
Systematically Testing File-System Crash Consistency

Jayashree Mohan
University of Texas at Austin

jaya@cs.utexas.edu

[Published at OSDI 2018]

1

Crash Consistency

CrashMonkey

Testing Crash-Consistency

Bounded Black Box Testing

Demo

Agenda

Ace

2

Agenda

Crash Consistency

CrashMonkey

Testing Crash-Consistency

Bounded Black Box Testing

Demo

Ace

3

What is a File System?

• A file system is a structured representation of data and a set
of metadata describing this data.

• Data includes abstractions like files and directories

• File system data structures are persisted

• Stored on hard disk, SSDs etc

4

What is a crash?

• An event that results in interruption of ongoing processes in the
system

• Loss of current working state in memory

• Storage left in an intermediate state

5

Crashes

This is very

important…
File saved!

I crashed ☹

6

Image source : https://www.fotolia.com

https://www.fotolia.com

I wish file systems

were crash-consistent!

7

File System Crash Consistency

1. Ordering : Filesystem operations change multiple blocks on
storage that needs to be ordered

• Inode, bitmaps, data blocks, superblock

2. Persistence : Data structures are cached for better performance
• Great for reads!

• But writes have to ensure that modified data in cache is written back to
disk

8

Example of a crash scenario

• Let’s consider what happens during a file append

9

owner: root
permissions: rw
size: 2
pointer: 4
pointer: 5
pointer: null
pointer: null

File Append Example

v2

Data
Bitmap

Inodes

D1

Data Blocks
Inode

Bitmap

owner: root
permissions: rw
size: 1
pointer: 4
pointer: null
pointer: null
pointer: null

Update

the inode

v1
D2

Write the

data

Update

the data

bitmap

foo

These updates must occur in a specific order

Example adapted from https://cbw.sh/static/class/5600/slides/10_File_Systems.pptx

10

v1

Data
Bitmap

Inodes

D1

Data Blocks
Inode

Bitmap

D2

Write the dataFile system consistent, but data is lost

v2
D1

File system inconsistent : garbage data

v1

Update the inode

v1
D1

File system inconsistent : space leakUpdate data bitmap

11

How did FS developers handle this
problem?

1.Don’t bother to ensure consistency

• Run a program that fixes the file system during bootup

• File system checker (fsck)

• Results in data loss, but fixes inconsistency

2.Use a transaction log to make multi-writes atomic

• Log stores a history of all writes to the disk

• After a crash the log can be “replayed” to finish updates

• Journaling file system (ext4, f2fs, btrfs, xfs)

12

ext2

ext4

File System Crash Consistency

1. Ordering : Filesystem operations change multiple blocks on
storage that needs to be ordered

• Inode, bitmaps, data blocks, superblock

2. Persistence : Data structures are cached for better performance
• Great for reads!

• But writes have to ensure that modified data in cache is written back to
disk

13

The Persistence Operations

• Journaling file systems aim to ensure crash consistency

• But, can result in data loss if file system operations are not persisted
explicitly

• Changes are in memory until explicitly flushed (or a file system
background checkpoint at regular timeouts)

• fsync(), fdatasync(), sync

foo

foo foo

foo

foo foo

fsync()

Bug! 14

Crash Consistency

• On crash, all the in-memory component of a file system structure is
lost.

• Ensuring crash consistency requires that all necessary information to
recover the correct state be persisted in order.

Metadata Corruption Data Corruption Unmountable FS

Filesystem

Unmountable!

15

Rename atomicity bug in btrfs

Memory

Storage

16

Rename atomicity bug in btrfs

A

Memory

Storage

mkdir (A)

17

Rename atomicity bug in btrfs

A

bar

Memory

Storage

mkdir (A)

touch (A/bar)

18

Rename atomicity bug in btrfs

A

bar

Memory

Storage

A

bar

mkdir (A)

touch (A/bar)

fsync (A/bar)

19

Rename atomicity bug in btrfs

A

bar

B

Memory

Storage

A

bar

mkdir (A)

touch (A/bar)

fsync (A/bar)

mkdir (B)

20

Rename atomicity bug in btrfs

A

bar

B

bar
Memory

Storage

A

bar

mkdir (A)

touch (A/bar)

fsync (A/bar)

mkdir (B)

touch (B/bar)

21

Rename atomicity bug in btrfs

A

bar

B

Memory

Storage

A

bar

mkdir (A)

touch (A/bar)

fsync (A/bar)

mkdir (B)

touch (B/bar)

rename (B/bar, A/bar)

22

Rename atomicity bug in btrfs

A

bar

foo

B

Memory

Storage

A

bar

mkdir (A)

touch (A/bar)

fsync (A/bar)

mkdir (B)

touch (B/bar)

rename (B/bar, A/bar)

touch (A/foo)

23

Rename atomicity bug in btrfs

A

bar

foo

B

Memory

Storage

A

bar

foo

mkdir (A)

touch (A/bar)

fsync (A/bar)

mkdir (B)

touch (B/bar)

rename (B/bar, A/bar)

touch (A/foo)

fsync (A/foo)

24

Rename atomicity bug in btrfs

A

bar

foo

B

Memory

Storage

A

bar

foo

Expected

mkdir (A)

touch (A/bar)

fsync (A/bar)

mkdir (B)

touch (B/bar)

rename (B/bar, A/bar)

touch (A/foo)

fsync (A/foo)

CRASH!

25

Rename atomicity bug in btrfs

A

bar

foo

B

Memory

Storage

A

bar

foo

Expected

A

foo

Actual

Persisted file A/bar

missing

mkdir (A)

touch (A/bar)

fsync (A/bar)

mkdir (B)

touch (B/bar)

rename (B/bar, A/bar)

touch (A/foo)

fsync (A/foo)

CRASH!

26

What just happened?

A

bar

B

bar

A

bar

B

Rename (B/bar, A/bar)

27

What just happened?

A

bar

B

bar

A

bar

B

Rename (B/bar, A/bar)

28

1. unlink (A/bar)

What just happened?

A

B

bar

A

bar

B

Rename (B/bar, A/bar)

29

1. unlink (A/bar)

2. mv (B/bar, A/bar)

What just happened?

A

B

bar

A

bar

B

Rename (B/bar, A/bar)

30

1. unlink (A/bar)

2. mv (B/bar, A/bar)

Must have been atomic

• fsync(A/foo) commits tx that unlinks A/bar

• Which means step 1 above is persisted, but rename is not

persisted

• End up losing file A/bar

mkdir (A)

touch (A/bar)

fsync (A/bar)

mkdir (B)

touch (B/bar)

rename (B/bar, A/bar)

touch (A/foo)

fsync (A/foo)

CRASH!

Rename atomicity bug in btrfs

A

bar

foo

B

Memory

Storage

A

bar

foo

Expected

A

foo

Actual

Persisted file A/bar

missing

mkdir (A)

touch (A/bar)

fsync (A/bar)

mkdir (B)

touch (B/bar)

rename (B/bar, A/bar)

touch (A/foo)

fsync (A/foo)

CRASH!

31

Exists in the kernel since 2014!

Found by ACE and CrashMonkey

Agenda

Crash Consistency

CrashMonkey

Testing Crash-Consistency

Bounded Black Box Testing

Demo

Ace

32

Testing Crash Consistency Today

• State of the Art : xfstest suite
• Collection of 500 regression tests

Only 5% of tests in xfstest check for file system crash consistency
33

• Annotate filesystems

• Hard to do for existing FS

Verified

Filesystems
• Build FS from scratch Model

Checking

Challenges in crash consistency testing

34

Infinite

Workload

space

ChallengesLack of

automated

infrastructure

Our work addresses both these issues, to provide a

systematic testing framework

Bounded Black-Box Crash Testing (B3)

➢ Focus on reproducible bugs
resulting in metadata corruption,
data loss.

➢ Focus on bugs where explicitly
persisted data/metadata is
corrupted

➢ Found 10 new bugs across btrfs
and F2FS;

➢ Found 1 bug in FSCQ (verified
file system)

New approach to testing file-system crash consistency

35www.github.com/utsaslab/crashmonkey

Target Filesystem

Output:

Bug report with workload, expected state, actual state

CrashMonkey

Workload 1 Workload n
…

Bounds:

(length, operations, args)

Automatic Crash Explorer(ACE)

http://www.github.com/utsaslab/crashmonkey

CrashMonkey and Ace : Features

36

Fully automated
Completely

black-box

File system

agnostic
Finds real bugs

CrashMonkey and Ace : Features

37

Fully automated
Completely black-

box

File system

agnostic
Finds real bugs

No manual

checkers and

workloads

CrashMonkey and Ace : Features

38

Fully automated
Completely

black-box

File system

agnostic
Finds real bugs

No annotations

Doesn’t need to

look at file

system code

CrashMonkey and Ace : Features

39

Fully automated
Completely black-

box

File system

agnostic
Finds real bugs

Works on any

POSIX file

system,

including verified

FS

CrashMonkey and Ace : Features

40

Fully automated
Completely black-

box

File system

agnostic
Finds real bugs

Acknowledged

and patched by

kernel

developers

B3 vs other approaches

Metric Verified FS Model Check xfstests B3

Fully Automated

Black Box

FS agnostic

Find previously

unknown bugs

41

Agenda

Crash Consistency

CrashMonkey

Testing Crash-Consistency

Bounded Black Box Testing

Demo

Ace

42

Challenges with systematic testing

43

Infinite

workload

space

ChallengesLack of

automated

infrastructure

CrashMonkey

44

• Efficient infrastructure to record and replay block level IO
requests

• Simulate crash at different points in the workload

• Automatically test for consistency after crash.

• Copy-on-write RAM block device

How to crash the file system for testing?

• Actually crash the file system

1. Randomly power cycle the VM or the server

• Restarting the VM after crash is slow!

• Unlikely to reveal bugs

2. Run the file system in user space

• Not all file systems can be run as user space processes

• Redesign file systems

SIMULATE crashes instead of trying to actually crash the system!

45

How does CrashMonkey simulate crashes?

Workload

Filesystem

Block Device Driver

Block Device (HDD/ SSD)

Generic Block

Layer

User space

Kernel space

mkdir (A)

touch (A/bar)

fsync (A/bar)

mkdir (B)

touch (B/bar)

rename (B/bar, A/bar)

touch (A/foo)

fsync (A/foo)

CRASH!

VFS + page Cache +

file system

Block IO (BIO) requests

Device specific driver

46

Workload

Filesystem

Generic Block

Layer

Device Wrapper

Custom RAM Block

Device

Test harness

Crash State 1

Crash State 2User space

Kernel space

CrashMonkey Architecture

• Trace all BIO requests

• To simulate crash, simply drop the BIO

requests after a particular point.

47

CrashMonkey in Action

48

Final FS stateInitial FS state

Workload

IO due to workload

Persistence point

49

CrashMonkey in Action

Initial FS state

Workload

IO due to workload

Persistence point

50

Phase 1 : Record IO

Initial FS state Oracle

Record IO up to persistence point

Safely unmount

Workload

IO due to workload

Persistence point

IO forced by unmount

51

Phase 2 : Replay IO

Initial FS state Oracle

Initial FS state Crash State

Record IO up to persistence point

Safely unmount

Replay IO up to persistence point

Workload

IO due to workload

Persistence point

IO forced by unmount

52

Phase 3 : Test for consistency

Initial FS state Oracle

Initial FS state Crash State

Auto

Checker

Record IO up to persistence point

Safely unmount

Replay IO up to persistence point

Workload

IO due to workload

Persistence point

IO forced by unmount

After recovery

53

Initial FS state Oracle

Initial FS state Crash State

Auto

Checker

Bug

Report

Record IO up to persistence point

Safely unmount

Replay IO up to persistence point

Phase 3 : Test for consistency

Workload

IO due to workload

Persistence point

IO forced by unmount

Challenges with Systematic Testing

54

ChallengesLack of

automated

infrastructure

Infinite

workload

space

So Far…

• Given a workload compliant to POSIX API, we saw how CrashMonkey
generates crash states and automatically tests for consistency

CrashMonkey

Challenges with Systematic Testing

55

So Far…

• Given a workload compliant to POSIX API, we saw how CrashMonkey
generates crash states and automatically tests for consistency

• Next question : How to automatically generate workloads in an the infinite
workload space?

ChallengesLack of

automated

infrastructure

Infinite

workload

space

CrashMonkey

Exploring the infinite workload space

Challenges:

• Infinite length of workloads

• Large set of filesystem operations

• Infinite parameter options (file/directory names, depth)

• Infinite options for initial filesystem state

• When in the workload to simulate a crash?

56

Agenda

Crash Consistency

CrashMonkey

Testing Crash-Consistency

Bounded Black Box Testing

Demo

Ace

57

B3 : Bounded Black Box Crash Testing

58

Length of workloads

Initial FS state

Arguments to system calls

B3 : Bounded Black Box Crash Testing

59

Length of workloads

Initial FS state

Arguments to system calls

B3 : Bounded Black Box Crash Testing

60

Length of workloads

Initial FS state

Arguments to system calls

Image source: https://en.wikipedia.org/wiki/Cube

B3 : Bounded Black Box Crash Testing

61

Length of workloads

Initial FS state

Arguments to system calls

B3 : Bounded Black Box Crash Testing

62

Length of workloads

Initial FS state

Arguments to system calls

B3 : Bounded Black Box Crash Testing

63

Length of workloads

Initial FS state

Arguments to system calls

B3 : Bounded Black Box Crash Testing

Choice of crash point

• Only after fsync(), fdatasync() or sync()

• Not in the middle of system call

64

mkdir (A)

touch (A/bar)

fsync (A/bar)

mkdir (B)

touch (B/bar)

rename (B/bar, A/bar)

touch (A/foo)

fsync (A/foo)

Crash Point 1

Crash Point 2

• Developers are motivated to patch

bugs that break semantics of

persistence operations

• Crashing in the middle of system

calls leads to exponentially large

crash-states.

Limitations of B3

• No guarantee of finding all crash-consistency bugs in a
filesystem

• Assumes the correct working of crash-consistency mechanism
like journaling or CoW
• Does not crash in the middle of system calls

• Can only reveal if a bug has occurred, not the reason or origin of
bug.

• Needs larger compute to test higher sequence lengths

65

Agenda

Crash Consistency

CrashMonkey

Testing Crash-Consistency

Bounded Black Box Testing

Demo

Ace

66

Bounds chosen by ACE

67

Length of workloads

Initial FS state

Arguments to system calls

Bounds picked based on

insights from the study of

crash-consistency bugs

reported on Linux file

systems over the last 5

years

Study of crash consistency bugs in the wild

• Study the workload pattern and impacts of crash consistency
bugs reported in the past 5 years
• Kernel mailing lists

• Crash consistency tests submitted to xfstests

• 26 unique bugs across ext4, F2FS, and btrfs

68

Study of crash consistency bugs in the wild

69

Consequence # bugs

Corruption 17

Data inconsistency 6

Unmountable FS 3

Total 26

Filesystem # bugs

Ext4 2

F2FS 2

btrfs 24

Total 28

ops # bugs

1 3

2 14

3 9

Total 26

1. Crash consistency bugs are hard to find
• Bugs have been around in the kernel for up to 7 years before being

identified and patched

• Usually involve reuse of files/ directories

70

Study of crash consistency bugs in the wild
Consequence # bugs

Corruption 17

Data inconsistency 6

Unmountable FS 3

Total 26

Filesystem # bugs

Ext4 2

F2FS 2

btrfs 24

Total 28

ops # bugs

1 3

2 14

3 9

Total 26

1. Crash consistency bugs are hard to find

2. Small workloads are sufficient to reveal bugs
• 2-3 core operations on a new, empty file-system

71

Study of crash consistency bugs in the wild
Consequence # bugs

Corruption 17

Data inconsistency 6

Unmountable FS 3

Total 26

Filesystem # bugs

Ext4 2

F2FS 2

btrfs 24

Total 28

ops # bugs

1 3

2 14

3 9

Total 26

1. Crash consistency bugs are hard to find

2. Small workloads are sufficient to reveal bugs

3. Crash after persistence points
• Sufficient to crash after a call to fsync(), fdatasync(), or sync()

72

Study of crash consistency bugs in the wild
Consequence # bugs

Corruption 17

Data inconsistency 6

Unmountable FS 3

Total 26

Filesystem # bugs

Ext4 2

F2FS 2

btrfs 24

Total 28

ops # bugs

1 3

2 14

3 9

Total 26

1. Crash consistency bugs are hard to find

2. Small workloads are sufficient to reveal bugs

3. Crash after persistence points

4. Systematic testing is required

73

Study of crash consistency bugs in the wild
Consequence # bugs

Corruption 17

Data inconsistency 6

Unmountable FS 3

Total 26

Filesystem # bugs

Ext4 2

F2FS 2

btrfs 24

Total 28

ops # bugs

1 3

2 14

3 9

Total 26

1. Crash consistency bugs are hard to find

2. Small workloads are sufficient to reveal bugs

3. Crash after persistence points

4. Systematic testing is required

74

Study of crash consistency bugs in the wild

Fallocate : punch_hole : 2015

Fallocate : zero_range : 2018

Consequence # bugs

Corruption 17

Data inconsistency 6

Unmountable FS 3

Total 26

Filesystem # bugs

Ext4 2

F2FS 2

btrfs 24

Total 28

ops # bugs

1 3

2 14

3 9

Total 26

Bounds chosen by ACE

75

Length of workloads

Initial FS state

Arguments to system calls

Bounds picked based on

insights from the study of

crash-consistency bugs

reported on Linux file

systems over the last 5

years

Bounds chosen by ACE

76

Length of workloads

Initial FS state

Arguments to system calls

Maximum # core ops is 3

Bounds chosen by ACE

77

Length of workloads

Initial FS state

Arguments to system calls

Maximum # core ops is 3

Root
A

B

(foo, bar)

(foo, bar)

Overwrites to start, middle,

end of a file and append

Bounds chosen by ACE

78

Length of workloads

Initial FS state

Arguments to system calls

Root
A

B

(foo, bar)

(foo, bar)

Overwrites to start,

middle, end and append

Maximum # core ops is 3

New, 100MB FS

Phases of ACE

79

creat()

link()

rename()

write()

Operation Set

Generating skeletons of sequence-2. : 4*4 = 16

creat()

rename()

creat()

link()
creat()

write()

creat()

creat()

link()

link()
link()

creat()

link()

rename()

link()

write()

rename()

rename()

rename()

creat()

rename()

link()

rename()

write()

write()

write()

write()

creat()

write()

link()

write()

rename()

Phases of ACE

80

creat()

link()

rename()

write()

Operation Set

Generating skeletons of sequence-2. : 4*4 = 16

creat()

rename()

creat()

link()
creat()

write()

creat()

creat()

link()

link()
link()

creat()

link()

rename()

link()

write()

rename()

rename()

rename()

creat()

rename()

link()

rename()

write()

write()

write()

write()

creat()

write()

link()

write()

rename()

Phases of ACE

1. Select Operations

1. creat()

2. rename()

81

A

B

foo

bar

foo

bar

File Set

Phases of ACE

1. Select Operations

1. creat()

2. rename()

2. Select Parameters
• If metadata operations, pick

file or directory names

• If data operations, pick a

range of offset and length

82

A

B

foo

bar

foo

bar

File Set

Phases of ACE

1. Select Operations

1. creat()

2. rename()

2. Select Parameters
• If metadata operations, pick

file or directory names

• If data operations, pick a

range of offset and length
1. creat(A/bar)

2. rename(B/bar, A/bar)

83

A

B

foo

bar

foo

bar

File Set

Phases of ACE

1. Select Operations

1. rename()

2. Link()

2. Select Parameters

1. creat(A/bar)

2. rename(B/bar, A/bar)

3. Add Persistence

• Between each core

operation, add a persistence

operation

• Consistency will be checked

at these points

• Parameter to the

persistence function is again

chosen from the

file/directory pool

84

A

B

foo

bar

foo

bar

File Set

1. Select Operations

1. creat()

2. rename()

Phases of ACE

1. Select Operations 2. Select Parameters

1. creat(A/bar)

2. rename(B/bar, A/bar)

3. Add Persistence

• Between each core

operation, add a persistence

operation

• Consistency will be checked

at these points

• Parameter to the

persistence function is again

chosen from the

file/directory pool

1. creat(A/bar)

fsync(A/bar)

2. rename(B/bar, A/bar)

fsync(A/foo)

85

A

B

foo

bar

foo

bar

File Set

1. creat()

2. rename()

Phases of ACE

1. Select Operations 2. Select Parameters

1. creat(A/bar)

2. rename(B/bar, A/bar)

3. Add Persistence

• Add file create/open/close to

ensure the workload

executes on any POSIX

compliant filesystem.

4. Add Dependencies

86

A

B

foo

bar

foo

bar

File Set

1. creat()

2. rename()

1. creat(A/bar)

fsync(A/bar)

2. rename(B/bar, A/bar)

fsync(A/foo)

Phases of ACE

1. Select Operations 2. Select Parameters

1. creat(A/bar)

2. rename(B/bar,

A/bar)

3. Add Persistence

• Add file create/open/close to

ensure the workload

executes on any POSIX

compliant filesystem.

4. Add Dependencies
mkdir(A)

1. creat(A/bar)

fsync(A/bar)

mkdir(B)

creat(B/bar)

2. rename(B/bar, A/bar)

creat(A/foo)

fsync(A/foo)

close(A/foo) 87

A

B

foo

bar

foo

bar

File Set

1. creat()

2. rename()

1. creat(A/bar)

fsync(A/bar)

2. rename(B/bar,

A/bar)

fsync(A/foo)

Phases of ACE

1. Select Operations 2. Select Parameters

3. Add Persistence
4. Add Dependencies

This workload with 2 core

operations is the same

workload required to trigger

rename atomicity bug!

88

A

B

foo

bar

foo

bar

File Set

1. creat()

2. rename()

1. creat(A/bar)

2. rename(B/bar, A/bar)

1. creat(A/bar)

fsync(A/bar)

2. rename(B/bar, A/bar)

fsync(A/foo)

mkdir(A)

1. creat(A/bar)

fsync(A/bar)

mkdir(B)

creat(B/bar)

2. rename(B/bar, A/bar)

creat(A/foo)

fsync(A/foo)

close(A/foo)

Challenges with Systematic Testing

89

ChallengesLack of

automated

infrastructure

Infinite

workload

space

CrashMonkey ACE

Bounded Black-Box Testing

Evaluation

We seek to answer the following questions:

1. Can B3 reproduce known bugs in the kernel?

2. Can B3 find new bugs in Linux Filesystems in a reasonable
time?

3. Resource consumption by ACE and CrashMonkey

4. How can we generalize and scale this approach?

90

Test Setup

• Cluster of 65 nodes
• 40 cores, 48GB RAM, 128GB SSD

• 12VMs on every node, each with 2GB RAM, 10GB storage
• Restricted by storage

• Total 780 VMs in parallel

• Generate workloads on a local server and distribute over
network to the VMs

91

Results at a glance

92

Sequence Length # workloads
Bugs

Reproduced
Bugs found Time (min)

Seq-1

Seq-2

Seq-3 metadata

Seq-3 data

Seq-3 nested

Total

Results at a glance

93

Sequence Length # workloads
Bugs

Reproduced
Bugs found Time (min)

Seq-1

Seq-2

Seq-3 metadata

Seq-3 data

Seq-3 nested

Total

25 million workloads

Needs 15 days of testing on 780 VMs in parallel!

Results at a glance

94

Sequence Length # workloads
Bugs

Reproduced
Bugs found Time (min)

Seq-1 300

Seq-2 254K

Seq-3 metadata 120K

Seq-3 data 1.5M

Seq-3 nested 1.5M

Total 3.37M

Results at a glance

95

Sequence Length # workloads
Bugs

Reproduced
Bugs found Time (min)

Seq-1 300 3

Seq-2 254K 14

Seq-3 metadata 120K 5

Seq-3 data 1.5M 2

Seq-3 nested 1.5M 2

Total 3.37M 26

Results at a glance

96

Sequence Length # workloads
Bugs

Reproduced
Bugs found Time (min)

Seq-1 300 3 3

Seq-2 254K 14 3

Seq-3 metadata 120K 5 2

Seq-3 data 1.5M 2 0

Seq-3 nested 1.5M 2 2

Total 3.37M 26 10

Results at a glance

97

Sequence Length # workloads
Bugs

Reproduced
Bugs found Time (min)

Seq-1 300 3 3 1

Seq-2 254K 14 3 215

Seq-3 metadata 120K 5 2 102

Seq-3 data 1.5M 2 0 1274

Seq-3 nested 1.5M 2 2 1274

Total 3.37M 26 10 2866 (2 days)

Testing Efficiency

• CrashMonkey Performance per workload

98

End-to-end time to test = 5 seconds

Profiling : 3.5 s Constructing crash-state :

21 ms
Testing: 1 s

Writeback delay : 2s

Mount delay : 1s

Results

• Reproduced 24/26 known bugs across ext4, btrfs and
F2FS

• Found 10 new bugs across btrfs and F2FS

• Found 1 bug in a verified file system, FSCQ

99

Generalizing Ace

• Open Source

• Easily expandable to test higher sequences exhaustively if more
compute is available

• Integrated with Ace fuzzer to test random, but valid sequences

• Adding support for more system calls is straightforward

• Increases the space of workloads

100

Using CrashMonkey & Ace

• Open Source : https://github.com/utsaslab/crashmonkey

101

Using CrashMonkey & Ace

102

Push button testing!

More here : https://github.com/utsaslab/crashmonkey

103

Impact of our tools

Our tools found 10 long-standing

bugs in btrfs and F2FS in the

Linux kernel, and 1 bug in a

verified file system, FSCQ.

The tests generated by our

tools have been added to

xfstests, the file-system test

suite for the Linux kernel.

Spurred discussion and effort

towards documenting the

crash guarantees of various

Linux filesystems in the kernel

Used in research file systems

like BarrierFS to test their

crash-consistency guarantees.

104

What did we learn from
B3?

105

Even if you build verified software, testing is important!

A custom tool that is application-aware is more powerful than
a generic testing approach

106

Agenda

Crash Consistency

CrashMonkey

Testing Crash-Consistency

Bounded Black Box Testing

Demo

Ace

107

Demo

108

Summary

• File system crash consistency bugs result in severe
consequences like metadata corruption and data loss.

• To address the lack of infrastructure for testing such bugs :
CrashMonkey

• Record and replay framework

• Automated workload generation using Ace

• Study the past bug pattern and explore a bounded space

• Found 10 new bugs in Linux FS and 1 bug in a verified FS

109

Our team

Jayashree

Mohan

Ashlie

Martinez

Soujanya

Ponnapalli

Pandian

Raju
Vijay

Chidambaram

110

Try our tools : https://github.com/utsaslab/crashmonkey

111

• B3 makes exhaustive testing feasible using informed bound selection

• Easily generalizable to test larger workloads if more compute is available

• Found 10 new bugs across btrfs and F2FS, most of which existed since 2014

• Found 1 bug in FSCQ

Contact : Jayashree Mohan (jaya@cs.utexas.edu)

Questions?

