Algorithms and Probability (FS2025)
Week 11

Rui Zhang
May 7, 2025

Contents

[1 Mini Quiz, Exercises, Corrections|

2 ontent

2.1 Finding Arbitrarily Long Paths| oo
2.2 Copium: Finding Kinda, Sorta Long Paths|
2.3 Flowl e e

1 Mini Quiz, Exercises, Corrections

2707229222222222222222727

2 Content

2.1 Finding Arbitrarily Long Paths

Definition: Long Paths: Given a graph G and a number B, find out if there exists a path of length
at least B in G.

Theorem: If we can solve the long paths problem for graphs on n vertices in ¢(n) time, then we can
solve the hamiltonian cycle problem in ¢(2n — 2) + O(n?) time

g0 =

COPIUM

Figure 1: ambitious CS students realizing that we literally cannot have anything good in computer science
because of the P = NP Problem.

2.2 Copium: Finding Kinda, Sorta Long Paths

After learning that we likely won’t come up with an efficient solution to Long Paths, we go through the 5
stages of grief. Instead, we look at the following:

Definition: Kinda, Sorta Long Paths: Given a graph G find out if there exists a path of length at
least logn in G.

Our idea is the following: We will develop a probabilistic algorithm which does multiple iterations of the
following:

A. CD(W {’A(49{\0VZ(Y‘wv\.ﬂm—\[y (M,(_é[\g CQ(OV‘;MjS te /eau».é)
P:V\J UL(Ca(»/ﬁ:/ Pw(&; Csc«w, éLAa-‘/ Co('owf)

Z
3. o A levytl {°9‘”, veturn “bow ol e Jepert
v

U\b{_vwv\ ﬁ‘lse

Quiz / Example:

Which of the following are colorful paths:

e 123 K
e 136
e 425 <

First, let’s find an algorithm for finding colorful paths in a colored graph. Let us fix a number k. Given a
graph G = (V, E) and a coloring %W = [k]) we want to find colorful paths and determine in particular if
there exists a path of length & — 1 (edges). To this end, we will use the following DP algorithm (yay, your
favorite.)

Definition: DP-Definition: Let P;(v) be our DP entry defined as:

k
Pi(v) := {S € (!1) | 3 a colorful path which ends in v and traverses exactly the colors in S }
i

And we define our base cases and recursion as:

To“o Secvef

Me

Figure 2: Pseudocode for the BUNT algorithm

Definition:

e Base Case:

V\/ eV Po (v = ? %YCU)(§3 Cvup Slr'/*y(ﬁ W‘é@f)

e Recursion:

Beny= U f{&uiww}) £€P[_A(K) Crh

XENCV)

e Solution Extraction:

Quiz / Example:

3 .-::’_f",,» 5

What is P»(1) in this graph with these colors? X
Py(1) = {{b b
L d 2() {{ 79771}'7\{‘?}&7;}’7{ ,C,T’},W}_}
L P2(]-) = {(7"797 b)7 (Tagvg)7 (Tv b,g), ('f’, bv C)a (71, T, C)? (’I", T, g)}

—_—

o Py(1) = {{b,g.r}, {bc;r}} L7

‘Kﬁv)éﬂ?

o+ Pa(1) = {(r:8), (). (1 of

—

Runtime Analysis "BUNT”:

Fix 1 ol 5 veter V. The,
—Cs0 vV ovs u((5 LO\fJ' ch ‘VD
v ﬂ/\‘e e C 8 9L A L 1 (L)
- &[/%(C \P;_,(Cm K’V el WESL‘L“" [P:’ACL)[< t A —; ¢
c\wol@ s v € ® L. { vew £ieae %— O(/&cél‘ﬁ Y € F UZ\ = (

pu—

o (1) 5)
Ouve cAL(Pt ieer
@[7 Lsewy Cl‘\) = @((bi‘««)
Ve'i/_/

Ly

v

Theorem: The runtime of "BUNT” is O ((k) 7 m) and the total runtime of the algorithm is

i

@) <k§ (’:) Zm) < O (2¥km)

i=1

where we used the equality Zf:o (k) =2"

%

We are still not done, we proposed this algorithm with the idea in mind that we color the graph somehow
and run this previous algorithm. Thus, our idea is the following: we assign colors randomly and independently
to every vertex in each round / iteration with k = logn + 1 and then apply the algorithm with the same k.

Each iteration will take:

e O(n) time to color the vertice
e O (26" (logn)m) (dominant factor) C\L/,(,isf\/\v

Now, how often do we want to repeat this in total?

\C(_ rﬁs.‘f- (a ey s Lo Cc(ﬂv

P“W d.ﬂ (\-EV\?% Q._ c,(./u[/y
KC(F (Jas;.’L(P “(_-J‘n{ oy g (" cﬂ(;-"

\) k [y ICM el
k! = e 2
Perror <1- T <1- eik oo 3

k L —le . —
Applying Th 2.74: f ‘w v
pplying 1heorem 2.74: wWe b ot (move u’\v\- sre petls
\f““,, co L c:r\,,-,‘féu withaot co(vvé(Va"‘d‘f

R

Tl/‘&l/n N: E—Aflnc;_’"—_elc [M.e%:le

/‘/\9%/(& CO*/(OQ‘
(.,03 \ftq&éz

O(N - 2¥km) = O(N2'°8™ (log n)m) = O(A(2¢)'°8 " (log n)m)

Quiz / Example:

This full algorithm we have shown either returns ”yes” or "no”:
e Output "yes” is always correct \/
e Output "no” is always correct)(
The BUNT subprocedure we have shown also either returns ”yes” or "no”:
e Output ”yes” is always correct
e Output "no” is always correct v

Assume we now want to apply this algorithm differently. We want to find paths of length k£ = 2 - logn
instead and we will repeat the random coloring process N = n - ¥ times What is the runtime and the error
probability for this algorithm then? (: o5 s Qf(/law » (o

R;\/\(\CCZ(U}I/, (
IV TR VLR

LWeyut
— O Wn & W w)

(e
_— D(Urbe 7o U >
- @[l/\@\/\zuﬂ [N»)

- o>)

Prdulazy

N=w e% = ¢ lue™ = ejt [(577

= @ Fo => 0

2.3 Flow

Definition: A Network is a tuple N = (V, A, ¢, s,t), where
e (V, A) is a directed graph (where the edges are the pipes and the vertices are the intersections)
e s €V is the source (the point where water magically spawns out of)
o t € V' \ {s} is the target (the point where water disappears into the abyss)

ec:A— RS’ is the capacity function (which denotes how much water can flow through each pipe)

Definition: TLet N = (V, A, ¢, s,t) be a network. A flow in N is defined as a function f : A — R,
such that

e Forallec A, 0 < f(e) < c(e)
e For all v € V'\ {s,t} we have

Z f(ua v) = Z f(va u)

u€V s.t. (u,v)€EA u€V s.t. (v,u)€A

which we call conservation of flow (note that again, this does not apply for the source and the
target)

Definition: The value of a flow f is defined as

val(f) := netout flow(s) := Z f(s,u) — Z flu,s)

vEV s.t. (s,0)EA u€V s.t. (u,s)€EA
Definition: f is called an integer flow, iff f(e) € Z Ve € A

Lemma:

netinflow(t) := Z flu,t) — Z f(u, s) = netoutflow(s)

ueV s.t. (u,t)EA veEV s.t. (t,v)EA

Examples:

S >©\ 7L

&

Proof. We can alternatively prove that

0 = netoutflow(s) — netinflow(¢)

= (Z f(s7u)— Z f(uvs))

veEV s.t. (s,v)EA u€eV s.t. (u,s)€EA

- (Z f(u’t) - Z f(uv s))

ueV s.t. (u,t)€A veEV s.t. (t,v)EA

=> (> fosu) = > flu, v)) (*)

veV \ueV st. (v,u)€A u€eV s.t. (u,v)€EA
Z flv,u) Z fu,v) (%x)
(v, (u,v)EA
=0
0

e A - ,ﬁ
%f i gcvm~ i ‘ffu(\ﬂ

sV st (VoER eV L (o CR
o gidla - Ao =0
N

{W o vdedt
ot
OMLL(ﬁﬂl/ V:S(’E [}Q & LU""\

Definition: An s-t-Cut for a network (V, A, ¢, s,t) is a partition (S,T) of V (SWT = V) such that
s € S and t € T. The capacity of this cut is defined as

cap(S,T) := c(u, w)

(_,7 a"'(T &jyg |
We have that g Oy Ty S —é_o’ T .

Lemma: Let f be a flow and (S,7T) an s-t-Cut in a network. Then we have that

val(f) < cap(S,T)

and with these definitions comes the formal version of the

Definition: (Maxflow-Mincut-Theorem) For every network (V, A, ¢, s,t), we have that

ma, al(f) = min cap(S,T
fa ﬂow}i(n NV (f) (S,T) s-t-Cut in N p()

Quiz Time!

e N=(V,A,c,s,t) be anetwork and S and T and s-t-Cut. We have that cap(S,T) > 0 L/t‘s"vwz

<
e What is the maximum flow in the following network? c- At

U~ u&((%:‘ €, Quee

-

e What is the capacity of the following network with S = {v1,v4,v5,v6}, T = {v2,v3,07}
— —

