Google
Testing the Modern Mobile World

Building Complex End-to-end Mobile Tests

Ang Li
Software Engineer
Google Inc.

The Expanding

Landscape of the
Modern Mobile
World

...and Its Testing
Challenges

Multi-device Interaction

Google

Conference calls
Money transfer
o Google Pay
Peer-to-peer file transfer
o Files by Google
Proximity detection
o Instant tethering
Sync state across multiple devices
o Phoneto TV login
Multi-screen gameplay
o Stadia

. Challenge: Controlling multiple
. devices with interlocking steps in
| a test. =

https://pay.google.com/about/
https://files.google.com/
https://support.google.com/pixelbook/answer/7504779?hl=en
https://stadia.dev/

Non-mobile Devices

e Internet-of-Things (I0T)

o Thermometers o

o Security cameras . Challenge: Controlling a variety of
e VR Headsets § non-mobile devices and i
© Google Daydream . equipments with conventional

e Communication infrastructure == ablE dlafees & e .
O Project Loon

e Equipment for altering physical environment

o Attenuators for RF signals
o Robotic components for physical movements

Google

https://vr.google.com/daydream/
https://loon.com/

General Requirements

e Full control of the mobile devices

o Everything the single-device tests do

o External-driven actions, like reading sys logs, rebooting the device etc
e Coordinate multiple devices to create user scenarios

o Messaging between two clients

o Adjust thermostat via mobile app
e Supports hon-mobile devices

o Other device types like wearables and 10T devices

o Test instruments like power meters, attenuators

e Easy to write and debug tests

Google

Common
Architecture of

Mobile Test
Frameworks

Single Mobile Device, Device-driven

Google

Distributed

Google

Problems

e Test logic has little to no visibility outside of the Device Under Test (DUT)
o Tests are affected by problems of the DUT
o Difficult to control and coordinate multiple devices..

e Ul centric
o Limited to no option to conduct a test without Ul

e Designed for unit tests
o Often assuming single-app tests

e Difficult to adopt for non-mobile devices

Google

Solutions

Google

Host-driven Generic

Controller Architecture

e The test logic shall reside at a
central location, often a host
computer

e The framework shall assume

with two key design axioms

generic controllers as
components instead of mobile
devices

Google

Example Logic Diagram

Google

Cloud
Service

- - Test Logic

- / N
-~ 1 Y

/’ / \\
/

Advantages

e Testlogic is a streamlined piece of code at one place
o Easyto understand and debug

e Test can access multiple test components
e Test logic can coordinate actions to simulate a user scenario

e Test can operate non-mobile device components
o Plug any device types you'd like into your mobile tests

Google

Tools Built for the Task

e Mobly

o Atest framework designed for creating host-driven tests

o No assumption on the type of the test components
e Mobly Snippet Library

o ARPC library for host logic to communicate with test components

o Allow users to build custom device-side steps to be triggered by host-side main logic
e Mobly Bundled Snippets for Android

o A set of pre-implemented snippets for basic Android operations
o Operations such as:

m Make a toast

m Enable Bluetooth

m Add a Google account

Google

Mobly Test Framework

A Python test runner for creating
complex end-to-end mobile tests

Google

A Mobly test operates on a

collection of controllers
o Test Bed - a collection of
components used in the test
(Phones, services, equipment etc)

Controllers - objects in Python
script representing components in
the test bed.

Flexible and pluggable
Open source

Testbed + Controller Structure

One-to-one mapping between the actual
devices/services in the test bed and
controller objects in Python

/" Test Bed

iOS Device
Controller

Google

Controller "Interface”

A loosely defined module level "interface" for declaring arbitrary test components

e create
o The factory function that translates configs into objects
o Config schema is entirely up to the controller owner

e destroy’
o Tear down the controller objects generated by "create’
e get_info

o Retrieve any useful info from the controller after the test run

Google

https://mobly.readthedocs.io/en/stable/mobly.html#mobly.base_test.BaseTestClass.register_controller

Example Controller - AndroidDevice

Distributed as part of the Mobly pip package

e Full ADB access
o AndroidDevice#adb
o ad.adb.shell([ls', '/sdcard])

e Long-running service management
o logcat
o supports custom service

e Designed to handle most active Android versions
e Client for Mobly snippets

Google

Designed for Complex Tests

Similar to standard unit test, with additional features to accommodate more
complex tests.

e Define multiple failure points in a single test
o expects APls

e Rich reporting structure
o Add extra info in assertions
o Add custom sections specific to your testing operation

e Conditional stages triggered by test status
o “on_fail’ is commonly used for debug info collection and recovery

Google

Mobly Snippet Library

All the power of a single device

. test
A standardized RPC protocol for o Android: Instrumentation test

interacting with a device in Mobly o i0S: XCTest, XCUITest

tests. o Common libraries like Espresso/Ul
Automator

Call the native platform APIs

o Java, Swift, Objective-C etc
Synchronous and
Asynchronous calls

Google

Mobly Snippet Library

Computer

Snippet JSON RPC
Client

Snippet Server

Snippet Class

Google

Mobly Snippet Library - Android Java

package com.mypackage.testing.snippets.example;

public class ExampleSnippet implements Snippet {
public ExampleSnippet(Context context) {}

description='Returns a string greeting the user by name.')
public String sayHello(String name) {

return "Hello, + name + ;

}

Google

Mobly Snippet Library - Invoking from Python

from mobly import base test
from mobly.controllers import android device

class ExampleTest(base_test.BaseTestClass):
def setup class(self):
self.ad = self.register_controller(android device)[9]
self.ad.load_snippets(name='snippet"’,

package="'com.mypackage.testing.snippets.example')

def test foo(self):
foo = self.ad.snippet.sayHello('Jeff') # “foo 1is "Hello, Jeff!"

Google

Mobly Snippet Library - i0OS

#import <Mobly/Mobly.h>

@interface ExampleSnippet: NSObject
@end

@implementation ExampleSnippet
+ (void)load {
NSArray *methods = [MBLMethod methodsWithReference:[ExampleSnippet class]
selectors:@selector(sayHello:), nil];
[MBLRegistry.sharedInstance registerRPCMethods:methods]; -

}

+ (NSString *)sazHello:(NSString *Iname {
return [NSString stringWithFormat:@"Hello, %@!", name];

}
@end

Google

Sample Code &
Use Cases

Example Test:
Cross-platform Video Call

Making a phone call between one Android and
one iOS devices.

e Assuming we already have
phone call related snippets
implemented.

Cross-platform Video Call

Video Call Link

iOS Device

Google

Test Bed Config

TestBeds:
- Name: SampleTestBed
Controllers:

AndroidDevice:
- serial: ABCDEFG1234567
- phone_number: 4150007890

IosDevice:
- udid: 7654321-asdfghjkl
- phone_number: 4150001234

Google

Acquiring Controller Objects

from
from
from
from

mobly
mobly
mobly.
mobly.

import base_ test

import expects

controllers import android device
controllers import ios_device

class CallTest(base test.BaseTestClass):

def setup _class(self):

Google

self.android = self.register_controller(android _device)[0]
self.iphone = self.register_controller(ios_device)[0]

Test Logic

class CallTest(base test.BaseTestClass):

def test simple call(self):
with expects.expect_no_raise('Failed to initiate call'):
self.iphone.makeCall(self.ad.phone_number)
self.android.acceptCall()

def on_fail(self):

self.android.take_bug report()
self.iphone.save _syslog()

Google

Cross-platform
Duo Video Call
Demo

Google

https://docs.google.com/file/d/1VmJ-jp50Im7ZtA9iyqAN6N4pL4ncjE9w/preview

Example Use Case:
Pairing Bluetooth Devices

Pairing Bluetooth Devices

Serial

(Solid State Switch)

Electrical

Google

Bluetooth
Headphones
Setup

Google

Bluetooth
Speaker Setup

Google

Example Use Case:
Simulating Physical
Movement in Virtual
Reality (VR)

VR Movement Simulation

Mobile Device |« -

|
I
ﬁ 1 Physical Movement
|
TTTTTTTTR
|
1 Physical Movement
|
|

Google

VR Movement Demo

Google

Widely Adopted in Alphabet

e Telecom e VR
©on e AR/Lens
o Messages
o Duo e Nest

e Google Phone (Pixel) e Loon
o Camera °

o Connectivity
o Migration Tool

e Android Platforms
o Auto
o Things

Google

Integration with Test Systems

Using Mobly as part of your test process
is easy.

e Main Mobly components are all
open sourced on github.

Test Harness

Prepare artifacts

Allocate test environment
and resources

Kick off Mobly test
process

I

e Mobly framework has APls designed
for creating custom suites.

e Straightforward to integrate with
larger scope test systems.

Google

Mobly Runner

Execute test classes
Generate test result report
Save test output

A4

Test Harness

Parse test results
Archive test results and
artifacts

https://mobly.readthedocs.io/en/stable/mobly.html#module-mobly.test_runner
https://mobly.readthedocs.io/en/stable/mobly.html#module-mobly.test_runner

Questions?

References

Google

Mobly Repo

Mobly APl Doc

Mobly Snippet Lib Repo

Mobly Bundled Snippets Repo

https://github.com/google/mobly
https://mobly.readthedocs.io
https://github.com/google/mobly-snippet-lib
https://github.com/google/mobly-bundled-snippets

