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▎ What is ClickHouse and why do we need good testing?

▎ How do we test ClickHouse and what problems do we have to solve?

▎ What is SQLancer and what are the ideas behind it?

▎ How to add support for yet another DBMS to SQLancer?
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▎ Open Source analytical DBMS for BigData with SQL interface.

• Blazingly fast

• Scalable

• Fault tolerant

2013 Project 
started

2016 Open 
Sourced

2021     
★15K 

GitHub
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Why do we need good CI? 

Contributors Merged Pull 
Requests

New Features Releases Core Team

361

In 2020:

4081 261 11 <15



Pull Requests exponential growth
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All GitHub data available in ClickHouse
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https://gh.clickhouse.tech/explorer/
https://gh-api.clickhouse.tech/play

https://gh.clickhouse.tech/explorer/
https://gh-api.clickhouse.tech/play


7

How is ClickHouse tested?
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ClickHouse Testing

• Style

• Unit

• Functional

• Integrational

• Performance

• Stress

• Static analysis (clang-tidy, PVSStudio)

• Compatibility with OS versions

• Flaky check for new or changed tests

• All tests are run in with sanitizers 
(address, memory, thread, undefined 
behavior)

• Thread fuzzing (switch running threads 
randomly)

• Coverage

• Fuzzing





100K tests is not enough



Fuzzing
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▎ libFuzzer to test generic data inputs – formats, schema etc.

▎ Thread Fuzzer – randomly switch threads to trigger races and dead locks

› https://presentations.clickhouse.tech/cpp_siberia_2021/

▎ AST Fuzzer – mutate queries on AST level.

› Use SQL queries from all tests as input. Mix them.

› High level mutations. Change query settings

› https://clickhouse.tech/blog/en/2021/fuzzing-clickhouse/

https://presentations.clickhouse.tech/cpp_siberia_2021/
https://clickhouse.tech/blog/en/2021/fuzzing-clickhouse/
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Test development steps

Unit,

Functional,

Integration,

Stress,

Performance

etc.

Common tests Instrumentation Fuzzing The next step

Find bugs earlier.

Sanitizers:

• Address

• Memory

• Undefined Behavior

• Thread

Improve 
coverage.

???



In search for correctness
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▎ Test cases for correctness require developer or QA specialist to write it manually

▎ Additional tests mostly check if DBMS crashes or stops working

▎ It is hard to find reference system to validate results with:

• SQL syntax differs between systems

• No SQL conformance testing suite

• All SQL standard extensions can't be tested this way



How we can check correctness?
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▎ SQL has some invariants and basic assumptions

▎ DBMS can help us!

There should be some solutions that already exploit that
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SQLancer

https://github.com/sqlancer

SQLancer is an effective and widely-used
automatic testing tool to find logic bugs in DBMSs
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Facts

• Written in Java
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Facts

• Written in Java

$ git clone https://github.com/sqlancer/sqlancer
$ cd sqlancer
$ mvn package -DskipTests
$ cd target
$ java -jar sqlancer-*.jar sqlite3
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Facts

• Written in Java

$ git clone https://github.com/sqlancer/sqlancer
$ cd sqlancer
$ mvn package -DskipTests
$ cd target
$ java -jar sqlancer-*.jar sqlite3

You can quickly try out SQLancer on the embedded DBMSs 
SQLite, H2, and DuckDB without setting up a connection
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Facts

• Written in Java

• Permissive license (MIT License)
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• 43,000 LOC
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Facts

• Written in Java

• Permissive license (MIT License)

• 43,000 LOC

• 9 contributors
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Contributors

https://www.citusdata.com/blog/2020/09/04/mining-for-logic-bugs-in-citus-with-sqlancer/

Nazli Ugur Koyluoglu
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Contributors

Patrick Stäuble



26

Contributors

Ilya Yatsishin
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Facts

• Written in Java

• Permissive license (MIT License)

• 43,000 LOC

• 9 contributors

• >= 10 supported DBMSs
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Supported DBMSs

PostgreSQL
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SQLancer

https://github.com/sqlancer

SQLancer is an effective and widely-used
automatic testing tool to find logic bugs in DBMSs
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More than 450 Bugs

PostgreSQL

I used SQLancer to find over 450 
unique, previously unknown bugs 

in widely-used DBMSs
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More than 450 Bugs

# Bugs

DBMS Logic Error Crash

CockroachDB 16 46 5

DuckDB 29 13 31

H2 2 15 1

MariaDB 5 0 1

MySQL 21 9 1

PostgreSQL 1 11 5

SQLite 93 44 42

TiDB 30 27 4

Sum 197 165 90

https://github.com/sqlancer/bugs



32

SQLancer

https://github.com/sqlancer

SQLancer is an effective and widely-used
automatic testing tool to find logic bugs in DBMSs
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Adoption
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Adoption

Yandex uses SQLancer to test 
every commit
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Adoption

DuckDB runs SQLancer on every pull request
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Adoption

https://www.monetdb.org/blog/faster-robuster-and-feature-richer-monetdb-in-2020-and-beyond

“With the help of SQLancer, an automatic DBMS testing 
tool, we have been able to identify >100 potential 

problems in corner cases of the SQL processor.”
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Adoption

PingCAP implemented a 
tool go-sqlancer

https://github.com/chaos-mesh/go-sqlancer
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Adoption

https://www.citusdata.com/blog/2020/09/04/mining-for-logic-bugs-in-citus-with-sqlancer/
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SQLancer

https://github.com/sqlancer

SQLancer is an effective and widely-used
automatic testing tool to find logic bugs in DBMSs
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Database Management Systems (DBMS)

Structured Query 
Language (SQL)

Database Management System

Interact with
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Database Management Systems (DBMS)

Database Management System

CREATE DATABASE db;



42

Database Management Systems (DBMS)

Database db

Database Management System

CREATE DATABASE db;
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Database Management Systems (DBMS)

Database db

Database Management System

CREATE TABLE t0(c0 INTEGER);



44

Relational Model
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Relational Model

Table
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Relational Model

Column



47

Relational Model

Row
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Database Management Systems (DBMS)

Database db

Database Management System

CREATE TABLE t0(c0 INTEGER);
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Database Management Systems (DBMS)

Database db

Database Management System

CREATE TABLE t0(c0 INTEGER);

t0: (c0: INT)
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Database Management Systems (DBMS)

Database db

Database Management System

INSERT INTO t0(c0) VALUES (0), (1), (2);

t0: (c0: INT)
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Database Management Systems (DBMS)

Database db

Database Management System

INSERT INTO t0(c0) VALUES (0), (1), (2);

t0: (c0: INT)

0 φ

1 φ

2 ¬φ
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Database Management Systems (DBMS)

Database db

Database Management System

SELECT * FROM t0 WHERE p; 

t0: (c0: INT)

0 φ

1 φ

2 ¬φ
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0 p

1 p

Database Management Systems (DBMS)

Database db

Database Management System

SELECT * FROM t0 WHERE p; 

t0: (c0: INT)

0 p

1 p

2 ¬p
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0 p

1 p

Database Management Systems (DBMS)

Database db

Database Management System

SELECT * FROM t0 WHERE p; 

t0: (c0: INT)

Result set

0 p

1 p

2 ¬p
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SQLancer

https://github.com/sqlancer

SQLancer is an effective and widely-used
automatic testing tool to find logic bugs in DBMSs
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Goal: Find Logic Bugs

Bugs that cause the DBMS to 
return an incorrect result set
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Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0; ?
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Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0; ?

It might seem disputable whether the 
predicate should evaluate to true
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Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0;

1 0 0 0 … 0 0 0 0

0 0 0 0 … 0 0 0 00

-0

Different binary representation
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Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0; t0.c0 t1.c0

1 0 0 0 … 0 0 0 0

0 0 0 0 … 0 0 0 00

-0

Different binary representation

false?
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Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0;

true?
Evaluates to true for most 

programming languages

t0.c0 t1.c0

0.0 -0.0
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Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0;

t0.c0 t1.c0

0.0 -0.0

✓
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Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0; t0.c0 t1.c0

The latest version of MySQL that 
we tested failed to fetch the row



https://bugs.mysql.com/bug.php?id=99122
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Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0; t0.c0 t1.c0



https://bugs.mysql.com/bug.php?id=99122



65

Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0; t0.c0 t1.c0



https://bugs.mysql.com/bug.php?id=99122

We could automatically find the bug without 
having an accurate understanding ourselves
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SQLancer

https://github.com/sqlancer

SQLancer is an effective and widely-used
automatic testing tool to find logic bugs in DBMSs
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Generate a 
Database

Generate a 
Query

Validate the 
Query’s Result

Automatic Testing Core Challenges
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Generate a 
Database

Generate a 
Query

Validate the 
Query’s Result

Automatic Testing Core Challenges

CREATE TABLE t0(c0 DOUBLE);
CREATE TABLE t1(c0 DOUBLE);
INSERT …
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Generate a 
Database

Generate a 
Query

Validate the 
Query’s Result

Automatic Testing Core Challenges

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0;



70

Generate a 
Database

Generate a 
Query

Validate the 
Query’s Result

Automatic Testing Core Challenges

t0.c0 t1.c0

0 -0

✓

t0.c0 t1.c0


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Generate a 
Database

Generate a 
Query

Validate the 
Query’s Result

Automatic Testing Core Challenges

SQLancer does not require any user 
interaction for any of the steps
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Automatic Testing Core Challenges

1. Effective test case

Generate a 
Database

Generate a 
Query

Validate the 
Query’s Result
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Automatic Testing Core Challenges

1. Effective test case

Generate a 
Database

Generate a 
Query

Validate the 
Query’s Result

Manually implemented heuristic 
database and query generators
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SQLsmith

https://github.com/anse1/sqlsmith

SQLancer’s random database 
and query generation works 

similar to existing tools
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Automatic Testing Core Challenges

1. Effective test case

Generate a 
Database

Generate a 
Query

Validate the 
Query’s Result

2. Test oracle
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Automatic Testing Core Challenges

1. Effective test case

Generate a 
Database

Generate a 
Query

Validate the 
Query’s Result

2. Test oracle

Test oracles are the “secret sauce” 
of SQLancer
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Test Oracle
Incorrect result!

“a test oracle (or just oracle) is a mechanism for 
determining whether a test has passed or failed”

https://en.wikipedia.org/wiki/Test_oracle
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What existing test oracles could we use
to find bugs in DBMSs?
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Differential Testing

Test Case 
Generator

System 1

System 2

System 3
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Differential Testing

Test Case 
Generator

R1

R2

R3

System 1

System 2

System 3
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Differential Testing

Test Case 
Generator

R1

R2

R3

System 1

System 2

System 3

R1 = R2 = R3?
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Differential Testing: RAGS (Slutz, VLDB 1998)
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Differential Testing: RAGS (Slutz, VLDB 1998)

Query 
Generator
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Differential Testing: RAGS (Slutz, VLDB 1998)

Query 
Generator

RS1

RS2

RS3
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Differential Testing: RAGS (Slutz, VLDB 1998)

Query 
Generator

RS1

RS2

RS3

RS1 = RS2 = RS3?
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Differential Testing: RAGS (Slutz, VLDB 1998)

Query 
Generator

RS1 = RS2 = RS3?

RS1

RS2

RS3

✓=
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Differential Testing: RAGS (Slutz, VLDB 1998)

Query 
Generator

RS1 = RS2 = RS3?

RS1

RS2

RS3


≠
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Differential Testing: RAGS (Slutz, VLDB 1998)

DBMS-
specific SQL

Common 
SQL Core
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Differential Testing: RAGS (Slutz, VLDB 1998)

DBMS-
specific SQL

Common 
SQL Core

“We are unable to use Postgres as an 
oracle because CockroachDB has slightly 
different semantics and SQL support, and 
generating queries that execute identically 
on both is tricky […].” – Cockroach Labs



90

What oracles were introduced in SQLancer?
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Finding Logic Bugs in DBMSs

Ternary Logic
Partitioning

OOPSLA ‘20

Non-optimizing 
Reference Engine 

Construction
ESEC/FSE ‘20

Pivoted Query 
Synthesis

OSDI ‘20

SQLancer provides 
three test oracles
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Finding Logic Bugs in DBMSs

Ternary Logic
Partitioning

OOPSLA ‘20

Non-optimizing 
Reference Engine 

Construction
ESEC/FSE ‘20

Pivoted Query 
Synthesis

OSDI ‘20
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Query Partitioning

Ternary Logic Partitioning (TLP) is 
based on a conceptual framework 

called Query Partitioning
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Query Partitioning

Query 
Generator

Q
RS(Q)
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Query Partitioning

Query 
Generator

Q
RS(Q)

original query
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Query Partitioning

Query 
Generator

Q
RS(Q)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Partition the result set
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Query Partitioning

Query 
Generator

Q
RS(Q)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Partitioning queries
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Query Partitioning

Query 
Generator

Q
RS(Q)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Partitions
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Query Partitioning

Query 
Generator

Q
RS(Q) RS(Q’)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Q’
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Query Partitioning

Query 
Generator

Q
RS(Q) RS(Q’)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Q’

Composition operator
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Query Partitioning

Query 
Generator

Q
RS(Q) RS(Q’)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Q’

Combine the results so that 
RS(Q)=RS(Q’)
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Query Partitioning

Query 
Generator

Q
RS(Q) RS(Q’)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Q’

✓

=
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Query Partitioning

Query 
Generator

Q
RS(Q) RS(Q’)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Q’

≠


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Query Partitioning

Query 
Generator

Q
RS(Q) RS(Q’)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Q’

In contrast to differential testing, we 
need only a single DBMS
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How to Realize This Idea?

How can we partition the result set?
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Scenario: Coffee Kitchen
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Tangerines vs. Clementines
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Tangerines vs. Clementines

tangerines
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Tangerines vs. Clementines

clementine
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Tangerines vs. Clementines
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Tangerines vs. Clementines

I can never tell different citrus 
fruits apart
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Tangerines vs. Clementines

I can!
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Tangerines vs. Clementines

Show me!
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Tangerines vs. Clementines
How I test Ilya’s understanding without 

knowing the differences myself?
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Tangerines vs. Clementines

Please bring me all 
clementines
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Tangerines vs. Clementines

Please bring me all 
clementines

2 fruits
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Tangerines vs. Clementines

Please bring me all 
clementines
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Tangerines vs. Clementines

Please bring me all 
clementines
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Tangerines vs. Clementines

Please bring me all fruits 
that are not clementines
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Tangerines vs. Clementines

Please bring me all fruits 
that are not clementines

4 fruits
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Tangerines vs. Clementines

4 fruits

2 fruits

6 fruits



122

Tangerines vs. Clementines

4 fruits

2 fruits

6 fruits

5 fruits
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Tangerines vs. Clementines

4 fruits

2 fruits

6 fruits

5 fruits

You likely classified a fruit as both
a tangerine and a clementine!
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Insight

Insight: Every object in a (mathematical) universe 
is either a tangerine or not a tangerine
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How can we apply this idea
to find bugs in DBMSs?



126

Ternary Logic

Consider a predicate p and a given row r. 
Exactly one of the following must hold:

• p

• NOT p

• p IS NULL
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Ternary Logic

Consider a predicate p and a given row r.
Exactly one of the following must hold:

• p

• NOT p

• p IS NULL
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Ternary Logic

Consider a predicate p and a given row r.
Exactly one of the following must hold:

• p

• NOT p

• p IS NULL
p

NOT p

p IS NULL
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Motivating Example

c0

0

c0

-0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0; t0.c0 t1.c0



https://bugs.mysql.com/bug.php?id=99122

How did this insight allow 
us to detect this bug?
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Example: MySQL

SELECT * FROM t0, t1;

https://bugs.mysql.com/bug.php?id=99122
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Example: MySQL

t0.c0 t1.c0

0 -0

SELECT * FROM t0, t1;

https://bugs.mysql.com/bug.php?id=99122
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Example: MySQL

t0.c0 t1.c0

0 -0

SELECT * FROM t0, t1 WHERE t0.c0=t1.c0
UNION ALL
SELECT * FROM t0, t1 WHERE NOT (t0.c0=t1.c0)
UNION ALL
SELECT * FROM t0, t1 WHERE (t0.c0=t1.c0) IS NULL;

SELECT * FROM t0, t1;

https://bugs.mysql.com/bug.php?id=99122
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Example: MySQL

t0.c0 t1.c0

0 -0

SELECT * FROM t0, t1 WHERE t0.c0=t1.c0
UNION ALL
SELECT * FROM t0, t1 WHERE NOT (t0.c0=t1.c0)
UNION ALL
SELECT * FROM t0, t1 WHERE (t0.c0=t1.c0) IS NULL;

SELECT * FROM t0, t1;

p

https://bugs.mysql.com/bug.php?id=99122
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Example: MySQL

t0.c0 t1.c0

0 -0

SELECT * FROM t0, t1 WHERE t0.c0=t1.c0
UNION ALL
SELECT * FROM t0, t1 WHERE NOT (t0.c0=t1.c0)
UNION ALL
SELECT * FROM t0, t1 WHERE (t0.c0=t1.c0) IS NULL;

SELECT * FROM t0, t1;

t0.c0 t1.c0

p

https://bugs.mysql.com/bug.php?id=99122



135

Example: MySQL

t0.c0 t1.c0

0 -0

SELECT * FROM t0, t1 WHERE t0.c0=t1.c0
UNION ALL
SELECT * FROM t0, t1 WHERE NOT (t0.c0=t1.c0)
UNION ALL
SELECT * FROM t0, t1 WHERE (t0.c0=t1.c0) IS NULL;

SELECT * FROM t0, t1;

t0.c0 t1.c0

≠



p

https://bugs.mysql.com/bug.php?id=99122
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Insight

The DBMS is more likely to process the partitioning 
queries incorrectly due to their higher complexity
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To what kind of features can we apply the
Query Partitioning testing oracle?
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Scope

• WHERE

• GROUP BY

• HAVING

• DISTINCT queries

• Aggregate functions
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Testing WHERE Clauses

Q Q’ptern Composition Operator

SELECT <columns>
FROM <tables>
[<joins>]

SELECT <columns>
FROM <tables>
[<joins>]
WHERE ptern

UNION ALL
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Testing WHERE Clauses

Q Q’ptern Composition Operator

SELECT <columns>
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SELECT <columns>
FROM <tables>
[<joins>]
WHERE ptern

UNION ALL
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Testing WHERE Clauses

Q Q’ptern Composition Operator

SELECT <columns>
FROM <tables>
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WHERE ptern

UNION ALL
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Testing WHERE Clauses

Q Q’ptern Composition Operator

SELECT <columns>
FROM <tables>
[<joins>]

SELECT <columns>
FROM <tables>
[<joins>]
WHERE ptern

UNION ALL
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Testing WHERE Clauses

Q Q’ptern Composition Operator

SELECT <columns>
FROM <tables>
[<joins>]

SELECT <columns>
FROM <tables>
[<joins>]
WHERE ptern

UNION ALL

UNION ALL keeps duplicate rows
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Scope

• WHERE

• GROUP BY

• HAVING

• DISTINCT queries

• Aggregate functions
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Testing DISTINCT Clauses

Q Q’ptern Composition operator

SELECT DISTINCT
<columns>
FROM <tables>
[<joins>]

SELECT 
<columns>
FROM <tables>
[<joins>]
WHERE ptern;

UNION
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Testing DISTINCT Clauses

Q Q’ptern Composition operator

SELECT DISTINCT
<columns>
FROM <tables>
[<joins>]

SELECT 
<columns>
FROM <tables>
[<joins>]
WHERE ptern;

UNION

UNION removes duplicate rows
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Scope

• WHERE

• GROUP BY

• HAVING

• DISTINCT queries

• Aggregate functions
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Testing Self-decomposable Aggregate Functions

Q Q’ptern Composition operator

SELECT MAX(<e>)
FROM <tables>
[<joins>]

SELECT MAX(<e>)
FROM <tables>
[<joins>]
WHERE ptern;

MAX
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Testing Self-decomposable Aggregate Functions

Q Q’ptern Composition operator

SELECT MAX(<e>)
FROM <tables>
[<joins>]

SELECT MAX(<e>)
FROM <tables>
[<joins>]
WHERE ptern;

MAX

A partition is an intermediate 
result, rather than
a subset of the result set
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Bug Example: CockroachDB
SET vectorize=experimental_on;
CREATE TABLE t0(c0 INT);
CREATE TABLE t1(c0 BOOL) INTERLEAVE IN PARENT t0(rowid);
INSERT INTO t0(c0) VALUES (0);
INSERT INTO t1(rowid, c0) VALUES(0, TRUE);
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Bug Example: CockroachDB
SET vectorize=experimental_on;
CREATE TABLE t0(c0 INT);
CREATE TABLE t1(c0 BOOL) INTERLEAVE IN PARENT t0(rowid);
INSERT INTO t0(c0) VALUES (0);
INSERT INTO t1(rowid, c0) VALUES(0, TRUE);

NULL

SELECT MAX(t1.rowid)
FROM t1;



152

Bug Example: CockroachDB
SET vectorize=experimental_on;
CREATE TABLE t0(c0 INT);
CREATE TABLE t1(c0 BOOL) INTERLEAVE IN PARENT t0(rowid);
INSERT INTO t0(c0) VALUES (0);
INSERT INTO t1(rowid, c0) VALUES(0, TRUE);

NULL 0

SELECT MAX(aggr) FROM (
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE '+' >= t1.c0 UNION ALL
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE NOT('+' >= t1.c0) UNION ALL
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE ('+' >= t1.c0) IS NULL

);

SELECT MAX(t1.rowid)
FROM t1;

≠
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Bug Example: CockroachDB
SET vectorize=experimental_on;
CREATE TABLE t0(c0 INT);
CREATE TABLE t1(c0 BOOL) INTERLEAVE IN PARENT t0(rowid);
INSERT INTO t0(c0) VALUES (0);
INSERT INTO t1(rowid, c0) VALUES(0, TRUE);

NULL 0

SELECT MAX(aggr) FROM (
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE '+' >= t1.c0 UNION ALL
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE NOT('+' >= t1.c0) UNION ALL
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE ('+' >= t1.c0) IS NULL

);

SELECT MAX(t1.rowid)
FROM t1;

≠
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Bug Example: CockroachDB
SET vectorize=experimental_on;
CREATE TABLE t0(c0 INT);
CREATE TABLE t1(c0 BOOL) INTERLEAVE IN PARENT t0(rowid);
INSERT INTO t0(c0) VALUES (0);
INSERT INTO t1(rowid, c0) VALUES(0, TRUE);

NULL 0

SELECT MAX(aggr) FROM (
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE '+' >= t1.c0 UNION ALL
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE NOT('+' >= t1.c0) UNION ALL
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE ('+' >= t1.c0) IS NULL

);

SELECT MAX(t1.rowid)
FROM t1;

≠
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Testing Decomposable Aggregate Functions

Q Q’ptern Composition operator

SELECT AVG(<e>)
FROM <tables>
[<joins>];

SELECT SUM(<e>) as s,
COUNT(<e>) as c
FROM <tables>
[<joins>];

SUM(s)

SUM(c)
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Testing Decomposable Aggregate Functions

Q Q’ptern Composition operator

SELECT AVG(<e>)
FROM <tables>
[<joins>];

SELECT SUM(<e>) as s,
COUNT(<e>) as c
FROM <tables>
[<joins>];

SUM(s)

SUM(c)

A single value to represent a 
partition is insufficient
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What bugs did you find in ClickHouse?
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Bug example: ClickHouse
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Bug example: ClickHouse

Incorrect Query should return an error, 
but not incorrect answer.

Each column reference directly contained in the search condition shall be one of the following:
a) An unambiguous reference to a column that is functionally dependent on the set consisting of 
every column referenced by a column reference contained in group by clause.
...
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How general is the technique?
Can I apply it to other domains?
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Metamorphic Testing

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0;

t0.c0 t1.c0

0.0 -0.0

Derive
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Metamorphic Testing

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0;

t0.c0 t1.c0

0.0 -0.0

Derive
SELECT * FROM t0, t1 WHERE t0.c0=t1.c0
UNION ALL
SELECT * FROM t0, t1 WHERE NOT (t0.c0=t1.c0)
UNION ALL
SELECT * FROM t0, t1 WHERE (t0.c0=t1.c0) IS NULL;
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Metamorphic Testing

Derive
SELECT * FROM t0, t1 WHERE t0.c0=t1.c0
UNION ALL
SELECT * FROM t0, t1 WHERE NOT (t0.c0=t1.c0)
UNION ALL
SELECT * FROM t0, t1 WHERE (t0.c0=t1.c0) IS NULL;

Test Case Result
Execute
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Metamorphic Testing

Derive

Test Case Result
Execute

Derived
Test Case
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Metamorphic Testing

Derive

Test Case Result
Execute

Derived
Test Case

This technique is known as 
metamorphic testing
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Equivalence Modulo Inputs (EMI) for Testing Compilers

https://people.inf.ethz.ch/suz/emi/index.html
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Equivalence Modulo Inputs (EMI) for Testing Compilers

https://people.inf.ethz.ch/suz/emi/index.html

EMI’s idea is to create programs that produce 
the same output for a given input 
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Can we test not only DBMS?

Approach is quite generic. 

We can try to use it in

1. Generic API with filtering or grouping

2. Regular expressions library

3. Event processing

4. Image recognition

5. Your ideas
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What about other
metamorphic test oracles for DBMSs?
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Finding Logic Bugs in DBMSs

Ternary Logic
Partitioning

OOPSLA ‘20

Non-optimizing 
Reference Engine 

Construction
ESEC/FSE ‘20

Pivoted Query 
Synthesis

OSDI ‘20
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Goal: Find Logic Bugs

Optimization bugs: logic 
bugs in the query optimizer
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Motivating Example

CREATE TABLE t0(c0 UNIQUE);
INSERT INTO t0 VALUES (-1) ;
SELECT * FROM t0 WHERE t0.c0 GLOB '-*'; 

c0

-1

t0

-1

✓

https://www.sqlite.org/src/tktview?name=0f0428096f
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Motivating Example

CREATE TABLE t0(c0 UNIQUE);
INSERT INTO t0 VALUES (-1) ;
SELECT * FROM t0 WHERE t0.c0 GLOB '-*'; 

c0

-1

t0

{}



Optimizer

https://www.sqlite.org/src/tktview?name=0f0428096f
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Motivating Example

CREATE TABLE t0(c0 UNIQUE);
INSERT INTO t0 VALUES (-1) ;
SELECT * FROM t0 WHERE t0.c0 GLOB '-*'; 

c0

-1

t0

{}



Optimizer

https://www.sqlite.org/src/tktview?name=0f0428096f

The LIKE optimization malfunctioned for 
non-text columns and a pattern prefix of “-”
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Differential Testing

SELECT * FROM t0
WHERE t0.c0 GLOB '-*'; 

-O3

-O0

Optimizer

Optimizer
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Differential Testing

SELECT * FROM t0
WHERE t0.c0 GLOB '-*'; 

-O3

-O0

Optimizer

Optimizer

{}
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Differential Testing

SELECT * FROM t0
WHERE t0.c0 GLOB '-*'; 

-O3

-O0

Optimizer

Optimizer

{}

-1
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Differential Testing

SELECT * FROM t0
WHERE t0.c0 GLOB '-*'; 

-O3

-O0

Optimizer

Optimizer

{}


≠

-1
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Differential Testing

https://www.sqlite.org/pragma.html
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Differential Testing

https://www.sqlite.org/pragma.html

PRAGMA case_sensitive_like = boolean;
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Differential Testing

https://www.sqlite.org/pragma.html

PRAGMA case_sensitive_like = boolean;

DBMSs typically provide only very 
limited control over optimizations
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NoREC

Idea: Rewrite the query so that 
the DBMS cannot optimize it
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Idea

Query 
Generator

Optimizer

Optimized
Query

{}
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Idea

Query 
Generator

Optimizer

Optimizer

Optimized
Query

Translation 
Step

Unoptimized
Query

{}
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Idea

Query 
Generator

Optimizer

Optimizer

Optimized
Query

Translation 
Step

Unoptimized
Query


-1

≠

{}
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Idea

Query 
Generator

Optimizer

Optimizer

Optimized
Query

Translation 
Step

Unoptimized
Query


-1

≠

{}

We want to create a “non-optimizing reference engine”
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Given Query

Consider the following format for the optimized query:

SELECT * FROM t0
WHERE p; 
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Given Query

Consider the following format for the optimized query:

SELECT * FROM t0
WHERE p; 

t0.c0 GLOB '-*'
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Given Query

Consider the following format for the optimized query:

SELECT * FROM t0
WHERE p; 

It is unobvious how we could 
derive an unoptimized queryt0.c0 GLOB '-*'
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Insight

First Insight: The predicate p must 
always evaluate to the same value, 

irrespective of its context
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Translation Step (Correct Case)

SELECT * FROM t0
WHERE p; -1
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Translation Step (Correct Case)

SELECT * FROM t0
WHERE p; -1



193

SELECT p
FROM t0; 

Translation Step (Correct Case)

SELECT * FROM t0
WHERE p; -1
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SELECT p
FROM t0; 

Translation Step (Correct Case)

SELECT * FROM t0
WHERE p; -1

TRUE
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SELECT p
FROM t0; 

Translation Step (Correct Case)

SELECT * FROM t0
WHERE p; -1

p evaluates

to TRUE for
one row

p evaluates
to TRUE for
one row

TRUE
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Insights

Second Insight: DBMSs focus their 
optimizations on reducing the 

amount of data that is processed
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Translation Step

SELECT * FROM t0
WHERE p; 
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Translation Step

SELECT * FROM t0
WHERE p; 

QUERY PLAN
`--SEARCH TABLE t0 USING COVERING INDEX 
sqlite_autoindex_t0_1 (c0>? AND c0<?)

Optimizer
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Translation Step

SELECT p
FROM t0; 

SELECT * FROM t0
WHERE p; 

QUERY PLAN
`--SEARCH TABLE t0 USING COVERING INDEX 
sqlite_autoindex_t0_1 (c0>? AND c0<?)

QUERY PLAN
`--SCAN TABLE t0

Optimizer

Optimizer
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SELECT p
FROM t0; 

Translation Step

SELECT * FROM t0
WHERE p; 

TRUE

{}

Optimizer

Optimizer
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SELECT p
FROM t0; 

Translation Step

SELECT * FROM t0
WHERE p; 

TRUE

{}

Result
should
contain
one row

Optimizer

Optimizer
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SELECT p
FROM t0; 

Translation Step

SELECT * FROM t0
WHERE p; 

TRUE

{}

Result
should
contain
one rowOptimizer

Optimizer
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Counting Implementation

SELECT COUNT(*)
FROM …
WHERE p

SELECT SUM(count) FROM (
SELECT p IS TRUE
as count

FROM <tables>
);

Optimizer

Optimizer



204

Counting Implementation

0

1

≠



SELECT COUNT(*)
FROM …
WHERE p

SELECT SUM(count) FROM (
SELECT p IS TRUE
as count

FROM <tables>
);

Optimizer

Optimizer
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What about other, non-metamorphic test oracles?
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Finding Logic Bugs in DBMSs

Ternary Logic
Partitioning

OOPSLA ‘20

Non-optimizing 
Reference Engine 

Construction
ESEC/FSE ‘20

Pivoted Query 
Synthesis

OSDI ‘20



207

Example: SQLite3 Bug

c0

0

1

2

NULL

t0
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;

https://sqlite.org/src/tktview/80256748471a01
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Example: SQLite3 Bug

c0

0

1

2

NULL

t0
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1; 

IS NOT is a “null-safe” 
comparison operator

https://sqlite.org/src/tktview/80256748471a01
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Example: SQLite3 Bug

c0

0

1

2

NULL

t0
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1; 

https://sqlite.org/src/tktview/80256748471a01
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Example: SQLite3 Bug

c0

0

1

2

NULL

t0

0

CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1; 

TRUE

https://sqlite.org/src/tktview/80256748471a01
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Example: SQLite3 Bug

c0

0

1

2

NULL

t0

0

CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1; 

TRUE

0

https://sqlite.org/src/tktview/80256748471a01
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Example: SQLite3 Bug

c0

0

1

2

NULL

t0

1

CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1; 

0

FALSE

https://sqlite.org/src/tktview/80256748471a01
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Example: SQLite3 Bug

c0

0

1

2

NULL

t0

0

2

2

CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1; 

TRUE

https://sqlite.org/src/tktview/80256748471a01
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Example: SQLite3 Bug

c0

0

1

2

NULL

t0

NULL

CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1; 

TRUE

0

2

NULL
https://sqlite.org/src/tktview/80256748471a01
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Example: SQLite3 Bug

c0

0

1

2

NULL

t0

NULL

CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1; 

TRUE

0

2

NULL

0

2

https://sqlite.org/src/tktview/80256748471a01
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Example: SQLite3 Bug

c0

0

1

2

NULL

t0

NULL

CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1; 

TRUE


NULL was not contained 

in the result set!

0

2

NULL

0

2

https://sqlite.org/src/tktview/80256748471a01
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PQS Idea

c0

0

1

2

NULL

t0
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (3), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1; 

Validate the result set based on 
one randomly-selected row
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PQS Idea

c0

0

1

2

NULL

t0
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (3), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1; 

Pivot row
Validate the result set based on 

one randomly-selected row
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PQS Idea

c0

0

1

2

NULL

t0
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (3), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1; 

Generate a query that is 
guaranteed to at least fetch 

the pivot row

NULL

TRUE
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PQS Idea

c0

0

1

2

NULL

t0
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (3), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1; 



If the pivot row is missing 
from the result set a bug has 

been detected

0

2
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Approach

Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained
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Approach

Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained
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Approach

Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained

One random row from multiple tables and views
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Approach

Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained

Generate predicates that evaluate to 
TRUE for the pivot row and use them 

in JOIN and WHERE clauses

SELECT c0 FROM t0
WHERE
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Random Expression Generation

t0.c0 IS NOT 1; 

Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained

IS
NOT

t0.c0 1
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Random Expression Generation

t0.c0 IS NOT 1; 

We implemented an 
expression evaluator for 

each node

Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained

IS
NOT

t0.c0 1
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Random Expression Generation

c0

0

1

2

NULL

t0

Evaluate the tree based 
on the pivot row

Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained

IS
NOT

t0.c0 1
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Random Expression Generation

Column references return the 
values from the pivot row

c0

0

1

2

NULL

t0Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained

IS
NOT

t0.c0 1
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Random Expression Generation

Column references return the 
values from the pivot row

c0

0

1

2

NULL

t0Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained

IS
NOT

t0.c0 1

NULL
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Random Expression Generation

Constant nodes return their 
assigned literal values

c0

0

1

2

NULL

t0Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained

IS
NOT

t0.c0 1

NULL



231

Random Expression Generation

Constant nodes return their 
assigned literal values

c0

0

1

2

NULL

t0Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained

IS
NOT

t0.c0 1

NULL 1
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Random Expression Generation

Compound nodes 
compute their result 

based on their children

TRUE

c0

0

1

2

NULL

t0Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained

IS
NOT

t0.c0 1

NULL 1
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Random Expression Generation

Compound nodes 
compute their result 

based on their children

TRUE

c0

0

1

2

NULL

t0Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained

IS
NOT

t0.c0 1

NULL 1

TRUE
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t0.c0 IS NOT 1; 

Query Synthesis

SELECT c0 c0 FROM t0
WHERE

Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained
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t0.c0 IS NOT 1; 

Query Synthesis

SELECT c0 c0 FROM t0
WHERE

What if the expression does 
not evaluate to TRUE?

Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained
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Random Expression Rectification

switch (result) {
case TRUE:

result = randexpr;
case FALSE:

result = NOT randexpr;
case NULL:

result = randexpr IS NULL;
}

Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained
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Random Expression Rectification

switch (result) {
case TRUE:

result = randexpr;
case FALSE:

result = NOT randexpr;
case NULL:

result = randexpr IS NULL;
}

Alternatively, we could 
validate that the pivot row is 

expectedly not fetched

Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained
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Approach

SELECT (NULL) INTERSECT
SELECT c0 FROM t0 WHERE NULL IS NOT 1; 

Rely on the DBMS to check 
whether the row is contained

Randomly 
generate 
database

Select
pivot row

Generate 
query for the 

pivot row

Validate that 
the pivot row 
is contained
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How do the techniques
compare to each other?
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Comparison

Property PQS NoREC TLP

WHERE ✓ ✓ ✓

Additional SQL features   ✓

Ground truth ✓  

No domain knowledge required  ✓ ✓

Implementation effort Moderate Very Low Low



241

Comparison

Property PQS NoREC TLP

WHERE ✓ ✓ ✓

Additional SQL features   ✓

Ground truth ✓  

No domain knowledge required  ✓ ✓

Implementation effort Moderate Very Low Low

TLP is applicable to testing a wider range of features
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Comparison

Property PQS NoREC TLP

WHERE ✓ ✓ ✓

Additional SQL features   ✓

Ground truth ✓  

No domain knowledge required  ✓ ✓

Implementation effort Moderate Very Low Low

Both NoREC and TLP are 
metamorphic testing approaches
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Proposed Testing Strategy

NoREC TLP PQS

Quickly find the optimization bugs
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NoREC TLP PQS

Proposed Testing Strategy

Test a wider range of features
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NoREC TLP PQS

Proposed Testing Strategy

Comprehensively test the DBMS’ 
core functionality
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What implementation strategy
did you use for ClickHouse?



SQLancer from developer point of view

186

▎ Natural and intuitive approach

▎ Fuzzing meets correctness check

▎ Pluggable(but you need to write code on Java)

▎ You can incorporate approach in other software



How to make integration with your DBMS

187

1. Import Java or ODBC driver if you have one

2. Teach SQLancer to make connection, create database and make a generic query

3. A bit more to prepare: Create table with schema and insert generator

4. Implement expression generator

5. Implement oracle

6. Expected error handling

7. RUN!



Add your 
driver

188



Make 
connection, 
database 
and query

189



Create table with 
schema

Your DBMS can has specific SQL extensions.
Implement subset of them

190



Expression 
generator

191



Implement Oracle

Almost the same for different DBMS

192



How to deal with 
results?

Test 
Failed

Is syntax 
correct

Mute 
error

No

Yes

▎ Query can be incorrect



Mute errors

194

▎ You don't need to implement ideal 
query generator – bad queries also 
test your system

▎ You can mute known bugs and find 
more



How to deal with 
results?

Test 
Failed

Is syntax 
correct

Mute 
error

Yes

Result 
obtained

No

No

Yes

DBMS 
crashed?

Probably 
a bug

Critical 
Bug

YesNo

Can be found by fuzzing

▎ Query can be incorrect

▎ DMBS can crash



How to deal with 
results?

Test 
Failed

Is syntax 
correct

Mute 
error

Yes

Result 
obtained

No

No

Yes

DBMS 
crashed?

Probably 
a bug

Critical 
Bug

SQLancer found 
correctness bug!

YesNo

Can be found by fuzzing

▎ Query can be incorrect

▎ DMBS can crash

▎ If results differ – you found a 
correctness bug



Add Oracles to your Fuzzer

If you already have a query fuzzer or expression gererator you can implement oracles 
trivially.

You can try implementing NoREC or TLP Where logic by yourself:

1) Take expr from your generator

2) Add some logic to compare results:

SELECT expr
FROM t0;

SELECT * FROM t0

WHERE expr;
SELECT * FROM t WHERE expr
UNION ALL
SELECT * FROM t WHERE NOT expr
UNION ALL
SELECT * FROM t WHERE expr IS NULL;

SELECT * FROM t;
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How to contribute?

• Add a new DBMS

• Automatic reduction of test cases (#333)

• New test oracles

• Modularization, plugin system for DBMS support (#8)

• Blog posts, tutorials, …
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Summary
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Q&A Session

• By the way, you can contribute to SQLancer 
and ClickHouse

https://github.com/sqlancer/sqlancer

https://github.com/ClickHouse/ClickHouse


