
Bas Dijkstra

bdijkstra@inspiredtesting.com
www.inspiredtesting.com

Improving your integration
testing efforts with

consumer-driven contract testing

Monolith

UI Data access
layer

Business
logic

Database

Microservices architecture

UI

DB

µ
µ

µ
µ

µ

DB

API gateway

Are all individual
components and services
able to communicate with

one another?

A B C

D

Traditional integration / E2E
testing focuses on the integration
of ‘everything at once’

A B C

D

Contract-based integration / E2E
testing focuses on the integration of
individual consumer-provider pairs

‘Traditional’
integration and E2E

testing is synchronous

Integration and E2E
testing using contracts

is asynchronous

API
consumer

API
provider

Which endpoints are available?
What input do these endpoints expect?
What output can I expect in return?

CDCT

Formalises these expectations in contracts

Providers can develop and refactor without fear

Consumers can trust providers to keep working

Automatically check that expectations are met

CDCT doesn’t…

Test the internal logic of a service

Test an entire application end-to-end

(only the communication between 1
consumer and 1 provider)

(only whether consumer and provider meet the
contract)

CDCT tools

Pact (Ruby, Java, JavaScript, C#, Go, PHP, Python, …)

Spring Cloud Contract (Java)

https://spring.io/projects/spring-cloud-contract

https://docs.pact.io/

How does Pact work?

Consumer driven > consumer generates the contract

1) Unit test checks that expected response can
be processed internally

2) Unit test generates contract from
defined expectations

Through running unit tests

How does Pact work?

Contracts generated by consumer are then distributed

Verification results are uploaded / communicated

Life goes on… Or a discussion is started

Provider picks these up and verifies whether
it can fulfill the contract

Time to look
at the code!

(finally…)

Now it’s your turn!

_Run the tests for both consumers using mvn clean test

_Copy the contracts (.json) for both consumers to
/src/test/pacts (overwrite)

_Run the tests for the provider using mvn clean test

_Check that the tests pass (provider meets the contract
for both consumers)

A change request…

Now it’s your turn!
_Change the customer-consumer tests so that they expect an
HTTP 200 (instead of a 204) when an address is
successfully deleted

_Run the tests for both consumers using mvn clean test

_Check that the new expectation is written to the contract

_Copy the contracts (.json) for both consumers to
/src/test/pacts (overwrite)

_Run the tests for the provider using mvn clean test

_Check that one test fails and inspect the feedback

Another change request…

Now it’s your turn!
_First, undo your change from the previous exercise

_Change the customer-consumer tests so that the value for
the state field can only be Oklahoma or California
_ The regex you’re looking for is (Oklahoma|California)

_Run the tests for both consumers using mvn clean test

_Check that the new expectation is written to the contract

_Copy the contracts (.json) for both consumers to
/src/test/pacts (overwrite)

_Run the tests for the provider using mvn clean test

_Check that one test fails and inspect the feedback

Copying the contracts
is manual labor

(and therefore not ideal…)

Pact Broker

Manual distribution of contracts is not efficient

Automatic distribution and
versioning of contracts

Store contract verification
results - do providers meet
their consumer’s contracts?

We need a better mechanism

API
consumer

API
provider

1. Generate and
publish contract

Pact
Broker 2. Download contract

and verify compliance

3. Publish
verification
results

4. Check
verification
results

Pactflow.io

What CDCT does not do
(well)

Testing implementation details of a provider

https://docs.pact.io
/getting_started
/what_is_pact_good_for

Testing public APIs

Some useful resources

https://docs.pact.io

CDCT video series

https://www.youtube.com/watch?v=U05q0zJsKsU
(the problem with E2E integrated tests)

https://www.youtube.com
/watch?v=6Qd-kq1AzZI
(Demo – contract testing with PactJS)

https://www.youtube.com
/watch?v=3T8J8Pwu3I4
(how do I remove E2E tests?)

https://www.youtube.com/watch?v=IetyhDr48RI
(contract testing and how Pact works)

https://www.ontestautomation.com
/an-introduction-to-contract-

testing-part-1-meet-the-players/

https://github.com/basdijkstra
/introduction-to-contract-testing

?

Contact

_Email: bdijkstra@inspiredtesting.com

_Website: https://www.inspiredtesting.com

https://www.ontestautomation.com

_LinkedIn: https://www.linkedin.com/in/basdijkstra

