total. The advantage this idea has over the
naive approach is that this number n — 1 is linear, whereas the naive approach
has quadratic complexity.
This recursive approach leads to a runtime function of

A(n) = 2% A(n/2) + n—1

solving problem for the 2 halves recursively =~ number of additions for the middle part

where A(n) is the number of additions to execute this algorithm.
Solving this equation and finding a closed formula, assuming the n is a power
of two to make our lives easier (as done in the lecture) yields:

A(n) = nlogy(n)

Which is indeed an improvement.

1.1.3 DP Algorithm

We have not talked about dynamic programming yet, do not worry. But this
final algorithm is actually the first example of a DP Algorithm you see in the
lecture, without it being explicitly mentioned as such.

The idea behind DP is to apply recursion and deriving the solution for a
certain problem size n from the solution for the same problem with smaller
problem size m < n (so recursion), but to also save the result of this previous
computation (solution for m < n) in some data structure for reuse. The dy-
namic programming part of this algorithm is very subtle and trivial and also
only consists of one dimension, but soon, you will encounter DP for up to 4
dimensions, so revising this approach is worth the time.

The idea is to calculate the number R; = max;<; S; ; for all possiibilities of
j. This number reflects the maximum of all subarray sums that end in j
and that start somewhere (i),

Now, with this definition in hand, we have can observe the following: to
calculate Ry, we have to include ag, the corresponding subarray must end at
position aj. This means that the only options we have is to

1. either only take this ax

2. or add this a; to the maximum subarray sum that ends just at ap_1
(because all other subarrays ending in ax_; that is not maximal will not
result in the maximum sum)

But this is great is it not? For the second option, we can just add ax_1 to
Ri—1! So now we just have to take the maximum of both options, which is only
a matter of checking if R;_; is negative or not. If it is, then it is better to just
take ag. If it is > 0, then we may add the current element ax to Ri_1 to receive
a sum that is at least larger than or equal to ay itself.

Now, all we have to do is initialize Ry to be a; and iterate through k& until
we reach k = n. Then, since the maximum subarray does not have to end at a
specific fixed spot j, we just have to take the maximum of all Ry’s and receive
the solution:

max(Ry,...,Ry,0)

where the zero is added in case all of the subarray sums are negative, in which
case we just don’t buy / sell at all and receive a total profit of 0.
In total, we are doing at most O(n) additions.

1.1.4 Can we do better (Than O(n))?

Sadly, not. If we were to not read all of the n elements, then we will miss at
least 1 element in the array that has not been read. The value of this array
element may then vary. Depending on this element, our solution may change
significantly.

In other words, not reading any element in the array could result in an
incorrect algorithm. Just the number of reads as elementary operations would
limit the best performance of this algorithm to be O(n) then.

1.2 -Notation

1.2.1 Motivation

Until now, we have always been making statements about the worst case sce-
nario. Such as ”This algorithm runs in O(n?)”, which means that the algorithm
has a runtime dependent on n - let that be f(n) - which grows asymptotically
slower than n?, even in the worst case scenario. In those sort of situations, it
makes most sense to use Big-O-Notation, since, as we have learned, O(g) is the
set of functions f that grow asymptotically slower than g.

But, what if we want to prove that a certain algorithm has a best case
scenario runtime of so and so? For instance, what if we wanted to make the
claim that a comparison based sorting algorithm cannot be faster than in the
order of log(n) (we will see this later in the lecture)? Let f(n) be the function
denoting the runtime of an arbitrary comparison based sorting algorithm. We
cannot write f(n) < O(log(n)), because what if this arbitrary algorithm is
terrible and f(n) = n!%%%9? Then this mathematical statement would be plain
wrong. Therefore, we need a complementary concept.

1.2.2 Definition

From the motivation, it should become clear what kind of definition Q(f) should
have. It should be the ”opposite of Big-O”. It should probably also be a set
and should contain all functions that grow asymptotically faster. We would use
the notation

9> Q(f)

instead of
g9 € Q(f)

The formal definition is left as an exercise.

1.3 ©-Notation

1.3.1 Motivation
We have talked about the worst-case scenario (Big-O). We have talked about

the best-case scenario (2).
If the worst-case scenario and the best-case scenario are both the same, then
we use the ©-Notation.

1.3.2 Definition

Let f, with f : N — RT, be some function representing the runtime of an
algorithm. We say

F=0(g) & F<0(g A =)

Again, the formal definition of ©(f) for arbitrary functions f is left as an exer-
cise.

2 Exercises

2.1 Exercise Sheet 3 - Priority List

Again, top is most important, bottom is least important.

1. 3.3, 3.1 (these are bonus questions and also questions that often appear
in exams)

2. 3.2 (good practice for developing algorithms)

3. 3.5 (it is still important for you to know the idea behind iterative squaring.)

2.2 Exercise Sheet 1 - Feedback

I have tried my absolute best this time to give as many points as possible! In
general, please look through your solutions once more and make sure that every
detail and calculation is correct. Our grading scheme is very strict, same as in
the exam: Small mistakes in calculations that still yield the same correct results
will still result in a deduction of points... As far as I can see, most of you have
understood all of the concepts very well, but you have to work on your precision.

Additionally, many of you have decided to combine the formula from ”to
show” along with the actual proof. Formally speaking, this is quite dubious
because we do not want to use anything from the part that we want to show as
a step in the proof. So just copy the formula on the left again for the ”proof”
part. It does not save you that much time and is much more clear and clean.

Beware of backwards proofs as well. In general, proving a statement from
left to right may seem harder at first, but writing it down as as such will reduce
the number of mistakes made.

3 Supplementary Exercises

3.1 ()-Notation

Based on the motivation of the {2-Notation and the definition of Big-O, formally
define Q(f) for arbitrary functions f, with f: N — R™T.

3.2 O-Notation

Based on the definition of ©-Notation from above, answer the following ques-
tions:

1. if f = ©(g), then what can we say about the relation between f and g in
terms of asymptotic growth rate?

2. give a formal definition of ©(f) for arbitrary functions f, f: N — R™.

3.3 Extra Exam Exercises

We did not have any time this week to go through further exercises, so here are
the ones I prepared. Again, they can be found on the VIS Exams page.
For the following, prove or disprove:

L. %HQ - Z;L:_lli <O(n)
2. Suppose a1 = landa; 1 < O(a;) for all i. Then a,, < O(n)
3. > log(i!) = ©(n?log(n)) For this, answer the following:

(a) Intuition
(b) What is it that we have to show to prove this statement? (if it holds)

(¢) Proof / Counter Example

	Revision Theory
	Maximum Subarray Sum
	Naive Algorithm
	Recursive Algorithm
	DP Algorithm
	Can we do better (Than O(n))?

	-Notation
	Motivation
	Definition

	-Notation
	Motivation
	Definition

	Exercises
	Exercise Sheet 3 - Priority List
	Exercise Sheet 1 - Feedback

	Supplementary Exercises
	-Notation
	-Notation
	Extra Exam Exercises

