
1

2

How to improve CI/CD pipeline for mobile

RanjaniRambles

Niranjani Manoharan

https://twitter.com/RanjaniRambles

● QA/SDET

● Engineers/Developers

● Build/Release

Stakeholders involved

3

What were the blockers?

- Break down features into
smaller chunks

- Reduce build time
- Test frequently
- Automate as much as possible
- Project management/Scrum

process/JIRA workflow
4

- Learn how containers can
simplify the android build
process.

- Improvements to test automation.
- Get more insights into which

open source tool works better to
provide parallelized test runs on
mobile platform.

- Caveats of different CI systems.

5

6

Code
Commit Build

Challenge: How the android team reduced build time?

Solution:

● Gradle vs Maven (on android)

● Build variants

● Dependencies

● CI system (Jenkins vs Buildkite)
7

buildscript {

dependencies {
 classpath
rootProject.ext.googleServicesClasspath
 ...

}

productFlavors {
 flavorDimensions "environment"
 releaseVer {
 dimension "environment"
 minSdkVersion 23
}
buildTypes {

...
}

testOptions {
integrationTests {

 . . .
}
}

8

Gradle

● Task dependencies

● Multi module builds
run in parallel

● Incremental
changes/build cache

Maven snippet:

9

<?xml version="1.0" encoding="UTF-8"?>

...

 <modelVersion>4.0.0</modelVersion>

...

 <dependencies>

 <dependency>

 <groupId>com.google.android</groupId>

 <artifactId>android</artifactId>

 <version>2.2.1</version>

 <scope>provided</scope>

 </dependency>

 </dependencies

 <build>

 <finalName>${project.artifactId}</finalName>

 <sourceDirectory>src</sourceDirectory>

 <plugins>

 <!-- platform or api levl (api level 4 = platform

1.6) →

 ...

 </build>

</project>

● Linear model of
phases

● Multi module
builds run in
parallel

Problems faced with Jenkins

- Builds pass locally but fails on CI
- Multiple instances of jenkins getting blocked
- Difficult to reproduce what’s running on CI on

my local machine

10

Advantages of Buildkite

● Easy to add new pipelines

● Builds are faster

● Simple to debug failures

11

Metrics

● Jenkins/Maven: ~45 mins

● BuildKite/Gradle: ~20 mins

12

13

14

Code
Commit Build Test

Building the CI/CD pipeline...

Challenge: Why were our android tests taking longer to run?

Solution:

● Types of validations: UI + backend
● Number of tests being run
● Categories of test suites
● Where do these tests run?
● Types of devices used for test run

○ Tablet(s)
○ Phone(s)

15

Challenge: Where are the tests running?

 Solution:

● AWS device farm vs Firebase labs

● Custom device lab

■ Single device

■ Multiple devices

■ Phone/Tablet 16

17

18

Snapshot of AWS device farm test run

19

Snapshot of Firebase Test Labs

20

Metrics

Jenkins/AWS Device Farm/300 tests:
~150 mins

BuildKite/ Firebase Labs/300 tests:

~ 20 mins

21

Upcoming topics

● Which test framework did we use?

● How we structured our tests?

● How we handled test runs on different

devices?

● Finally, how did we parallelize test runs?
22

Challenge: Which android test framework did we use?

 Solution:
Espresso Appium

Well-suited for writing white
box-style automated tests

Follows a black box approach as
it directly uses the app’s apk

Tests will break if anything
changes in the app

Tests reside outside of the app’s
codebase.

Native to android applications. Cross platform testing framework.

23

How does Espresso work?

24

25

Android Test Architecture

● Replace manual testing

● Mocking ~ unit tests

● End to end scenarios mimic user behavior

● Helpful to find integration bugs
26

Challenge: Why didn’t we mock
request/responses?

Test Architecture with TAP(Test Account Pool)

27

Test Account Pool

Clean Dependency
separation

Metrics

Reduced test flakiness by 50%.

28

Espresso code snippet:Page Object Model implementation

 @Test
public void testContextualMenuSaveButton() {

 // setup:

 openView(Navigate.View.HOME, Collections.emptyList());

 // when:

 HomefeedSurfaceActions.openContextMenuForPinWithIndex0();
 HomefeedSurfaceActions.clickSaveInContextMenu();
 flushEvents();

 // then:
Assert.assertTrue(...);

 }
29

Test Utils

30

Without design pattern
@Test
public void testVideoAutoplay() {
 // setup:
 ...

 // when:

 watchVideoInCloseupFrom0(VideoConstants.VIDEO_TIME +
VideoConstants.LOG_TIME);

 ...

 // then:
 this.assertEvent(new Event(USERNAME, testID, Arrays.asList(
 AuditData.createVideoConfig(this.getUserId(), ...)
)));

}
31

Audit Data class
public static Config createVideoConfig(String userId,...) {

 List<Filter> filters = Arrays.asList(
 new Filter<>(Constants.PATH_EVENT_TYPE,
 Constants.COMPARISON_EQUALS,
 Constants.VIDEO_PLAYBACK_COMPLETION)
);

 List<QuantityCheck> quantityChecks = ...;

 ...

 return new Config(userId,filters, quantityChecks, ...
 Constants.CHECKER_NAME, checkerSettings);
}

32

● Audit Data Class ~ 3000 lines of code

● Not complying to good programming practices

● UI Test + backend validation ~ 2-3 hours => 4

tests per day
33

Issues faced

With Builder pattern

34

public class VideoAuditEventBuilder {

 public interface ViewType {

 String FEED = "FEED";
 ...
 }

 public static class VideoEventsName {

 public static final String VIDEO_PLAYBACK_STATE_PLAYING = "PLAYING";
 public static final String VIDEO_PLAYBACK_STATE_PAUSED = "PAUSED";

...
 }

35

public VideoAuditEventBuilder
addPlaybackStatePlayingInterval(...,
 int min, int max,
 List<Filter> additionalFilters,
 ...) {
 return this.addPlayingWithIntervalAndFilters(startTime,
endTime,
 VideoEventsProperty._PATH,
 min, max,
 additionalFilters,
 ...);
}

In the test method

36

// verify:
this.assertEvent(new VideoAuditEventBuilder(...,
this.getUserId())
 .addPlaybackStatePlayingInterval(...)
 .addPlayingWithIntervalAndFilters(startTime, endTime,
VideoEventsProperty.PATH,
 ...)
 .build());

Metrics
Test + backend validation = 2-3 hours => 4 tests per

day

With design patterns:

Test + backend validation < 1 hour => 8+ tests per

day 37

38

● Organizing libraries
○ ViewActionUtils
○ ViewMatcherUtils

● What design patterns did we use?
○ Builder pattern - the same construction process can

create different representations
○ Page Object Model - helps with ease of maintenance

● Test flakiness will occur if test framework & design patterns
are not used effectively alongwith ReTry rules.

Challenge: How to handle test runs on different devices?

- Resolution is different
- Types of click listeners

- Click vs long press

39

Solution:

Try increasing the long press delay values
of your test devices/emulators under
Setting -> Accessibility -> Touch & hold
delay

Workaround
If the click takes longer than the 'long press' duration (which is

possible) the provided * rollback action is invoked on the view

and a click is attempted again. *

40

Challenge: Why did we choose Flank for parallelizing
test runs?

41

Flank Spoon
Flank is a open source tool to run test suites in
parallel.

Spoon runs tests on multiple devices
simultaneously

To runs tests with Flank you will need the app
and test apk's. Stores test results in a folder
named: results.

Using the application APK and instrumentation
APK,
a static HTML summary is generated with
detailed information about each device and
test.

Metrics

Jenkins/AWS Device Farm/ Spoon for 300 tests:
~ 150 mins

BuildKite/ Firebase Labs/ Flank for 300 tests:

~ 20 mins

42

43

Code
Commit Build Test

Building the CI/CD pipeline...

Deploy

How containers add value to the pipeline?
Solution:

● Pre-packaged containers have all the
dependencies loaded and can be deployed
through the docker.yml file.

● Customize pipeline with .yml scripts.
● Use a CI system that can delineate the different

steps involved in the build/test/deploy process.
44

45

How docker ties them all together!

Code snippet of docker file - how to package dependencies of a project

Update apt-get
RUN rm -rf /var/lib/apt/lists/*
RUN apt-get update
RUN apt-get dist-upgrade -y

Installing packages
RUN apt-get install -y \
 ca-certificates-java \
 git \
 software-properties-common \
 unzip \
 wget \
 zip \
 --no-install-recommends

Install Java
RUN apt-add-repository ppa:openjdk-r/ppa && \

apt-get update && \
...

46

CI/CD pipeline execution

47

pipeline.yml

48

49

Summary

50

The CI/CD pipeline

● How dockers simplified our build process.

● Caveats of Jenkins over Buildkite.

● Automation best practices.

● Got more insights into which open source tool works

better to provide parallelized test runs on the android

platform.

● How our overall metrics for CI/CD pipeline improved
51

52

