
Algorithms and Datastructures (HS2024)

Week 12

Rui Zhang

December 8, 2024

Contents

1 Revision Theory 1
1.1 Kruskal’s Algorithm . 1
1.2 Union-Find-Datastructure . 3
1.3 Runtime of Kruskal and Amortized Analysis 3

2 Exercise Sheet 4
2.1 Exercise Sheet 12 - Priority List 4
2.2 Exercise Sheet 10 - Feedback . 4

3 Supplementary Exercises 5
3.1 I love Kruskal . 5
3.2 Uniqueness of MSTs . 5

1 Revision Theory

Last week, we looked at two algorithms for finding MSTs in connected, undi-
rected and weighted graphs. This week, we will be looking at one final algorithm:

1.1 Kruskal’s Algorithm

Last week, we talked about the concept of safe edges and the cut-principle. To
dumb it down, when constructing an MST, we can always add the edge with
least weight to the MST, as long as this does not create a cycle (i.e. connect
the MST with itself.).

Given a graph G = (V,E) Kruskal makes use of the cut-principle by starting
off with just the vertices V of G, without the edges. It sorts the edges E by order
of their weight, from smallest to largest. Then, it goes these edges in this sorted
order and adds an edge if this edge connects two different connected components.

1

Example:

A C

DB E

5

2

9

7

1
3

8

10

In this graph, the first edge to be considered is {A,D}. This edge will be
added to the MST. Then comes {C,E}, which will also be added to the MST.
After that, it is {C,D}’s turn, which will also be added.

The edge that has least weight from here on out is {A,C}. However, since
we have already added the edges {A,D}, {C,E} and {C,D}, we would be
connecting within a connected component if we added {A,C}. So we skip this
edge.

Now comes {B,D}, which will also be added.
For the remaining edges, we notice that we have already connected all ver-

tices in a tree. So adding any other edge will result in a cycle. Thus, all the
remaining edges will be discarded.

Kruskal seems simple enough. We could implement it as a loop which iter-
ates through all edges in sorted order and addes them one by one. To check
if an edge connects within a connected component, we would need to perform
DFS to even find the connected components of this iteration, which is O(n+m).

Now, since we go through all edges one by one, we would have something
like O(n ·(n+m)), which is much worse than all other MST Algorithms we have
seen up until now.

To improve this, we develop a Union-Find-Datastructure.

2

1.2 Union-Find-Datastructure

The goal of this datastructure is to be able to model and form the union of
sets in an efficient manner. If we are able to do this, then we can add every
vertex in its own set in the beginning and every time we connect two connected
components, we would union their sets into one set.

For this, we need the operations make(V), which initializes the datastruc-
ture. same(u, v), which returns a boolean value denoting if u and v are in the
same connected component / set. union(u, v), which takes the two connected
components of u and v and connects them into one connected component.

The pseudocode for union-find is as follows:

class UnionFind

rep = Array[n]

// for each vertex, denotes the "representative"

// of the connected component of that vertex

members = Array of LinkedLists[n]

// for each representative, saves a LinkedList

// which contains all vertices in its connected component

make(V): // V is Vertex Set of Graph

for each v in V:

rep[v] = v

// since in the beginning, we start off with each

// vertex as its own connected component

same(u, v):

return rep[u] == rep[v]

// if the representatives are the same, then

// they are obviously in the same connected component

union(u, v):

// assume without loss of generality, that the

// connected component of u is smaller than

// the connected compoennt of v

for x in members[rep[u]]:

rep[x] = rep[v]; // (1)

members[rep[v]].add(x); // (2)

1.3 Runtime of Kruskal and Amortized Analysis

Standard Analysis
Applying Kruskal with this Union-Find-Datastructure avoids the DFS proce-
dure to find the connected components. Every time we add another edge {u, v},
we would have to call union(u, v).

3

This part is still going to be the dominating factor in our runtime. Of course,
we could analyze the worst case runtime of union and multiply it with m, the
number of iterations that we will be doing:

The worst case for union, is when we have to connect two connected compo-
nents both of size exactly n/2. Since line (1) and (2) in the pseudocode can be
done in constant time and we need to iterate through all members of a connected
component, we would have a runtime of O(n/2) in the worst case. Multiplying
with the number of iterations in Kruskal, we get a total runtime of O(m · n).
Obviously, this worst case does not occur in each iteration of Kruskal! So this
sort of analysis is not realisitic at all.

Amortized Analysis
Instead of considering the number of times (1) and (2) are executed in one
execution of union, we consider the number of times (1) and (2) are executed
during the entire process of Kruskal.

For this we define:

Nu := number of times (1) and (2) are executed for x = u

So basically, Nu is the number of times a certain vertex u is added to another
connected component during the entirety of Kruskal’s m iterations. The total
runtime for the union-find-datastructure would then be O(

∑
u∈V Nu).

Now, we can use a similar argument as the one we used in Boruvka: Every
time we actually execute lines (1) and (2), we would be ”merging” two connected
components into one. The size of the connected component thus doubles for each
execution of union, resulting in the upper bound of Nu ≤ log2(n) for all u ∈ V ,
so O(

∑
u∈V Nu) = O(n · log(n)). Together with the sorting of edges at the

beginning of Kruskal, we have a total runtime of O(m · log(m) + n · log(n)).

2 Exercise Sheet

2.1 Exercise Sheet 12 - Priority List

1. - 12.1, 12.3 - Most important for understanding of Kruskal.

2. - 12.5, 12.2 - Not as essential, but still important Kruskal exercises.

3. - 12.4

2.2 Exercise Sheet 10 - Feedback

• When proving correctness, always think about what it is that you actually
want to prove. Think of properties that you have to prove that will be
sufficient to show that your algorithm is correct.

• ∅, {} is the empty set. Like a box containing nothing in it.
{∅} is the set containing the empty set. Like a box with a box with nothing

4

in it.
[] is an empty datastructure. Think of a queue with nothing in it.
[∅] is a datastructure containing the empty set. Think of a queue with an
empty box inside it.
Please, do not mix up these things.

• Do not forget that Array initialization takes as much runtime as the di-
mensions of the array.

3 Supplementary Exercises

3.1 I love Kruskal

This website makes you apply Kruskals algorithm until you get bored.

3.2 Uniqueness of MSTs

This is an exercise from last years exercise sheet:

5

https://opendsa-server.cs.vt.edu/embed/KruskalPE

	Revision Theory
	Kruskal's Algorithm
	Union-Find-Datastructure
	Runtime of Kruskal and Amortized Analysis

	Exercise Sheet
	Exercise Sheet 12 - Priority List
	Exercise Sheet 10 - Feedback

	Supplementary Exercises
	I love Kruskal
	Uniqueness of MSTs

