
Public blockchains
What could possibly go wrong?

Rhian Lewis @rhian_is

About me
• Test automation engineer

• Co-developer of Count My
Crypto

• Founder of London Women in
Bitcoin

• Teacher on the B9Lab.com
Ethereum QA Engineer course

• Writer about blockchain at
medium.com/@rhian_is

http://B9Lab.com
http://medium.com/@rhian_is

Themes in this talk
• Why should you be concerned about this technology

• How blockchains work

• Differences between private and public blockchains

• Examples of protocols

• How to test and testing challenges

• Examples of vulnerabilities and how to mitigate

• Tools and tips

November 6, 2017

Imagine this
• Your code is on thousands of

computers over the world

• Hundreds of millions of other
people’s money is locked up
in their accounts

• YOU CANNOT REDEPLOY!

• THERE IS NO FIX FOR THIS!

• Everyone can see the issue
that caused it

To be continued….

Why care about
blockchains?

Blockchain definition: 1

• Data structure spread across many nodes

• If public, anyone can download and run the
software and participate in maintaining the record

• If private, runs on a limited number of nodes to
which are controlled and agreed

Blockchain definition: 2

• Immutable data structure because all transactions
are bundled into blocks which are
cryptographically linked together from the
beginning of time

• Single source of truth

• Transparent and decentralised, with no down time

BLOCKCHAINS: NOT JUST FOR CRYPTOCURRENCIES

Examples of protocols
• Bitcoin - Proof of Work / C++ codebase / clients in many

languages. No specific smart contract functionality

• Ethereum - Proof of Work, moving to Proof of Stake / EVM
has four main client implementations / smart contracts
written in Solidity (some similarities to JavaScript)

• Hyperledger - open source blockchains and tools /
Hyperledger Fabric chaincode can be written in Go or
JavaScript

• EOS - delegated proof of stake / smart contracts written in
C++, compiled to Web Assembly

Difference between public
and private chains

• Need permission to join a private chain

• Transactions are validated on public chains by
members of the public who are rewarded for their efforts

• Public chains are more transparent

• Private chains have a purpose but cannot solve the trust
issue

• Hybrids where private Proof of Authority chains link to a
larger public chain

Public Consortium Private

Anyone can join Permissioned Permissioned

Open source Open source or
proprietary

Open source or
proprietary

Thousands or even
millions of participants

Limited number of
participants

Limited number of
participants

Likely to have a token
(currency)

Unlikely to have a
token (currency)

Unlikely to have a
token (currency)

Governance by
consensus

Equal weight to
participants

Owner can set the
rules

Mock blockchains: 1
This is an example of a virtual Ethereum node, using a

tool called Ganache

Mock blockchains: 2
You can interact with Ganache via the user interface

(previous slide) or via the command line

Transaction Fees
• Not an issue for private chains

• Public chains like Bitcoin and Ethereum charge a
transaction fee, which fluctuates

• Testing that the business model functions with fees
at different levels is crucial

• For example, micropayments do not make sense if
you pay $1 for every transaction

Testing transaction fees

Vulnerability: Re-entrance
pragma solidity ^0.4.8;
contract HoneyPot {
 mapping (address => uint) public balances;
 function HoneyPot() payable {
 put();
 }
 function put() payable {
 balances[msg.sender] = msg.value;
 }
 function get() {
 if (!msg.sender.call.value(balances[msg.sender])()) {
 throw;
 }
 balances[msg.sender] = 0;
 }
 function() {
 throw;
 }
}

Vulnerability: Ownership
// constructor is given number of sigs required to do protected
"onlymanyowners" transactions
// as well as the selection of addresses capable of confirming
them.
function multiowned(address[] _owners, uint _required) {
 m_numOwners = _owners.length + 1;
 m_owners[1] = uint(msg.sender);
 m_ownerIndex[uint(msg.sender)] = 1;
 for (uint i = 0; i < _owners.length; ++i) {
 m_owners[2 + i] = uint(_owners[i]);
 m_ownerIndex[uint(_owners[i])] = 2 + i;
 }
 m_required = _required;
}

Vulnerability: Initialisation
• A smart contract that generates addresses for
many users needs to let the blockchain know
about these addresses

• If you display the address before the blockchain
transaction has been mined, there is a risk that a
user might send money to it

• DISASTER!
• If a user tries to send money to a non-existent
address, the cash will be lost for ever

Not just contracts
• Decentralised applications are more than just a

blockchain

• Focus on smart contracts can mean other
vulnerabilities are neglected

• Augur framejacking vulnerability

• Nano hack where checks performed on client side
only - users could run JavaScript locally

Performance and
predictability

The y axis shows transaction confirmation times on the Ethereum blockchain, in minutes

Automation and Tools
• Two useful tools for Ethereum: Truffle framework

and Open Zeppelin libraries

• Truffle gives inbuilt test framework and a mock local
blockchain

• Can be difficult to automate tests on public testnets
because of latency and need to acquire test
currencies

• Most people run tests against local nodes only

Truffle is easy to use!

Bug Bounties

• The opportunity to hone your testing skills
• The kudos of being able to add your discoveries to

your resumé
• The chance to earn Ether or other tokens

• https://bounty.ethereum.org/
• https://hackenproof.com/

https://bounty.ethereum.org/
https://hackenproof.com/

Thank you!
• In this talk we have learned:

• Why blockchains are powerful

• Why you should consider using a public blockchain

• Why public blockchains are dangerous

• What you can do to mitigate this by testing

• How you can get involved

