
Gil Zilberfeld (TestinGil)

@gil_zilberfeld

Hello!

I AM GIL ZILBERFELD

http://www.testingil.com/

Twitter: @gil_Zilberfeld
Telegram: @TestinGil

Download the code from GitHub

http://www.testingil.com/
https://twitter.com/gil_zilberfeld
https://github.com/gilzilberfeld/webinar-testability

@gil_zilberfeld

The conversation

◉ Developers don’t want to change code for tests

◉ The design is so brilliant already

◉ They've worked so much at it

◉ And many more…

Fallacies and misconceptions

◉ The job is done when code gets pushed

◉ The black box fallacy

◉ Code and architecture doesn’t have any visible

correlation with testing

Developer blind spots

◉ How the code will be tested

◉ In what context

◉ The cost of testing

◉ The effect of developer testing on system tests

@gil_zilberfeld

Produce code

That works

And easy to maintain

@gil_zilberfeld

Report the most

comprehensive

information to

stakeholders

@gil_zilberfeld

How do we align the mission statements?

@gil_zilberfeld

◉ Learn about code

◉ How does code impact testing and testability?

Duplication

◉ The problem

○ Same code appears in multiple locations

◉ The impact

○ We need to check multiple scenarios for better coverage

and reporting

○ Both internal and APIs

○ More testing effort, and usually less coverage

◉ Let’s see an example

Duplication

◉ The solution

○ Identify the pattern

○ Refactor into libraries

◉ But, but, but…

○ No buts

○ Really

Visibility

◉ The problem

○ Cannot call code directly or access it for assertions

◉ The impact

○ We need to write complex scenarios for better coverage

and reporting

○ If we can at all

○ More setup effort, and usually less coverage

◉ Let’s see an example

Visibility

◉ The solution

○ Make it public!

○ Expose methods and data through APIs

◉ But, but, but…

○ “Someone may call it”

○ Using a programming language construct for hiding

something should really be the last resort

○ APIs need management

○ Maybe it should be public

◉ AKA dependency injection

Dependency Injection

◉ The problem

○ Dependencies are created and controlled only inside the

code

◉ The impact

○ We cannot modify, mock or replace them

○ Test scenarios cannot run

○ Or require mind-bending setup

○ In which case, you probably just won’t run it

◉ Let’s see an example

Dependency injection

◉ The solution

○ Pass the dependency as a parameter

○ Or use a DI framework

○ Or use a redirection configuration

○ Now we can use mock dependencies for different scenarios

◉ But, but, but…

○ “My brilliant design!”

○ Is not testable, therefore its brilliance is in question

○ By the way, Spring is a dependency too

Mockability

◉ The problem

○ Dependencies are created without ability for extension

◉ The impact

○ We cannot mock or replace them

○ Test scenarios cannot run

○ Or require mind-bending setup

○ In which case, you probably just won’t run it

◉ Let’s see an example

Mockability

◉ The solution

○ Don’t make them final (or sealed, or whatever)

○ Use replaceable dependencies with DI like in-memory

databases and mocked servers

◉ But, but, but…

○ “My brilliant design!”

○ You keep saying that word, I’m not sure it means what you

think it means

Modularity

◉ The problem

○ Code has a lot of dependencies in it

○ Breaking the SRP and ISP (SOLID)

○ Services are big

◉ The impact

○ Test setup requires supplying many dependencies than the

tested code really needs

○ More setup effort, if we don’t break in the process

○ Test run is longer

◉ Let’s see an example

Modularity

◉ The solution

○ Break it down!

○ Smaller code and small services

○ Less dependencies mean smaller setup

◉ But, but, but…

○ “My brilliant design!”

○ Really means: “I’m not changing my code for you (and

maybe it’s too risky)”

○ It makes for other problems like god files, classes and

methods. Maintenance is horrid. Don't do that.

@gil_zilberfeld

Being part of the conversation

Before, during and after coding

Joint meetings

◉ Design reviews

◉ Code reviews

◉ Test planning

◉ Test design

◉ Test results

◉ Demos

Asking questions - Design

◉ Where is the risky code?

◉ What old features will be impacted by the new

code?

◉ What are the dependencies?

◉ Will we be able to "mock" them?

Asking questions - Planning

◉ What scenarios are going to be automated?

◉ By what?

○ Unit, integration, API

◉ What don’t they cover?

◉ What is the cost for improving testability?

○ What do we get in return?

◉ What should we prepare so we can test

scenarios after that?

Retros

◉ What makes it hard to test?

◉ What makes it easy to test?

◉ Also, define hard and easy

@gil_zilberfeld

@gil_zilberfeld

“If you brought us a

functionally correct design

that required our app to run

on a million AWS instances,

we’d casually say "no, that’s

not valid.”
https://www.geepawhill.org/2020/12/11/the-steering-premise/

https://www.geepawhill.org/2020/12/11/the-steering-premise/

@gil_zilberfeld

If a design is not testable, it is not a valid design

We need to help the developers do their job

@gil_zilberfeld

Thanks!

ANY QUESTIONS?

You can find me at:

LinkedIn: Profile, Company

XING: Profile, Group:

Twitter: @gil_zilberfeld

http://www.testingil.com

https://www.linkedin.com/in/gilzilberfeld/
https://www.linkedin.com/company/15832943
https://www.xing.com/profile/Gil_ZilberfeldTestinGil
https://www.xing.com/communities/groups/softwaretesting-5605-1046999/
https://twitter.com/gil_zilberfeld
http://www.testingil.com/

