Structure and
Interpretation
of Test Cases

@KevlinHenney



Structure and
Interpretation
of Computer
Programs

Harold Abelson and
- Gerald Jay Sussman
with Julie Sussman




Programs must be
written for people to
read, and only
incidentally for
machines to execute.



The programmer in me made unit testing more
about applying and exercising frameworks.

had essentially reduced my concept of unif
testing to the basic mechanics of exercising
unit testing frameworks] to verify the behavior
of my classes.

My mindset had me thinking far too narrowly
about what it meant to write good unit fesfs.

Tod Golding

Tapping into Testing Nirvana



good unit tests



GUTs



A unit test is a test of behaviour whose
success or failure is wholly determined
by the correctness of the test and the
correctness of the unit under test.

Kevlin Henney
theregister.co.uk/2007/07/28/what_are_your_units/






Necessarily not unit testable
Should be unit testable... but isn’t

Unit testable




Minimal amount of code that is not
unit testable but in theory should be

Well-factored codebase




Codebase with high coupling to
code with dependencies across
boundaries of trust and control

Minimal amount of code that is
unit testable



47 Tlfnme Evem
Shoul

CollettNe |
\Wisdom

|

0 VNOW




A failing test should tell you exactly what is
wrong quickly, without you having to spend a lot
of time analyzing the failure.

This means...

Marit van Dijk

“Use Testing to Develop Better Software Faster”
medium.com/97-things/use-testing-to-develop-better-software-faster-9dd2616543d3



Each test should test one thing.

Marit van Dijk

“Use Testing to Develop Better Software Faster”
medium.com/97-things/use-testing-to-develop-better-software-faster-9dd2616543d3



Use meaningful, descriptive hames.

Don't just describe what the test does either (we
can read the code), tell us why it does this. This
can help decide whether a test should be
updated in line with changed functionality or
whether an actual failure that should be fixed
has been found.

Marit van Dijk

“Use Testing to Develop Better Software Faster”
medium.com/97-things/use-testing-to-develop-better-software-faster-9dd2616543d3



Never frust a test you haven't seen fail.

Marit van Dijk

“Use Testing to Develop Better Software Faster”
medium.com/97-things/use-testing-to-develop-better-software-faster-9dd2616543d3



[ expect a high level of coverage.
Sometimes managers require one.
There’s a subtle difference.

Brian Marick

martinfowler.com/bliki/ TestCoverage.html



coverage



statement coverage









I IR GEWIEERE WWWVW R uaﬁ

statement coverage
branch coverage

loop coverage
condition coverage
multiple condition covel
path coverage
parameter value covera



Simple cases are often
overlooked, but still need

clarification and verification
— and are simple to test

Use equivalence partitioning
to identify representative data

Test the rainy-day
scenarios as well as
the happy paths

Test around the edges
— thresholds, nulls,
empty cases, etc.






bool is leap year(int year);



TEST(test, is _leap year)
{

}



TEST(is _leap year, is ok)
{

}



TEST(is_leap year, is correct)

{
}



TEST(is Teap year, works)
{

}



TEST(is_leap year, works as expected)

{
}



TEST(is_leap year, 1)
{

}
TEST(is_leap year, 2)
{

}



TEST(is_leap year, leap years)
{

}
TEST(is_leap year, non leap years)

{
}



TEST(is_leap year, leap years)

{
ASSERT TRUE(is leap year(2020));

ASSERT TRUE(is leap year(2000));
}

TEST(is_leap year, non leap years)

{
}



TEST(is_leap year,
TEST(is leap year,
TEST(is leap year,
TEST(is leap year,

2020) ...
2000) ...
2021) ...
1900) ...



TEST(is_leap year,
TEST(is leap year,
TEST(is leap year,
TEST(is leap year,

2020 is a leap year) .
2000 is a leap year) .

2021 is not a Teap year) b
1900 is not a leap year) ...



TEST(is_leap year,
TEST(is leap year,
TEST(is leap year,
TEST(is leap year,

2016 is a leap year) .
2400 is a leap year) .

2019 is not a Teap year) b
2100 is not a leap year) ...



TEST(A year divisible by 4, is a leap year) .
TEST(A _year “divisible by 400, is K 1eap year)
TEST(A _year_ “not divisible _by 4, is not a _Teap year
TEST(A _year “divisible _by 100, is not a 1eap year)



TEST(
A year divisible by 4,
is a leap year) .
TEST(
A year divisible by 400,
is a leap year) .
K
A year not divisible by 4,
is not a Teap year) .
TEST(
A year divisible by 100,
is not a Teap year) .



TEST(
A _year not divisible by 4,
is not a leap year) .
TEST(
A year divisible by 4,
is a leap year) .
K
A year divisible by 100,
is not a leap year) .
TEST(
A year divisible by 400,
is a leap year) .



TEST(
A _year not divisible by 4,
is not a leap year) .
TEST(
A year divisible by 4 but not by 100,
is a leap year) .
K
A year divisible by 100 but not by 400,
is not a leap year) .
TEST(
A year divisible by 400,
is a leap year) .



TEST(

A year_is not a leap year,

1f it is not d1v1s1b1e _by 4) .
TEST(

A year is a leap year,

1f it is d1v1s1b1e 4 but not by 100) .
TEST(

A year is not a leap year,

if it is divisible by 100 but not by 400) .
TEST(

A year is a leap year,

if it is divisible by 400) ...



A year is not a leap year
if it is not divisible by 4

A year is a leap year
if it is divisible 4 but not by 100

A year is not a leap year
if it is divisible by 100 but not by 400

A year is a leap year
if it is divisible by 400



What's the purpose of your teste
To test that “it works”?¢
That's only half the story.

The biggest challenge in code is hot to
determine whether “it works”, but to
determine what “it works"” means.

Kevlin Henney
“Program with GUTs”

medium.com/97-things/program-with-guts-828e69dd8e 15



A year is not a leap year
if it is not divisible by 4

A year is a leap year
if it is divisible 4 but not by 100

A year is not a leap year
if it is divisible by 100 but not by 400

A year is a leap year
if it is divisible by 400



bool is leap year(int year)

{

return
year % 4 == 0 &&
year % 100 != 0 ||
year % 400 == 0;



A year is not a leap year
if it is not divisible by 4

A year is a leap year
if it is divisible 4 but not by 100

A year is not a leap year
if it is divisible by 100 but not by 400

A year is a leap year
if it is divisible by 400



bool is leap year(int year)

{
}

return year % 4 == 0;



A year is not a leap year
if it is not divisible by 4

A year is a leap year
if it is divisible 4 but not by 100

A year is a leap year
if it is divisible by 400






Common
cases

Boundary
cases



TEST(A year is supported, if it is positive)
{
ASSERT NO THROW(is_leap year(std::numeric_limits<int>::

}
TEST(A year_is not supported, if it is 0)
{
ASSERT THROW(is leap year(0), std::invalid argument);
}

TEST(A year is not supported, if it is negative)
{

ASSERT THROW(is leap year(-1), std::invalid argument);
}



TEST(A year is supported, if it is positive)

{
ASSERT NO THROW(is leap year(INT MAX));

}
TEST(A year_is not supported, if it is 0)
{
ASSERT THROW(is leap year(0), std::invalid argument);
}

TEST(A year is not supported, if it is negative)
{

ASSERT THROW(is leap year(-1), std::invalid argument);
}



A year is supported if it is positive

A year is not supported if it is O

A year is not supported. if it is negative



-




Stack

inew, push, pop, depth, top]



An abstract data type defines a
class of abstract objects which
is completely characterized by
the operations available on
those objects.

Barbara Liskov
Programming with Abstract Data Types



Y T e 4 Stack
{

new: Stack[T],

push: Stack[T] x T — Stack[T],
pop: Stack[T] + Stack[T],
depth: Stack[T] — Integer,
top: Stack[T] » T




public class Stack<T>

{

public Stack() ...

public void push(T newTop) ...
public void pop() ...

public int depth() ...

public T top() ...



public class StackTests

{

@Test
public
@Test
public
@Test
public
@Test
public
@Test
public

void testConstructor() ...

void testPush() ...
void testPop() ...
void testDepth() ...

void testTop() ...



public class StackTests

{

@Test
public
@Test
public
@Test
public
@Test
public
@Test
public

void constructor() ...

void push() ...
void pop() ...
void depth() ...

void top() ...



public class Stack<T>

{

public Stack() ...

public void push(T newTop) ...
public void pop() ...

public int depth() ...

public T top() ...



public class Stack<T>

{

public void push(T newTop) ...
public void pop() ...

public int depth() ...

public T top() ...



public class StackTests

{

@Test
public
@Test
public
@Test
public
@Test
public
@Test
public

void constructor() ...

void push() ...
void pop() ...
void depth() ...

void top() ...



public class StackTests

{

@Test

public void push() ...

@Test
public void pop() ...
@Test

public void depth() ...

@Test
public void top() ...



public class StackTests

{

@Test
public
@Test
public
@Test
public
@Test
public
@Test
public

void canBeConstructed() ...

void canBePushed() ...
void canBePopped() ...
void hasDepth() ...

void hasATop() ...



public class StackTests

{

@Test
public
@Test
public
@Test
public
@Test
public
@Test
public

void canBeConstructed() ...

void canBePushed() ...

void canSometimesBePopped() ...

void hasDepth() ...

void sometimesHasATop() ...



Given an empty stack
When an item is pushed
Then it should not be empty



Given an empty stack
When an item is pushed
Then it must not be empty



Given an empty stack
When an item is pushed
Then it is not empty



Given an empty stack

When an item is pushed

Then it has a depth of 1

And the top item is the item
that was pushed



GivenAnEmptyStackWhenAnI
temIsPushedThenItHasADep
thOf1AndTheTopItemIsThel
temThatWasPushed



Given an empty stack Whe
n an _item 1s pushed Then
1t has a depth of 1 And
~the top item i1s the ite
m_that was_ pushed



An_empty stack acquires
depth by retaining a pus
hed item as 1ts top



public class Stack spec

{
@Test
public void An_empty stack acquires depth by retaining a pushed item as its top()

{

Stack<String> stack = new Stack<>();
stack.push("rock");

assertEquals(1l, stack.depth());
assertEquals("rock", stack.top()):



public class Stack spec
{
@Test
public void A new stack is_empty() ...
@Test
public void An_empty stack throws when queried for its top item() ...
@Test
public void An_empty stack throws when popped() ...
@Test
public void An_empty stack acquires _depth by retaining a pushed item as its top() ...
@Test

public void A non_empty stack becomes deeper by retaining a pushed item as its_top() ...

@Test
public void A non_empty stack on popping reveals tops_in reverse order of pushing() ...



@DisplayNameGeneration(DisplayNameGenerator.ReplaceUnderscores.class)
public class Stack spec

{

@Test

public void A new stack is_empty() ...

@Test

public void An_empty stack throws when queried for its top item() ...

@Test

public void An_empty stack throws when popped() ...

@Test

public void An_empty stack acquires _depth by retaining a pushed item as its top() ...
@Test

public void A non_empty stack becomes deeper by retaining a pushed item as its_top() ...

@Test
public void A non_empty stack on popping reveals tops_in reverse order of pushing() ...



Stack spec

A new stack is empty

An empty stack throws when queried for its top item

An empty stack throws when popped

An empty stack acquires depth by retaining a pushed item as its top

A non empty stack becomes deeper by retaining a pushed item as its top

A non empty stack on popping reveals tops in reverse order of pushing



public class Stack spec

{
@Test
public void An_empty stack acquires depth by retaining a pushed item as its top()

{

Stack<String> stack = new Stack<>();
stack.push("rock");

assertEquals(1l, stack.depth());
assertEquals("rock", stack.top()):



mEMNEE
@Al
wBaQl

CL VR B

EdERDEG
PEELEE
GE®™®
DeagTm s
GeaaMie .
CEaEDEs
e O

Edited by Kevlin Henney

Collective Wisdom
from the Experts

1§

O’REILLY*




Write Tests for People

Gerard Meszaros



For each usage scenario, the test(s):

Describe the context, starting point, or
preconditions that must be satisfied

lllustrate how the so

fware Is invoked

Describe the expec

fed results or

postconditions to e verified

Gerard Meszaros



public class Stack spec

{

@Test

?ublic void An_empty stack acquires depth by retaining a pushed item as its top()
// Arrange:
Stack<String> stack = new Stack<>();
// Act:
stack.push("rock");
// Assert:
assertEquals(1l, stack.depth());
assertEquals("rock", stack.top()):



public class Stack spec

{

@Test

?ublic void An_empty stack acquires depth by retaining a pushed item as its top()
// Arrange:
Stack<String> stack = new Stack<>();
// Act:
stack.push("rock");
// Assert:
assertEquals(1l, stack.depth());
assertEquals("rock", stack.top()):



public class Stack spec

{
@Test
public void An_empty stack acquires depth by retaining a pushed item as its top()
{
// Given:
Stack<String> stack = new Stack<>();
// When:
stack.push("rock");
// Then:
assertEquals(1l, stack.depth());
assertEquals("rock", stack.top()):



Thinking in States

In most real-world situations, people’s
reloxed attifude to state is not an issue.
Unforfunately, however, many
programmers are quite vague about
state too — and that is a problem.

Niclas Nilsson



new

Empty

)
:

depth

pop [depth = 1]

push )(
Non-Empty

L

depth

top

push

pop [depth > 1]



new

Empty }(

s

depth
top / throw
pop / throw

pop [depth = 1]

push )(
Non-Empty

L

depth

top

push

pop [depth > 1]



public class Stack_spec

{
@Nested
public class A new_stack
{
@Test
public void is_empty() ...
}
@Nested
public class An_empty stack
{
@Test
public void throws_when queried for its top_item() ...
@Test
public void throws when popped() ...
@Test
public void acquires_depth by retaining_a pushed item as_its_top() ...
}
@Nested
public class A non_empty stack
{
@Test
public void becomes deeper by retaining a pushed item as its top() ...
@Test
public void on_popping reveals tops in reverse order of pushing() ...
}



Stack spec

A new stack

is empty

An empty stack

throws when queried for its top item
throws when popped

acquires depth by retaining a pushed item as its top

A non empty stack

becomes deeper by retaining a pushed item as its top

on popping reveals tops in reverse order of pushing



Given can be used to group
tests for operations with
respect to common
initial state



When can be used to group
tests by operation,
regardless of initial state
or outcome



Then can be used to group
tests by common
outcome, regardless of
operation or initial state



Quinte fisan
Ale,m
prince
brewb
charac
hastro
bitter

MALTS
Extra Pale, Gold

HOPS
Ahtanum, Mosa!
Simcoe, Ekuano!
Enigma

BREWEDATS -8
2 - 8 York s:n&
Bristol, BS2 9XT,




Queue

new, length, capacity, enqueue, dequeue}



public class Queue<T>

{

public Queue(int capacity) {...}

public int Length => ...;

public int Capacity => ...;

public bool Enqueue(T last) {...}
public bool Dequeue(out T result) {...}



new [Capacity > 0]

Empty

Enqueue
)( Non-Empty

)
)

b

Length
Capacity
Dequeue

Dequeue [Length = 1]

in

Length

Capacity

Enqueue

Dequeue [length > 1]



new [Capacity > 0]

Enqueue

s

Non-Empty \

Non-Full

Empty J( 2
Dequeue [Length = 1]

b

Length
Capacity
Dequeue

[Length < Capacity]

[Length = Capacity]

Full

\J

A

T

Length

Capacity

Enqueue

Dequeue [Length > 1]




namespace Queue_spec ...
public class A new queue ...

public void is_empty() .

public void preserves pos1t1ve bounding capacity() .
public void rejects a zero bound1ng capacity() .
public void rejects a negative bounding_ capac1ty()

public class An_empty queue ...

public void dequeues default values() ...
public void becomes non empty when value enqueued() ...

public class A non_empty queue ...
public class that_is not full ...
public void becomes longer when value enqueued() .

public void becomes full when enqueued up to capac1ty() R

public class that _is full ...

public void ignores further_enqueued values() ...
public void becomes non full when dequeued() ...

public void dequeues values in order enqueued() ...



Queue spec
A new queue

is empty

preserves positive bounding capacity
rejects a zero bounding capacity
rejects a negative bounding capacity

An empty queue

dequeues default values
becomes non empty when value enqueued

A non empty queue
that is not full

becomes longer when value enqueued
becomes full when enqueued up to capacity

that is full

ignores further enqueued values
becomes non full when dequeued

dequeues values in order enqueued






' Richard Dalton
@richardadalton

FizzBuzz was invented to avoid the awkwardness of realising
that nobody in the room can binary search an array.

10:29 AM - Apr 24, 2015

) 13 O 15 T, Share this Tweet

twitter.com/richardadalton/status/591534529086693376



def fizzbuzz(n):

ifn%15 == 0:
return 'FizzBuzz'
elifn% 3 == 0:
return 'Fizz'
elifn %5 ==20:
return 'Buzz'’
else:

return str(n)



def fizzbuzz(n):
return {
(False, False): str,
(True, False): lambda : 'Fizz',
(False, True): Tlambda : 'Buzz',
(True, True): 1lambda : 'FizzBuzz

}[(n %3 ==0, n%5 ==0)](n)



def

def

def

def

def

test that result for 1 is 1(n):
assert fizzbuzz(l) == '1'

test that result for 2 is 2(n):
assert fizzbuzz(2) == '2'

test that result for 3 is Fizz(n):
assert fizzbuzz(3) == 'Fizz'
test that result for 4 is 4(n):
assert fizzbuzz(4) == '4'

test that result for 5 is Buzz(n):
assert fizzbuzz(5) == 'Buzz'



every result is 'Fizz', 'Buzz', 'FizzBuzz' or decimal
every decimal result corresponds to its input

every third result contains 'Fizz'

every fifth result contains 'Buzz'

every fifteenth result is 'FizzBuzz'

the input for every 'Fizz' is divisible by 3

the input for every 'Buzz' is divisible by 5

the input for every 'FizzBuzz' is divisible by 15



@mark.parametrize('n', range(1l, 101))
def test that every result is Fizz Buzz FizzBuzz or_decimal(n):
result = fizzbuzz(n)
assert result in {'Fizz', 'Buzz', 'FizzBuzz'} or result.isdecimal ()

@mark.parametrize('n', range(1l, 101))
def test that every decimal result corresponds to its input(n):
result = fizzbuzz(n)
if result.isdecimal():
assert int(result) ==



@mark.parametrize(
'n, result’,
((i, fizzbuzz(i)) for i in range(1, 101)))

def test that every result is Fizz Buzz FizzBuzz or_decimal(n, result):
assert result in {'Fizz', 'Buzz', 'FizzBuzz'} or result.isdecimal()

@mark.parametrize(
‘'n, result’,
((i, fizzbuzz(i)) for i in range(1, 101)
if fizzbuzz(i).isdecimal()))
def test that every decimal result corresponds to its input(n, result):
assert int(result) == n



@mark.parametrize('n', range(3, 101, 3))
def test that every third result contains Fizz(n):
assert 'Fizz' in fizzbuzz(n)

@mark.parametrize('n', range(5, 101, 5))
def test that every fifth result contains Buzz(n):
assert 'Buzz' in fizzbuzz(n)

@mark.parametrize('n', range(15, 101, 15))
def test that every fifteenth result is FizzBuzz(n):
assert fizzbuzz(n) == 'FizzBuzz'



@mark.parametrize(
'n', (i for i in range(1, 101) if fizzbuzz(i) == 'Fizz'))
def test that the input for every Fizz is divisible by 3(n):
assert n % 3 ==

@mark.parametrize(
'n', (i for i in range(1, 101) if fizzbuzz(i) == 'Buzz'))
def test that the input for every Buzz is divisible by 5(n):
assert n % 5 ==

@mark.parametrize(
'n', (i for i in range(1l, 101) if fizzbuzz(i) == 'FizzBuzz'))
def test that the_ 1nput for_every FizzBuzz is divisible by 15(n):
assert n % 15 =



def
def
def
def
def
def

def

def

test that every result is Fizz Buzz FizzBuzz or decimal(...):
ié;t_that_every_decimal_resu]t_corresponds_to_its_input(...):
ié;t_that_every_third_resu]t_contains_Fizz(...):
ié;t_that_every_fifth_resu]t_contains_Buzz(...):
ié;t_that_every_fifteenth_resu]t_is_FizzBuzz(...):

test that the input for every Fizz is divisible by 3(...):
ié;t_that_the_input_for_every_Buzz_is_divisib]e_by_S(...):

test that the input for every FizzBuzz is divisible by 15(...):



every result is Fizz Buzz FizzBuzz or decimal
every decimal result corresponds to its input
every third result contains Fizz

every fifth result contains Buzz

every fifteenth result is FizzBuzz

the input for every Fizz is divisible by 3
the input for every Buzz is divisible by 5

the input for every FizzBuzz is divisible by 15



Algorithms +
Data Structures =
Programs

Niklaus Wirth



Structure +
Interpretation =
Programs



