
Confidential + Proprietary

Testing the Modern Mobile World
Building Complex End-to-end Mobile Tests

Ang Li
Software Engineer
Google Inc.

Confidential + Proprietary

The Expanding
Landscape of the
Modern Mobile
World

...and Its Testing
Challenges

Confidential + Proprietary

Multi-device Interaction

● Conference calls
● Money transfer

○ Google Pay

● Peer-to-peer file transfer
○ Files by Google

● Proximity detection
○ Instant tethering

● Sync state across multiple devices
○ Phone to TV login

● Multi-screen gameplay
○ Stadia

Challenge: Controlling multiple
devices with interlocking steps in

a test.

https://pay.google.com/about/
https://files.google.com/
https://support.google.com/pixelbook/answer/7504779?hl=en
https://stadia.dev/

Confidential + Proprietary

● Internet-of-Things (IOT)
○ Thermometers
○ Security cameras

● VR Headsets
○ Google Daydream

● Communication infrastructure
○ Project Loon

● Equipment for altering physical environment
○ Attenuators for RF signals
○ Robotic components for physical movements

Non-mobile Devices

Challenge: Controlling a variety of
non-mobile devices and

equipments with conventional
mobile devices in a test

https://vr.google.com/daydream/
https://loon.com/

Confidential + Proprietary

● Full control of the mobile devices
○ Everything the single-device tests do
○ External-driven actions, like reading sys logs, rebooting the device etc

● Coordinate multiple devices to create user scenarios
○ Messaging between two clients
○ Adjust thermostat via mobile app

● Supports non-mobile devices
○ Other device types like wearables and IOT devices
○ Test instruments like power meters, attenuators

● Easy to write and debug tests

General Requirements

Confidential + Proprietary

Common
Architecture of
Mobile Test
Frameworks

Confidential + Proprietary

Single Mobile Device, Device-driven

Mobile Device
Host Computer

Test Logic

Confidential + Proprietary

Distributed

Mobile Device

Host Computer
Test Logic

Coordinator

Mobile Device

Test Logic

Confidential + Proprietary

● Test logic has little to no visibility outside of the Device Under Test (DUT)
○ Tests are affected by problems of the DUT
○ Difficult to control and coordinate multiple devices..

● UI centric
○ Limited to no option to conduct a test without UI

● Designed for unit tests
○ Often assuming single-app tests

● Difficult to adopt for non-mobile devices

Problems

Confidential + Proprietary

Solutions

Confidential + Proprietary

● The test logic shall reside at a
central location, often a host
computer

● The framework shall assume
generic controllers as
components instead of mobile
devices

Host-driven Generic
Controller Architecture
with two key design axioms

Confidential + Proprietary

Example Logic Diagram

Mobile Device

Host
Computer

Test Logic

Agent 1

Agent 2

Mobile Device

Agent 1

Agent 2

IOT
Device

Cloud
Service

Bluetooth
Device

Browser

Confidential + Proprietary

Advantages

● Test logic is a streamlined piece of code at one place
○ Easy to understand and debug

● Test can access multiple test components
● Test logic can coordinate actions to simulate a user scenario
● Test can operate non-mobile device components

○ Plug any device types you'd like into your mobile tests

Confidential + Proprietary

Tools Built for the Task

● Mobly
○ A test framework designed for creating host-driven tests
○ No assumption on the type of the test components

● Mobly Snippet Library
○ A RPC library for host logic to communicate with test components
○ Allow users to build custom device-side steps to be triggered by host-side main logic

● Mobly Bundled Snippets for Android
○ A set of pre-implemented snippets for basic Android operations
○ Operations such as:

■ Make a toast
■ Enable Bluetooth
■ Add a Google account

Confidential + Proprietary

A Python test runner for creating
complex end-to-end mobile tests

Mobly Test Framework
● A Mobly test operates on a

collection of controllers
○ Test Bed - a collection of

components used in the test
(Phones, services, equipment etc)

○ Controllers - objects in Python
script representing components in
the test bed.

● Flexible and pluggable
● Open source

Confidential + Proprietary

Test Bed

Host Machine

Mobly Test

Android

Backend Service

iOS

Backend Service
Controller

Android Device
Controller

iOS Device
Controller

Testbed + Controller Structure
One-to-one mapping between the actual
devices/services in the test bed and
controller objects in Python

Confidential + Proprietary

Controller "Interface"

A loosely defined module level "interface" for declaring arbitrary test components

● `create`
○ The factory function that translates configs into objects
○ Config schema is entirely up to the controller owner

● `destroy`
○ Tear down the controller objects generated by `create`

● `get_info`
○ Retrieve any useful info from the controller after the test run

https://mobly.readthedocs.io/en/stable/mobly.html#mobly.base_test.BaseTestClass.register_controller

Confidential + Proprietary

Distributed as part of the Mobly pip package

● Full ADB access
○ AndroidDevice#adb
○ ad.adb.shell(['ls', '/sdcard'])

● Long-running service management
○ logcat
○ supports custom service

● Designed to handle most active Android versions
● Client for Mobly snippets

Example Controller - AndroidDevice

Confidential + Proprietary

Similar to standard unit test, with additional features to accommodate more
complex tests.

● Define multiple failure points in a single test
○ `expects` APIs

● Rich reporting structure
○ Add extra info in assertions
○ Add custom sections specific to your testing operation

● Conditional stages triggered by test status
○ `on_fail` is commonly used for debug info collection and recovery

Designed for Complex Tests

Confidential + Proprietary

● All the power of a single device
test

○ Android: Instrumentation test
○ iOS: XCTest, XCUITest
○ Common libraries like Espresso/UI

Automator

● Call the native platform APIs
○ Java, Swift, Objective-C etc

● Synchronous and
Asynchronous calls

Mobly Snippet Library

A standardized RPC protocol for
interacting with a device in Mobly
tests.

Confidential + Proprietary

DeviceX

Snippet APK

Mobly Snippet Library

Computer

Mobly Test

Snippet Server

Snippet Class

Platform
APIs

Snippet ClassSnippet Class

3rd Party
Libs

JSON RPC

DeviceX
Controller

Snippet
Client

Confidential + Proprietary

package com.mypackage.testing.snippets.example;

public class ExampleSnippet implements Snippet {

 public ExampleSnippet(Context context) {}

 @Rpc(description='Returns a string greeting the user by name.')

 public String sayHello(String name) {

 return "Hello, " + name + "!";

 }

}

Mobly Snippet Library - Android Java

Confidential + Proprietary

from mobly import base_test

from mobly.controllers import android_device

class ExampleTest(base_test.BaseTestClass):

 def setup_class(self):

 self.ad = self.register_controller(android_device)[0]

 self.ad.load_snippets(name='snippet',

 package='com.mypackage.testing.snippets.example')

 def test_foo(self):

 foo = self.ad.snippet.sayHello('Jeff') # `foo` is "Hello, Jeff!"

Mobly Snippet Library - Invoking from Python

Confidential + Proprietary

#import <Mobly/Mobly.h>

@interface ExampleSnippet: NSObject

@end

@implementation ExampleSnippet

+ (void)load {

 NSArray *methods = [MBLMethod methodsWithReference:[ExampleSnippet class]

 selectors:@selector(sayHello:), nil];

 [MBLRegistry.sharedInstance registerRPCMethods:methods];

}

+ (NSString *)sayHello:(NSString *)name {

 return [NSString stringWithFormat:@"Hello, %@!", name];

}

@end

Mobly Snippet Library - iOS

Confidential + Proprietary

Sample Code &
Use Cases

Confidential + Proprietary

Example Test:
Cross-platform Video Call
Making a phone call between one Android and
one iOS devices.

● Assuming we already have
phone call related snippets
implemented.

Confidential + Proprietary

Cross-platform Video Call

Mobly
Test

Android Device

iOS Device

Video Call Link

Confidential + Proprietary

TestBeds:

 - Name: SampleTestBed

 Controllers:

 AndroidDevice:

 - serial: ABCDEFG1234567

 - phone_number: 4150007890

 IosDevice:

 - udid: 7654321-asdfghjkl

 - phone_number: 4150001234

Test Bed Config

Confidential + Proprietary

from mobly import base_test

from mobly import expects

from mobly.controllers import android_device

from mobly.controllers import ios_device

class CallTest(base_test.BaseTestClass):

 def setup_class(self):

 self.android = self.register_controller(android_device)[0]

 self.iphone = self.register_controller(ios_device)[0]

Acquiring Controller Objects

Confidential + Proprietary

 class CallTest(base_test.BaseTestClass):

 ...

 def test_simple_call(self):

 with expects.expect_no_raise('Failed to initiate call'):

 self.iphone.makeCall(self.ad.phone_number)

 self.android.acceptCall()

 def on_fail(self):

 self.android.take_bug_report()

 self.iphone.save_syslog()

Test Logic

Confidential + Proprietary

Cross-platform
Duo Video Call
Demo

https://docs.google.com/file/d/1VmJ-jp50Im7ZtA9iyqAN6N4pL4ncjE9w/preview

Confidential + Proprietary

Example Use Case:
Pairing Bluetooth Devices

Confidential + Proprietary

Pairing Bluetooth Devices

Mobly
Test

Mobile Device

Relay Bluetooth
Device

(Solid State Switch)

Serial
Electrical

Electrical

Bluetooth

Confidential + Proprietary

Relay

Bluetooth
Headphones
Setup

Confidential + Proprietary

Relay

Bluetooth
Speaker Setup

Confidential + Proprietary

Example Use Case:
Simulating Physical
Movement in Virtual
Reality (VR)

Confidential + Proprietary

VR Movement Simulation

Mobly
Test

Mobile Device

VR Controller

Motor/Servo

Motor/Servo

Physical Movement

Physical Movement

Confidential + Proprietary

VR Movement Demo

Confidential + Proprietary

● Telecom
○ Fi
○ Messages
○ Duo

● Google Phone (Pixel)
○ Camera
○ Connectivity
○ Migration Tool

● Android Platforms
○ Auto
○ Things

Widely Adopted in Alphabet

● VR
● AR/Lens
● Nest
● Loon
● ...

Confidential + Proprietary

Integration with Test Systems

Using Mobly as part of your test process
is easy.

● Main Mobly components are all
open sourced on github.

● Mobly framework has APIs designed
for creating custom suites.

● Straightforward to integrate with
larger scope test systems.

Test Harness
● Prepare artifacts
● Allocate test environment

and resources
● Kick off Mobly test

process

Mobly Runner
● Execute test classes
● Generate test result report
● Save test output

Test Harness
● Parse test results
● Archive test results and

artifacts

https://mobly.readthedocs.io/en/stable/mobly.html#module-mobly.test_runner
https://mobly.readthedocs.io/en/stable/mobly.html#module-mobly.test_runner

Confidential + Proprietary

Questions?

References
● Mobly Repo
● Mobly API Doc
● Mobly Snippet Lib Repo
● Mobly Bundled Snippets Repo

https://github.com/google/mobly
https://mobly.readthedocs.io
https://github.com/google/mobly-snippet-lib
https://github.com/google/mobly-bundled-snippets

