
Using SQLancer to test ClickHouse
and other database systems

Manuel Rigger

@RiggerManuel

Ilya Yatsishin

qoega

Plan

2

▎ What is ClickHouse and why do we need good testing?

▎ How do we test ClickHouse and what problems do we have to solve?

▎ What is SQLancer and what are the ideas behind it?

▎ How to add support for yet another DBMS to SQLancer?

https://github.com/ClickHouse/clickhouse 3

▎ Open Source analytical DBMS for BigData with SQL interface.

• Blazingly fast

• Scalable

• Fault tolerant

2013 Project
started

2016 Open
Sourced

2021
★15K

GitHub

4

Why do we need good CI?

Contributors Merged Pull
Requests

New Features Releases Core Team

361

In 2020:

4081 261 11 <15

Pull Requests exponential growth

5

All GitHub data available in ClickHouse

6

https://gh.clickhouse.tech/explorer/
https://gh-api.clickhouse.tech/play

https://gh.clickhouse.tech/explorer/
https://gh-api.clickhouse.tech/play

7

How is ClickHouse tested?

9

ClickHouse Testing

• Style

• Unit

• Functional

• Integrational

• Performance

• Stress

• Static analysis (clang-tidy, PVSStudio)

• Compatibility with OS versions

• Flaky check for new or changed tests

• All tests are run in with sanitizers
(address, memory, thread, undefined
behavior)

• Thread fuzzing (switch running threads
randomly)

• Coverage

• Fuzzing

100K tests is not enough

Fuzzing

12

▎ libFuzzer to test generic data inputs – formats, schema etc.

▎ Thread Fuzzer – randomly switch threads to trigger races and dead locks

› https://presentations.clickhouse.tech/cpp_siberia_2021/

▎ AST Fuzzer – mutate queries on AST level.

› Use SQL queries from all tests as input. Mix them.

› High level mutations. Change query settings

› https://clickhouse.tech/blog/en/2021/fuzzing-clickhouse/

https://presentations.clickhouse.tech/cpp_siberia_2021/
https://clickhouse.tech/blog/en/2021/fuzzing-clickhouse/

13

Test development steps

Unit,

Functional,

Integration,

Stress,

Performance

etc.

Common tests Instrumentation Fuzzing The next step

Find bugs earlier.

Sanitizers:

• Address

• Memory

• Undefined Behavior

• Thread

Improve
coverage.

???

In search for correctness

14

▎ Test cases for correctness require developer or QA specialist to write it manually

▎ Additional tests mostly check if DBMS crashes or stops working

▎ It is hard to find reference system to validate results with:

• SQL syntax differs between systems

• No SQL conformance testing suite

• All SQL standard extensions can't be tested this way

How we can check correctness?

15

▎ SQL has some invariants and basic assumptions

▎ DBMS can help us!

There should be some solutions that already exploit that

16

SQLancer

https://github.com/sqlancer

SQLancer is an effective and widely-used
automatic testing tool to find logic bugs in DBMSs

17

Facts

• Written in Java

18

Facts

• Written in Java

$ git clone https://github.com/sqlancer/sqlancer
$ cd sqlancer
$ mvn package -DskipTests
$ cd target
$ java -jar sqlancer-*.jar sqlite3

19

Facts

• Written in Java

$ git clone https://github.com/sqlancer/sqlancer
$ cd sqlancer
$ mvn package -DskipTests
$ cd target
$ java -jar sqlancer-*.jar sqlite3

You can quickly try out SQLancer on the embedded DBMSs
SQLite, H2, and DuckDB without setting up a connection

20

Facts

• Written in Java

• Permissive license (MIT License)

21

Facts

• Written in Java

• Permissive license (MIT License)

• 43,000 LOC

22

Facts

• Written in Java

• Permissive license (MIT License)

• 43,000 LOC

23

Facts

• Written in Java

• Permissive license (MIT License)

• 43,000 LOC

• 9 contributors

24

Contributors

https://www.citusdata.com/blog/2020/09/04/mining-for-logic-bugs-in-citus-with-sqlancer/

Nazli Ugur Koyluoglu

25

Contributors

Patrick Stäuble

26

Contributors

Ilya Yatsishin

27

Facts

• Written in Java

• Permissive license (MIT License)

• 43,000 LOC

• 9 contributors

• >= 10 supported DBMSs

28

Supported DBMSs

PostgreSQL

29

SQLancer

https://github.com/sqlancer

SQLancer is an effective and widely-used
automatic testing tool to find logic bugs in DBMSs

30

More than 450 Bugs

PostgreSQL

I used SQLancer to find over 450
unique, previously unknown bugs

in widely-used DBMSs

31

More than 450 Bugs

Bugs

DBMS Logic Error Crash

CockroachDB 16 46 5

DuckDB 29 13 31

H2 2 15 1

MariaDB 5 0 1

MySQL 21 9 1

PostgreSQL 1 11 5

SQLite 93 44 42

TiDB 30 27 4

Sum 197 165 90

https://github.com/sqlancer/bugs

32

SQLancer

https://github.com/sqlancer

SQLancer is an effective and widely-used
automatic testing tool to find logic bugs in DBMSs

33

Adoption

34

Adoption

Yandex uses SQLancer to test
every commit

35

Adoption

DuckDB runs SQLancer on every pull request

36

Adoption

https://www.monetdb.org/blog/faster-robuster-and-feature-richer-monetdb-in-2020-and-beyond

“With the help of SQLancer, an automatic DBMS testing
tool, we have been able to identify >100 potential

problems in corner cases of the SQL processor.”

37

Adoption

PingCAP implemented a
tool go-sqlancer

https://github.com/chaos-mesh/go-sqlancer

38

Adoption

https://www.citusdata.com/blog/2020/09/04/mining-for-logic-bugs-in-citus-with-sqlancer/

39

SQLancer

https://github.com/sqlancer

SQLancer is an effective and widely-used
automatic testing tool to find logic bugs in DBMSs

40

Database Management Systems (DBMS)

Structured Query
Language (SQL)

Database Management System

Interact with

41

Database Management Systems (DBMS)

Database Management System

CREATE DATABASE db;

42

Database Management Systems (DBMS)

Database db

Database Management System

CREATE DATABASE db;

43

Database Management Systems (DBMS)

Database db

Database Management System

CREATE TABLE t0(c0 INTEGER);

44

Relational Model

45

Relational Model

Table

46

Relational Model

Column

47

Relational Model

Row

48

Database Management Systems (DBMS)

Database db

Database Management System

CREATE TABLE t0(c0 INTEGER);

49

Database Management Systems (DBMS)

Database db

Database Management System

CREATE TABLE t0(c0 INTEGER);

t0: (c0: INT)

50

Database Management Systems (DBMS)

Database db

Database Management System

INSERT INTO t0(c0) VALUES (0), (1), (2);

t0: (c0: INT)

51

Database Management Systems (DBMS)

Database db

Database Management System

INSERT INTO t0(c0) VALUES (0), (1), (2);

t0: (c0: INT)

0 φ

1 φ

2 ¬φ

52

Database Management Systems (DBMS)

Database db

Database Management System

SELECT * FROM t0 WHERE p;

t0: (c0: INT)

0 φ

1 φ

2 ¬φ

53

0 p

1 p

Database Management Systems (DBMS)

Database db

Database Management System

SELECT * FROM t0 WHERE p;

t0: (c0: INT)

0 p

1 p

2 ¬p

54

0 p

1 p

Database Management Systems (DBMS)

Database db

Database Management System

SELECT * FROM t0 WHERE p;

t0: (c0: INT)

Result set

0 p

1 p

2 ¬p

55

SQLancer

https://github.com/sqlancer

SQLancer is an effective and widely-used
automatic testing tool to find logic bugs in DBMSs

56

Goal: Find Logic Bugs

Bugs that cause the DBMS to
return an incorrect result set

57

Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0; ?

58

Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0; ?

It might seem disputable whether the
predicate should evaluate to true

59

Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0;

1 0 0 0 … 0 0 0 0

0 0 0 0 … 0 0 0 00

-0

Different binary representation

60

Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0; t0.c0 t1.c0

1 0 0 0 … 0 0 0 0

0 0 0 0 … 0 0 0 00

-0

Different binary representation

false?

61

Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0;

true?
Evaluates to true for most

programming languages

t0.c0 t1.c0

0.0 -0.0

62

Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0;

t0.c0 t1.c0

0.0 -0.0

✓

63

Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0; t0.c0 t1.c0

The latest version of MySQL that
we tested failed to fetch the row



https://bugs.mysql.com/bug.php?id=99122

64

Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0; t0.c0 t1.c0



https://bugs.mysql.com/bug.php?id=99122

65

Motivating Example

c0

0.0

c0

-0.0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0; t0.c0 t1.c0



https://bugs.mysql.com/bug.php?id=99122

We could automatically find the bug without
having an accurate understanding ourselves

66

SQLancer

https://github.com/sqlancer

SQLancer is an effective and widely-used
automatic testing tool to find logic bugs in DBMSs

67

Generate a
Database

Generate a
Query

Validate the
Query’s Result

Automatic Testing Core Challenges

68

Generate a
Database

Generate a
Query

Validate the
Query’s Result

Automatic Testing Core Challenges

CREATE TABLE t0(c0 DOUBLE);
CREATE TABLE t1(c0 DOUBLE);
INSERT …

69

Generate a
Database

Generate a
Query

Validate the
Query’s Result

Automatic Testing Core Challenges

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0;

70

Generate a
Database

Generate a
Query

Validate the
Query’s Result

Automatic Testing Core Challenges

t0.c0 t1.c0

0 -0

✓

t0.c0 t1.c0



71

Generate a
Database

Generate a
Query

Validate the
Query’s Result

Automatic Testing Core Challenges

SQLancer does not require any user
interaction for any of the steps

72

Automatic Testing Core Challenges

1. Effective test case

Generate a
Database

Generate a
Query

Validate the
Query’s Result

73

Automatic Testing Core Challenges

1. Effective test case

Generate a
Database

Generate a
Query

Validate the
Query’s Result

Manually implemented heuristic
database and query generators

74

SQLsmith

https://github.com/anse1/sqlsmith

SQLancer’s random database
and query generation works

similar to existing tools

75

Automatic Testing Core Challenges

1. Effective test case

Generate a
Database

Generate a
Query

Validate the
Query’s Result

2. Test oracle

76

Automatic Testing Core Challenges

1. Effective test case

Generate a
Database

Generate a
Query

Validate the
Query’s Result

2. Test oracle

Test oracles are the “secret sauce”
of SQLancer

77

Test Oracle
Incorrect result!

“a test oracle (or just oracle) is a mechanism for
determining whether a test has passed or failed”

https://en.wikipedia.org/wiki/Test_oracle

78

What existing test oracles could we use
to find bugs in DBMSs?

79

Differential Testing

Test Case
Generator

System 1

System 2

System 3

80

Differential Testing

Test Case
Generator

R1

R2

R3

System 1

System 2

System 3

81

Differential Testing

Test Case
Generator

R1

R2

R3

System 1

System 2

System 3

R1 = R2 = R3?

82

Differential Testing: RAGS (Slutz, VLDB 1998)

83

Differential Testing: RAGS (Slutz, VLDB 1998)

Query
Generator

84

Differential Testing: RAGS (Slutz, VLDB 1998)

Query
Generator

RS1

RS2

RS3

85

Differential Testing: RAGS (Slutz, VLDB 1998)

Query
Generator

RS1

RS2

RS3

RS1 = RS2 = RS3?

86

Differential Testing: RAGS (Slutz, VLDB 1998)

Query
Generator

RS1 = RS2 = RS3?

RS1

RS2

RS3

✓=

87

Differential Testing: RAGS (Slutz, VLDB 1998)

Query
Generator

RS1 = RS2 = RS3?

RS1

RS2

RS3


≠

88

Differential Testing: RAGS (Slutz, VLDB 1998)

DBMS-
specific SQL

Common
SQL Core

89

Differential Testing: RAGS (Slutz, VLDB 1998)

DBMS-
specific SQL

Common
SQL Core

“We are unable to use Postgres as an
oracle because CockroachDB has slightly
different semantics and SQL support, and
generating queries that execute identically
on both is tricky […].” – Cockroach Labs

90

What oracles were introduced in SQLancer?

91

Finding Logic Bugs in DBMSs

Ternary Logic
Partitioning

OOPSLA ‘20

Non-optimizing
Reference Engine

Construction
ESEC/FSE ‘20

Pivoted Query
Synthesis

OSDI ‘20

SQLancer provides
three test oracles

92

Finding Logic Bugs in DBMSs

Ternary Logic
Partitioning

OOPSLA ‘20

Non-optimizing
Reference Engine

Construction
ESEC/FSE ‘20

Pivoted Query
Synthesis

OSDI ‘20

93

Query Partitioning

Ternary Logic Partitioning (TLP) is
based on a conceptual framework

called Query Partitioning

94

Query Partitioning

Query
Generator

Q
RS(Q)

95

Query Partitioning

Query
Generator

Q
RS(Q)

original query

96

Query Partitioning

Query
Generator

Q
RS(Q)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Partition the result set

97

Query Partitioning

Query
Generator

Q
RS(Q)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Partitioning queries

98

Query Partitioning

Query
Generator

Q
RS(Q)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Partitions

99

Query Partitioning

Query
Generator

Q
RS(Q) RS(Q’)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Q’

100

Query Partitioning

Query
Generator

Q
RS(Q) RS(Q’)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Q’

Composition operator

101

Query Partitioning

Query
Generator

Q
RS(Q) RS(Q’)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Q’

Combine the results so that
RS(Q)=RS(Q’)

102

Query Partitioning

Query
Generator

Q
RS(Q) RS(Q’)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Q’

✓

=

103

Query Partitioning

Query
Generator

Q
RS(Q) RS(Q’)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Q’

≠



104

Query Partitioning

Query
Generator

Q
RS(Q) RS(Q’)

RS(Q’1)

RS(Q’2)

RS(Q’3)

RS(Q’n)

Q’1

Q’2

Q’3

Q’n

Q’

In contrast to differential testing, we
need only a single DBMS

105

How to Realize This Idea?

How can we partition the result set?

106

Scenario: Coffee Kitchen

107

Tangerines vs. Clementines

108

Tangerines vs. Clementines

tangerines

109

Tangerines vs. Clementines

clementine

110

Tangerines vs. Clementines

111

Tangerines vs. Clementines

I can never tell different citrus
fruits apart

112

Tangerines vs. Clementines

I can!

113

Tangerines vs. Clementines

Show me!

114

Tangerines vs. Clementines
How I test Ilya’s understanding without

knowing the differences myself?

115

Tangerines vs. Clementines

Please bring me all
clementines

116

Tangerines vs. Clementines

Please bring me all
clementines

2 fruits

117

Tangerines vs. Clementines

Please bring me all
clementines

118

Tangerines vs. Clementines

Please bring me all
clementines

119

Tangerines vs. Clementines

Please bring me all fruits
that are not clementines

120

Tangerines vs. Clementines

Please bring me all fruits
that are not clementines

4 fruits

121

Tangerines vs. Clementines

4 fruits

2 fruits

6 fruits

122

Tangerines vs. Clementines

4 fruits

2 fruits

6 fruits

5 fruits

123

Tangerines vs. Clementines

4 fruits

2 fruits

6 fruits

5 fruits

You likely classified a fruit as both
a tangerine and a clementine!

124

Insight

Insight: Every object in a (mathematical) universe
is either a tangerine or not a tangerine

125

How can we apply this idea
to find bugs in DBMSs?

126

Ternary Logic

Consider a predicate p and a given row r.
Exactly one of the following must hold:

• p

• NOT p

• p IS NULL

127

Ternary Logic

Consider a predicate p and a given row r.
Exactly one of the following must hold:

• p

• NOT p

• p IS NULL

128

Ternary Logic

Consider a predicate p and a given row r.
Exactly one of the following must hold:

• p

• NOT p

• p IS NULL
p

NOT p

p IS NULL

129

Motivating Example

c0

0

c0

-0

t0 t1

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0; t0.c0 t1.c0



https://bugs.mysql.com/bug.php?id=99122

How did this insight allow
us to detect this bug?

130

Example: MySQL

SELECT * FROM t0, t1;

https://bugs.mysql.com/bug.php?id=99122

131

Example: MySQL

t0.c0 t1.c0

0 -0

SELECT * FROM t0, t1;

https://bugs.mysql.com/bug.php?id=99122

132

Example: MySQL

t0.c0 t1.c0

0 -0

SELECT * FROM t0, t1 WHERE t0.c0=t1.c0
UNION ALL
SELECT * FROM t0, t1 WHERE NOT (t0.c0=t1.c0)
UNION ALL
SELECT * FROM t0, t1 WHERE (t0.c0=t1.c0) IS NULL;

SELECT * FROM t0, t1;

https://bugs.mysql.com/bug.php?id=99122

133

Example: MySQL

t0.c0 t1.c0

0 -0

SELECT * FROM t0, t1 WHERE t0.c0=t1.c0
UNION ALL
SELECT * FROM t0, t1 WHERE NOT (t0.c0=t1.c0)
UNION ALL
SELECT * FROM t0, t1 WHERE (t0.c0=t1.c0) IS NULL;

SELECT * FROM t0, t1;

p

https://bugs.mysql.com/bug.php?id=99122

134

Example: MySQL

t0.c0 t1.c0

0 -0

SELECT * FROM t0, t1 WHERE t0.c0=t1.c0
UNION ALL
SELECT * FROM t0, t1 WHERE NOT (t0.c0=t1.c0)
UNION ALL
SELECT * FROM t0, t1 WHERE (t0.c0=t1.c0) IS NULL;

SELECT * FROM t0, t1;

t0.c0 t1.c0

p

https://bugs.mysql.com/bug.php?id=99122

135

Example: MySQL

t0.c0 t1.c0

0 -0

SELECT * FROM t0, t1 WHERE t0.c0=t1.c0
UNION ALL
SELECT * FROM t0, t1 WHERE NOT (t0.c0=t1.c0)
UNION ALL
SELECT * FROM t0, t1 WHERE (t0.c0=t1.c0) IS NULL;

SELECT * FROM t0, t1;

t0.c0 t1.c0

≠



p

https://bugs.mysql.com/bug.php?id=99122

136

Insight

The DBMS is more likely to process the partitioning
queries incorrectly due to their higher complexity

137

To what kind of features can we apply the
Query Partitioning testing oracle?

138

Scope

• WHERE

• GROUP BY

• HAVING

• DISTINCT queries

• Aggregate functions

139

Testing WHERE Clauses

Q Q’ptern Composition Operator

SELECT <columns>
FROM <tables>
[<joins>]

SELECT <columns>
FROM <tables>
[<joins>]
WHERE ptern

UNION ALL

140

Testing WHERE Clauses

Q Q’ptern Composition Operator

SELECT <columns>
FROM <tables>
[<joins>]

SELECT <columns>
FROM <tables>
[<joins>]
WHERE ptern

UNION ALL

141

Testing WHERE Clauses

Q Q’ptern Composition Operator

SELECT <columns>
FROM <tables>
[<joins>]

SELECT <columns>
FROM <tables>
[<joins>]
WHERE ptern

UNION ALL

142

Testing WHERE Clauses

Q Q’ptern Composition Operator

SELECT <columns>
FROM <tables>
[<joins>]

SELECT <columns>
FROM <tables>
[<joins>]
WHERE ptern

UNION ALL

143

Testing WHERE Clauses

Q Q’ptern Composition Operator

SELECT <columns>
FROM <tables>
[<joins>]

SELECT <columns>
FROM <tables>
[<joins>]
WHERE ptern

UNION ALL

UNION ALL keeps duplicate rows

144

Scope

• WHERE

• GROUP BY

• HAVING

• DISTINCT queries

• Aggregate functions

145

Testing DISTINCT Clauses

Q Q’ptern Composition operator

SELECT DISTINCT
<columns>
FROM <tables>
[<joins>]

SELECT
<columns>
FROM <tables>
[<joins>]
WHERE ptern;

UNION

146

Testing DISTINCT Clauses

Q Q’ptern Composition operator

SELECT DISTINCT
<columns>
FROM <tables>
[<joins>]

SELECT
<columns>
FROM <tables>
[<joins>]
WHERE ptern;

UNION

UNION removes duplicate rows

147

Scope

• WHERE

• GROUP BY

• HAVING

• DISTINCT queries

• Aggregate functions

148

Testing Self-decomposable Aggregate Functions

Q Q’ptern Composition operator

SELECT MAX(<e>)
FROM <tables>
[<joins>]

SELECT MAX(<e>)
FROM <tables>
[<joins>]
WHERE ptern;

MAX

149

Testing Self-decomposable Aggregate Functions

Q Q’ptern Composition operator

SELECT MAX(<e>)
FROM <tables>
[<joins>]

SELECT MAX(<e>)
FROM <tables>
[<joins>]
WHERE ptern;

MAX

A partition is an intermediate
result, rather than
a subset of the result set

150

Bug Example: CockroachDB
SET vectorize=experimental_on;
CREATE TABLE t0(c0 INT);
CREATE TABLE t1(c0 BOOL) INTERLEAVE IN PARENT t0(rowid);
INSERT INTO t0(c0) VALUES (0);
INSERT INTO t1(rowid, c0) VALUES(0, TRUE);

151

Bug Example: CockroachDB
SET vectorize=experimental_on;
CREATE TABLE t0(c0 INT);
CREATE TABLE t1(c0 BOOL) INTERLEAVE IN PARENT t0(rowid);
INSERT INTO t0(c0) VALUES (0);
INSERT INTO t1(rowid, c0) VALUES(0, TRUE);

NULL

SELECT MAX(t1.rowid)
FROM t1;

152

Bug Example: CockroachDB
SET vectorize=experimental_on;
CREATE TABLE t0(c0 INT);
CREATE TABLE t1(c0 BOOL) INTERLEAVE IN PARENT t0(rowid);
INSERT INTO t0(c0) VALUES (0);
INSERT INTO t1(rowid, c0) VALUES(0, TRUE);

NULL 0

SELECT MAX(aggr) FROM (
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE '+' >= t1.c0 UNION ALL
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE NOT('+' >= t1.c0) UNION ALL
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE ('+' >= t1.c0) IS NULL

);

SELECT MAX(t1.rowid)
FROM t1;

≠

153

Bug Example: CockroachDB
SET vectorize=experimental_on;
CREATE TABLE t0(c0 INT);
CREATE TABLE t1(c0 BOOL) INTERLEAVE IN PARENT t0(rowid);
INSERT INTO t0(c0) VALUES (0);
INSERT INTO t1(rowid, c0) VALUES(0, TRUE);

NULL 0

SELECT MAX(aggr) FROM (
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE '+' >= t1.c0 UNION ALL
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE NOT('+' >= t1.c0) UNION ALL
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE ('+' >= t1.c0) IS NULL

);

SELECT MAX(t1.rowid)
FROM t1;

≠

154

Bug Example: CockroachDB
SET vectorize=experimental_on;
CREATE TABLE t0(c0 INT);
CREATE TABLE t1(c0 BOOL) INTERLEAVE IN PARENT t0(rowid);
INSERT INTO t0(c0) VALUES (0);
INSERT INTO t1(rowid, c0) VALUES(0, TRUE);

NULL 0

SELECT MAX(aggr) FROM (
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE '+' >= t1.c0 UNION ALL
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE NOT('+' >= t1.c0) UNION ALL
SELECT MAX(t1.rowid) as aggr FROM t1 WHERE ('+' >= t1.c0) IS NULL

);

SELECT MAX(t1.rowid)
FROM t1;

≠

155

Testing Decomposable Aggregate Functions

Q Q’ptern Composition operator

SELECT AVG(<e>)
FROM <tables>
[<joins>];

SELECT SUM(<e>) as s,
COUNT(<e>) as c
FROM <tables>
[<joins>];

SUM(s)

SUM(c)

156

Testing Decomposable Aggregate Functions

Q Q’ptern Composition operator

SELECT AVG(<e>)
FROM <tables>
[<joins>];

SELECT SUM(<e>) as s,
COUNT(<e>) as c
FROM <tables>
[<joins>];

SUM(s)

SUM(c)

A single value to represent a
partition is insufficient

157

What bugs did you find in ClickHouse?

158

Bug example: ClickHouse

159

Bug example: ClickHouse

Incorrect Query should return an error,
but not incorrect answer.

Each column reference directly contained in the search condition shall be one of the following:
a) An unambiguous reference to a column that is functionally dependent on the set consisting of
every column referenced by a column reference contained in group by clause.
...

160

How general is the technique?
Can I apply it to other domains?

161

Metamorphic Testing

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0;

t0.c0 t1.c0

0.0 -0.0

Derive

162

Metamorphic Testing

SELECT * FROM t0, t1
WHERE t0.c0 = t1.c0;

t0.c0 t1.c0

0.0 -0.0

Derive
SELECT * FROM t0, t1 WHERE t0.c0=t1.c0
UNION ALL
SELECT * FROM t0, t1 WHERE NOT (t0.c0=t1.c0)
UNION ALL
SELECT * FROM t0, t1 WHERE (t0.c0=t1.c0) IS NULL;

163

Metamorphic Testing

Derive
SELECT * FROM t0, t1 WHERE t0.c0=t1.c0
UNION ALL
SELECT * FROM t0, t1 WHERE NOT (t0.c0=t1.c0)
UNION ALL
SELECT * FROM t0, t1 WHERE (t0.c0=t1.c0) IS NULL;

Test Case Result
Execute

164

Metamorphic Testing

Derive

Test Case Result
Execute

Derived
Test Case

165

Metamorphic Testing

Derive

Test Case Result
Execute

Derived
Test Case

This technique is known as
metamorphic testing

166

Equivalence Modulo Inputs (EMI) for Testing Compilers

https://people.inf.ethz.ch/suz/emi/index.html

167

Equivalence Modulo Inputs (EMI) for Testing Compilers

https://people.inf.ethz.ch/suz/emi/index.html

EMI’s idea is to create programs that produce
the same output for a given input

168

Can we test not only DBMS?

Approach is quite generic.

We can try to use it in

1. Generic API with filtering or grouping

2. Regular expressions library

3. Event processing

4. Image recognition

5. Your ideas

169

What about other
metamorphic test oracles for DBMSs?

170

Finding Logic Bugs in DBMSs

Ternary Logic
Partitioning

OOPSLA ‘20

Non-optimizing
Reference Engine

Construction
ESEC/FSE ‘20

Pivoted Query
Synthesis

OSDI ‘20

171

Goal: Find Logic Bugs

Optimization bugs: logic
bugs in the query optimizer

172

Motivating Example

CREATE TABLE t0(c0 UNIQUE);
INSERT INTO t0 VALUES (-1) ;
SELECT * FROM t0 WHERE t0.c0 GLOB '-*';

c0

-1

t0

-1

✓

https://www.sqlite.org/src/tktview?name=0f0428096f

173

Motivating Example

CREATE TABLE t0(c0 UNIQUE);
INSERT INTO t0 VALUES (-1) ;
SELECT * FROM t0 WHERE t0.c0 GLOB '-*';

c0

-1

t0

{}



Optimizer

https://www.sqlite.org/src/tktview?name=0f0428096f

174

Motivating Example

CREATE TABLE t0(c0 UNIQUE);
INSERT INTO t0 VALUES (-1) ;
SELECT * FROM t0 WHERE t0.c0 GLOB '-*';

c0

-1

t0

{}



Optimizer

https://www.sqlite.org/src/tktview?name=0f0428096f

The LIKE optimization malfunctioned for
non-text columns and a pattern prefix of “-”

175

Differential Testing

SELECT * FROM t0
WHERE t0.c0 GLOB '-*';

-O3

-O0

Optimizer

Optimizer

176

Differential Testing

SELECT * FROM t0
WHERE t0.c0 GLOB '-*';

-O3

-O0

Optimizer

Optimizer

{}

177

Differential Testing

SELECT * FROM t0
WHERE t0.c0 GLOB '-*';

-O3

-O0

Optimizer

Optimizer

{}

-1

178

Differential Testing

SELECT * FROM t0
WHERE t0.c0 GLOB '-*';

-O3

-O0

Optimizer

Optimizer

{}


≠

-1

179

Differential Testing

https://www.sqlite.org/pragma.html

180

Differential Testing

https://www.sqlite.org/pragma.html

PRAGMA case_sensitive_like = boolean;

181

Differential Testing

https://www.sqlite.org/pragma.html

PRAGMA case_sensitive_like = boolean;

DBMSs typically provide only very
limited control over optimizations

182

NoREC

Idea: Rewrite the query so that
the DBMS cannot optimize it

183

Idea

Query
Generator

Optimizer

Optimized
Query

{}

184

Idea

Query
Generator

Optimizer

Optimizer

Optimized
Query

Translation
Step

Unoptimized
Query

{}

185

Idea

Query
Generator

Optimizer

Optimizer

Optimized
Query

Translation
Step

Unoptimized
Query


-1

≠

{}

186

Idea

Query
Generator

Optimizer

Optimizer

Optimized
Query

Translation
Step

Unoptimized
Query


-1

≠

{}

We want to create a “non-optimizing reference engine”

187

Given Query

Consider the following format for the optimized query:

SELECT * FROM t0
WHERE p;

188

Given Query

Consider the following format for the optimized query:

SELECT * FROM t0
WHERE p;

t0.c0 GLOB '-*'

189

Given Query

Consider the following format for the optimized query:

SELECT * FROM t0
WHERE p;

It is unobvious how we could
derive an unoptimized queryt0.c0 GLOB '-*'

190

Insight

First Insight: The predicate p must
always evaluate to the same value,

irrespective of its context

191

Translation Step (Correct Case)

SELECT * FROM t0
WHERE p; -1

192

Translation Step (Correct Case)

SELECT * FROM t0
WHERE p; -1

193

SELECT p
FROM t0;

Translation Step (Correct Case)

SELECT * FROM t0
WHERE p; -1

194

SELECT p
FROM t0;

Translation Step (Correct Case)

SELECT * FROM t0
WHERE p; -1

TRUE

195

SELECT p
FROM t0;

Translation Step (Correct Case)

SELECT * FROM t0
WHERE p; -1

p evaluates

to TRUE for
one row

p evaluates
to TRUE for
one row

TRUE

196

Insights

Second Insight: DBMSs focus their
optimizations on reducing the

amount of data that is processed

197

Translation Step

SELECT * FROM t0
WHERE p;

198

Translation Step

SELECT * FROM t0
WHERE p;

QUERY PLAN
`--SEARCH TABLE t0 USING COVERING INDEX
sqlite_autoindex_t0_1 (c0>? AND c0<?)

Optimizer

199

Translation Step

SELECT p
FROM t0;

SELECT * FROM t0
WHERE p;

QUERY PLAN
`--SEARCH TABLE t0 USING COVERING INDEX
sqlite_autoindex_t0_1 (c0>? AND c0<?)

QUERY PLAN
`--SCAN TABLE t0

Optimizer

Optimizer

200

SELECT p
FROM t0;

Translation Step

SELECT * FROM t0
WHERE p;

TRUE

{}

Optimizer

Optimizer

201

SELECT p
FROM t0;

Translation Step

SELECT * FROM t0
WHERE p;

TRUE

{}

Result
should
contain
one row

Optimizer

Optimizer

202

SELECT p
FROM t0;

Translation Step

SELECT * FROM t0
WHERE p;

TRUE

{}

Result
should
contain
one rowOptimizer

Optimizer

203

Counting Implementation

SELECT COUNT(*)
FROM …
WHERE p

SELECT SUM(count) FROM (
SELECT p IS TRUE
as count

FROM <tables>
);

Optimizer

Optimizer

204

Counting Implementation

0

1

≠



SELECT COUNT(*)
FROM …
WHERE p

SELECT SUM(count) FROM (
SELECT p IS TRUE
as count

FROM <tables>
);

Optimizer

Optimizer

205

What about other, non-metamorphic test oracles?

206

Finding Logic Bugs in DBMSs

Ternary Logic
Partitioning

OOPSLA ‘20

Non-optimizing
Reference Engine

Construction
ESEC/FSE ‘20

Pivoted Query
Synthesis

OSDI ‘20

207

Example: SQLite3 Bug

c0

0

1

2

NULL

t0
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;

https://sqlite.org/src/tktview/80256748471a01

208

Example: SQLite3 Bug

c0

0

1

2

NULL

t0
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;

IS NOT is a “null-safe”
comparison operator

https://sqlite.org/src/tktview/80256748471a01

209

Example: SQLite3 Bug

c0

0

1

2

NULL

t0
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;

https://sqlite.org/src/tktview/80256748471a01

210

Example: SQLite3 Bug

c0

0

1

2

NULL

t0

0

CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;

TRUE

https://sqlite.org/src/tktview/80256748471a01

211

Example: SQLite3 Bug

c0

0

1

2

NULL

t0

0

CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;

TRUE

0

https://sqlite.org/src/tktview/80256748471a01

212

Example: SQLite3 Bug

c0

0

1

2

NULL

t0

1

CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;

0

FALSE

https://sqlite.org/src/tktview/80256748471a01

213

Example: SQLite3 Bug

c0

0

1

2

NULL

t0

0

2

2

CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;

TRUE

https://sqlite.org/src/tktview/80256748471a01

214

Example: SQLite3 Bug

c0

0

1

2

NULL

t0

NULL

CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;

TRUE

0

2

NULL
https://sqlite.org/src/tktview/80256748471a01

215

Example: SQLite3 Bug

c0

0

1

2

NULL

t0

NULL

CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;

TRUE

0

2

NULL

0

2

https://sqlite.org/src/tktview/80256748471a01

216

Example: SQLite3 Bug

c0

0

1

2

NULL

t0

NULL

CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;

TRUE


NULL was not contained

in the result set!

0

2

NULL

0

2

https://sqlite.org/src/tktview/80256748471a01

217

PQS Idea

c0

0

1

2

NULL

t0
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (3), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;

Validate the result set based on
one randomly-selected row

218

PQS Idea

c0

0

1

2

NULL

t0
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (3), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;

Pivot row
Validate the result set based on

one randomly-selected row

219

PQS Idea

c0

0

1

2

NULL

t0
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (3), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;

Generate a query that is
guaranteed to at least fetch

the pivot row

NULL

TRUE

220

PQS Idea

c0

0

1

2

NULL

t0
CREATE TABLE t0(c0);
CREATE INDEX i0 ON t0(1) WHERE c0 NOT NULL;
INSERT INTO t0 (c0) VALUES (0), (1), (2), (3), (NULL);
SELECT c0 FROM t0 WHERE t0.c0 IS NOT 1;



If the pivot row is missing
from the result set a bug has

been detected

0

2

221

Approach

Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

222

Approach

Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

223

Approach

Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

One random row from multiple tables and views

224

Approach

Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

Generate predicates that evaluate to
TRUE for the pivot row and use them

in JOIN and WHERE clauses

SELECT c0 FROM t0
WHERE

225

Random Expression Generation

t0.c0 IS NOT 1;

Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

IS
NOT

t0.c0 1

226

Random Expression Generation

t0.c0 IS NOT 1;

We implemented an
expression evaluator for

each node

Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

IS
NOT

t0.c0 1

227

Random Expression Generation

c0

0

1

2

NULL

t0

Evaluate the tree based
on the pivot row

Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

IS
NOT

t0.c0 1

228

Random Expression Generation

Column references return the
values from the pivot row

c0

0

1

2

NULL

t0Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

IS
NOT

t0.c0 1

229

Random Expression Generation

Column references return the
values from the pivot row

c0

0

1

2

NULL

t0Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

IS
NOT

t0.c0 1

NULL

230

Random Expression Generation

Constant nodes return their
assigned literal values

c0

0

1

2

NULL

t0Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

IS
NOT

t0.c0 1

NULL

231

Random Expression Generation

Constant nodes return their
assigned literal values

c0

0

1

2

NULL

t0Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

IS
NOT

t0.c0 1

NULL 1

232

Random Expression Generation

Compound nodes
compute their result

based on their children

TRUE

c0

0

1

2

NULL

t0Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

IS
NOT

t0.c0 1

NULL 1

233

Random Expression Generation

Compound nodes
compute their result

based on their children

TRUE

c0

0

1

2

NULL

t0Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

IS
NOT

t0.c0 1

NULL 1

TRUE

234

t0.c0 IS NOT 1;

Query Synthesis

SELECT c0 c0 FROM t0
WHERE

Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

235

t0.c0 IS NOT 1;

Query Synthesis

SELECT c0 c0 FROM t0
WHERE

What if the expression does
not evaluate to TRUE?

Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

236

Random Expression Rectification

switch (result) {
case TRUE:

result = randexpr;
case FALSE:

result = NOT randexpr;
case NULL:

result = randexpr IS NULL;
}

Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

237

Random Expression Rectification

switch (result) {
case TRUE:

result = randexpr;
case FALSE:

result = NOT randexpr;
case NULL:

result = randexpr IS NULL;
}

Alternatively, we could
validate that the pivot row is

expectedly not fetched

Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

238

Approach

SELECT (NULL) INTERSECT
SELECT c0 FROM t0 WHERE NULL IS NOT 1;

Rely on the DBMS to check
whether the row is contained

Randomly
generate
database

Select
pivot row

Generate
query for the

pivot row

Validate that
the pivot row
is contained

239

How do the techniques
compare to each other?

240

Comparison

Property PQS NoREC TLP

WHERE ✓ ✓ ✓

Additional SQL features   ✓

Ground truth ✓  

No domain knowledge required  ✓ ✓

Implementation effort Moderate Very Low Low

241

Comparison

Property PQS NoREC TLP

WHERE ✓ ✓ ✓

Additional SQL features   ✓

Ground truth ✓  

No domain knowledge required  ✓ ✓

Implementation effort Moderate Very Low Low

TLP is applicable to testing a wider range of features

242

Comparison

Property PQS NoREC TLP

WHERE ✓ ✓ ✓

Additional SQL features   ✓

Ground truth ✓  

No domain knowledge required  ✓ ✓

Implementation effort Moderate Very Low Low

Both NoREC and TLP are
metamorphic testing approaches

243

Proposed Testing Strategy

NoREC TLP PQS

Quickly find the optimization bugs

244

NoREC TLP PQS

Proposed Testing Strategy

Test a wider range of features

245

NoREC TLP PQS

Proposed Testing Strategy

Comprehensively test the DBMS’
core functionality

246

What implementation strategy
did you use for ClickHouse?

SQLancer from developer point of view

186

▎ Natural and intuitive approach

▎ Fuzzing meets correctness check

▎ Pluggable(but you need to write code on Java)

▎ You can incorporate approach in other software

How to make integration with your DBMS

187

1. Import Java or ODBC driver if you have one

2. Teach SQLancer to make connection, create database and make a generic query

3. A bit more to prepare: Create table with schema and insert generator

4. Implement expression generator

5. Implement oracle

6. Expected error handling

7. RUN!

Add your
driver

188

Make
connection,
database
and query

189

Create table with
schema

Your DBMS can has specific SQL extensions.
Implement subset of them

190

Expression
generator

191

Implement Oracle

Almost the same for different DBMS

192

How to deal with
results?

Test
Failed

Is syntax
correct

Mute
error

No

Yes

▎ Query can be incorrect

Mute errors

194

▎ You don't need to implement ideal
query generator – bad queries also
test your system

▎ You can mute known bugs and find
more

How to deal with
results?

Test
Failed

Is syntax
correct

Mute
error

Yes

Result
obtained

No

No

Yes

DBMS
crashed?

Probably
a bug

Critical
Bug

YesNo

Can be found by fuzzing

▎ Query can be incorrect

▎ DMBS can crash

How to deal with
results?

Test
Failed

Is syntax
correct

Mute
error

Yes

Result
obtained

No

No

Yes

DBMS
crashed?

Probably
a bug

Critical
Bug

SQLancer found
correctness bug!

YesNo

Can be found by fuzzing

▎ Query can be incorrect

▎ DMBS can crash

▎ If results differ – you found a
correctness bug

Add Oracles to your Fuzzer

If you already have a query fuzzer or expression gererator you can implement oracles
trivially.

You can try implementing NoREC or TLP Where logic by yourself:

1) Take expr from your generator

2) Add some logic to compare results:

SELECT expr
FROM t0;

SELECT * FROM t0

WHERE expr;
SELECT * FROM t WHERE expr
UNION ALL
SELECT * FROM t WHERE NOT expr
UNION ALL
SELECT * FROM t WHERE expr IS NULL;

SELECT * FROM t;

259

How to contribute?

• Add a new DBMS

• Automatic reduction of test cases (#333)

• New test oracles

• Modularization, plugin system for DBMS support (#8)

• Blog posts, tutorials, …

260

Summary

261

Q&A Session

• By the way, you can contribute to SQLancer
and ClickHouse

https://github.com/sqlancer/sqlancer

https://github.com/ClickHouse/ClickHouse

