System testing of
RabbitMQ

Practices + Tooling + Lessons Learned

Jack Vanlightly

@vanlightly
https://jack-vanlightly.com

Now
Principal Software Engineer at Splunk

Apache Pulsar & Apache BookKeeper
(massively scalable event streaming/
messaging platform)

% B6okKeeper

Previously
Staff Engineer at VMware
RabbitMQ core team member.

Py e
£1 4
. |

Performance Engineer at
CloudAMQP

What do | mean by
System Testing?

https://jack-vanlightly.com
) @vanlightly
E System Testing

“Determining how the software will
behave in the real-world”

/system-testing/what-is-system-testing 4

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Assess Assess
Performance Resiliency

Assess Correctness

By running workloads / operations
Under specific conditions
In various realistic environments

And we measure, we analyze

/system-testing/what-is-system-testing 5

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Metrics: throughput, latency, utilization,
Performance saturation, cost-of-ownership

Handles overload

Copes with adverse conditions

Assess
Resiliency Quality of service, SLIs, SLOs

Throughput, latency, availability

https://landing.google.com/sre/sre-book/chapters/service-level-objec

tives/

Properties

Assess Correctness

--

/system-testing/what-is-system-testing

https://jack-vanlightly.com

System Testing
Objectives

https://jack-vanlightly.com
@vanlightly

E System Testing Objectives

#1 Experiments, quick feedback cycle

e Make it easy for developers/testers to run experiments

e Increase the velocity of development by speeding up
the feedback cycle

e Testearly and often in the development cycle

/system-testing/objectives

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E System Testing Objectives

#2 Data-driven decision making

e Make important technical decisions on based on data

e Technology changes
o Compilers change
o Hardware changes
o Cloud and kubernetes is changing

e Don't rely on prior experience alone, base your
decisions on data

/system-testing/objectives 9

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E System Testing Objectives

#2 Data-driven decision making

“Don’t be macho. Make decisions while having

real data on-hand and limit the damage of
hubris.”

https://sled.rs/perf.html (embedded database written in Rust)

/system-testing/objectives 10

https://jack-vanlightly.com
https://sled.rs/perf.html

E System Testing Objectives

#3 Gain confidence, less surprises

e Know the lay of the land (the strengths, the
weaknesses, where the dragons are)

e How the software copes with adversity

e How the software copes with overload

/system-testing/objectives

https://jack-vanlightly.com

@vanlightly

11

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E System Testing Objectives

#4 Faster response to customer issues
e More accurate reproduction of workloads.
e Learn more from customer engagements

e Happier customers

/system-testing/objectives 12

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E System Testing Objectives

#5 Compare different versions and/or configurations for
performance regressions.

Version 3.8.8 VS Version 3.8.9

/system-testing/objectives 13

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

System Testing Objectives

#6 Ensure important properties hold under various
conditions.

Stress tests

Chaos tests
Upgrades/downgrades
Migrations

/system-testing/objectives 14

https://jack-vanlightly.com

Practices

Question Driven Testing
(or the scientific
method)

Automated Exploratory
Testing

https://jack-vanlightly.com
@vanlightly

E Question Driven Testing (and the
scientific method)

e When automation and workload generation is powerful,
answering questions is easier.

))
Follow-up —) Question/H
questions —) ypothesis ‘

Design tests

Conclusions/ E

xecute
Insights/ G Analyze ¢ tocte J
Actions

/system-testing/practices/question-driven 17

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

Case Study

New replicated queue type released called Quorum Queues. Main

engineer tells me that he strongly recommends SSDs as performance is
bad on HDDs.

Problem:

e Most customers are using HDDs

e We have no customer guidance beyond “don’t use HDDs”, because we
don’t know much ourselves.

/system-testing/practices/question-driven 18

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

Question 1: Do quorum queues perform as well as
mirrored queues on HDDs?

Test: Run a few workloads, at different intensities, using
the same hardware/OS/disk for mirrored and quorum
gueues.

Answer: Mixed. Single queue throughput is lower, but multiple
gueue throughput can be higher with HDDs. Latency is always a
little higher with HDDs.

/system-testing/practices/question-driven 19

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

But... guorum queues have a sequential disk 1O pattern which suite
HDDs well, whereas mirrored queues have a more random IO
pattern.

Hypothesis: mixing random and sequential disk access on a single
HDD will negatively impact the sequential workload.

/system-testing/practices/question-driven 20

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

Question 2: Do quorum queues perform as well as mirrored queues,
with a mixed workload that produces a lot of random 10?

Test: Run a suite of tests with a primary workload (either
mirrored or quorum queue), with a second workload that
israndom IO intensive. Run the random IO workload
from low, medium to high intensity.

Answer: Even low intensity random 1O seriously impacts quorum
gueue performance. High intensity stops the quorum queue from
functioning at all.

/system-testing/practices/question-driven 21

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

But... isolating the different disk workloads is possible. RabbitMQ
does not currently support this for quorum queues. Let’s just get
Ansible to mount an extra disk onto the quorum queue data
directory to test this. If we get a good result, we will add this support
in the next release.

Hypothesis: Isolating the random from sequential workload will
allow quorum queues to perform adequately in a mixed workload
scenario.

/system-testing/practices/question-driven 22

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

Question 3: Canisolating mirrored and quorum queue data onto
separate disks make quorum queue performance acceptable in a
mixed workload scenario?

Test: Run same tests again, with a two disk configuration.
Answer: Mixed. Quorum queues perform adequately with a second

low intensity random 10 workload. But performance still degrades
too far on high intensity random |O loads.

/system-testing/practices/question-driven 23

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

Question 4: If random and sequential workloads are isolated then
perhaps the issue is contention in the Erlang |10 schedulers?

Let’s add monitoring to capture that data and re run all
experiments to find out.

/system-testing/practices/question-driven 24

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

Final result:

1. Created customer guidance on usage of HDDs with quorum
gueues

2. Added multiple disk support in configuration.

3. ldentified future work to make quorum queue performance
better on HDDs.

/system-testing/practices/question-driven 25

https://jack-vanlightly.com

Dimensional
Testing

https://jack-vanlightly.com
@vanlightly

E Dimensional Testing

e 1dimension =1 variable of the system

e Repeat atest again and again, changing the dimension
e Eventhe developers cannot always predict how the

software will be impacted by a particular
configuration, be it software or hardware.

/system-testing/practices/dimensional-testing 27

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing

Exploring impact of a server configuration value.

Impact of Poll Interval on Leader Elections - 35% packet loss
150

Case study 1

100

50

Leader elections

Measure leader election rate as a
function of:

1000 2000 4000 6000 8000 10000 12000 14000

Poll Interval

e Packet loss Impact of Poll Interval on Leader Elections - 20% packet loss
N o 0 o 80
e Failure detector sensitivity
o Pollinterval

60

40

Leader elections

20

0
1000 2000 4000 6000 8000 10000 12000 14000

Poll Interval

/system-testing/practices/dimensional-testing 28

https://jack-vanlightly.com

Case study 2

Credit-based flow control.

publisher

publisher

publisher

publisher

publisher

/system-testing/practices/dimensional-testing

reader

reader

reader

reader

reader

channel

channel

channel

channel

channel

Dimensional Testing

Exploring impact of a server configuration value.

queue

queue

channel

channel

channel

message
store

channel

https://jack-vanlightly.com
@vanlightly

m—V consumer

29

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing

Exploring impact of a server configuration value.

Case study 2

Credit-based flow control.

- ———— -
-~ - - —~
- NS g S ~

reader channel queue msg store

Message store grants initial credit to queue, queue
PP grants initial credit to channel etc

e Incoming message flows require credit

e After performing operations, more credit is granted

/system-testing/practices/dimensional-testing 30

https://jack-vanlightly.com

31

https://jack-vanlightly.com

Aggregate Publish Rate

30 Mmil

25 Mil

20 mil

15 Mil

~_conty AT

13:00 13:30 14:00 14:30 15:00

== rabbit@rabbitmq1 Published == rabbit@rabbitmg4 Published

https://jack-vanlightly.com

Good result, the bottleneck was the disk.

Disk 1/0 bytes

381 MiB

286 MiB

191 MiB

https://jack-vanlightly.com

Publish and Consume Rate

=aHiiE

19:30 19:35 19:40 19:45 19:50 19:55 20:00 20:05 20:10 20:15 20:20 20:25 20:30

== rabbitmgq rabbit@rabbitmq1 Published == rabbitmq rabbit@rabbitmq1 Confirmed == rabbitmq rabbit@rabbitmq1 Consumed

34

https://jack-vanlightly.com

Dimensional Testing

Find the point when bottlenecks hit.

What did all the metrics look like before and after the bottleneck?
Memory pressure causes aggressive throttling of clients.

‘ RabbitMQ Memory Usage for rabbitmq1
14.0 GiB

11.6 GiB

0 B * \ » | .b'--,_.
19:30 19:35 : 19:45 19:50 19:55 20:00 20:05 20:10 20:15 20:20 20:25

== High Watermark == RabbitMQ Resident Memory

/system-testing/practices/dimensional-testing

https://jack-vanlightly.com

Growth in the number of WAL files.

WAL Flles

19:30 19:35 : : 19:55 20:00

== filecount.max

20:05

2010

20:15

20:20

20:25

20:30

36

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing

What do multiple WAL files mean? Segment writer is the bottleneck.
Causes memory growth.

Operations written
SeOpRaNtLleS Queue

Quorum
Segment Segment e
Quorum
Segment Orouo

Enqueue and ack I
o operations written to the
) -

/system-testing/practices/dimensional-testing 37

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing

e Fast Exploration
o Find better defaults
o Find problematic configurations

e Understand where breaking points or bottlenecks begin
o Examine metrics before and after to find clues as to
what the bottleneck is

e Find out where the Universal Scalability Law kicks in when

scaling out/partitioning.
https://blog.knoldus.com/understanding-laws-of-scalability-and-the-e
ffects-on-a-distributed-system/

/system-testing/practices/dimensional-testing 38

https://jack-vanlightly.com

Comparison

2

https://jack-vanlightly.com
@vanlightly

E Comparison over absolute values

We can handle 10k requests/sec on 3x16 vCPU, 32GB RAM, 250
MiB/s SSD with p29 latency under 100ms.

or or

/system-testing/practices/comparison 40

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Comparison over absolute values

Compared parallel to single segment Good
. optimization
writer.

Compared alpha build to current

. Regression
production release <

/system-testing/practices/comparison 41

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E Comparison over absolute values

Compare a workload on the “system under test” to an
“oracle” or “control”

Current

production Experimental

VS

version build

(oracle)

/system-testing/practices/comparison 42

https://jack-vanlightly.com

Publish and Consume Rate

J@MT Iy

00:00 00:10

https://jack-vanlightly.com

Publish and Consume Rate

Publish and Consume Rate

44

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E Comparison over absolute values

Compare a workload across different systems with slight
differences (storage, OS, you name it...)

VS

Single VS Multiple
writer Writers

/system-testing/practices/comparison 45

https://jack-vanlightly.com

e rabbitmqgl=ssd 1 disk

X
e rabbitmgl13=hdd 2 disks
e rabbitmgl6=hdd 3 disks

/system-testing/practices/comparison

Aggregate Publish Rate

18:48:30 18:49:00 18:49:30 18:50:00 18:50:30 18:51:00 18:51:30 18:52:00

== rabbit@rabbitmq1 Published == rabbit@rabbitmq4 Published == rabbit@rabbitmq7 Published == rabbit@rabbitmq10 Published
rabbit@rabbitmq16 Published

Aggregate Consume Rate

18:48:30 00 18:49:30 18:50:00 18:50:30 18:51:00 18:51:30 18:52:00

== rabbit@rabbitmq1 Consumed == rabbit@rabbitmg4 Consumed == rabbit@rabbitmq7 Consumed == rabbit@rabbitmq10 Consumed
rabbit@rabbitmq16 Consumed

18:52:30 18:53:00

rabbit@rabbitmq13 Published

18:52:30 18:53:00

rabbit@rabbitmq13 Consumed

46

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E Comparison over absolute values
Comparing and contrasting two slightly different workloads over
identical systems.

Case study:

Virtual hosts

1 vHost, VS 10 vHosts,
10 Queues 1 Queue per vHost

/system-testing/practices/comparison 47

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Comparison over absolute values

Comparing and contrasting two slightly different workloads over
identical systems.

vhost vhost
: | |
| é | |
| i |
i | |
Message Message
store store

/system-testing/practices/comparison 48

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E Comparison over absolute values

1 vHost, VS 10 vHosts,
10 Queues 1 Queue per vHost

Q1: Does isolating queues into separate vHosts help throughput and
latency? (Each vhost has its own message store)

Q2: Does recovery time improve with a higher vhosts-queue ratio?

Q3: Is there an upper limit on the number of vhosts? What kind of nastty
behaviour can | cause by adding lots and lots of vhosts?

/system-testing/practices/comparison 49

https://jack-vanlightly.com

Variability

https://jack-vanlightly.com
@vanlightly

Dealing with variability

Variability is your enemy

e No-one wants asystem that has wildly variable
performance

e Variability in your results can trick you

/system-testing/practices/variability 51

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dealing with variability

How do we even know variability exists in the results?

Without knowing the variability, how much confidence can you obtain
from your results?

/system-testing/practices/variability 52

https://jack-vanlightly.com

10:35 10:40 10:45

== rabbitmgq rabbit@rabbitmq1 Published ==

Publish and Consume Rate

11:00 11:05 11:10 11115

== rabbitmq rabbit@rabbitmg1 Consumed

11:20

11:25

11:30

11:35

53

https://jack-vanlightly.com

* Dealing with variability

Variability can exist within a single workload instance

Aggregate Publish Rate

18:28 18:30 18:32 18:34 18:36

== rabbit@rabbitmq1 Published == rabbit@rabbitmq4 Published == rabbit@rabbitmq10 Published == rabbit@rabbitmq13 Published

/system-testing/practices/variability

54

https://jack-vanlightly.com

* Dealing with

Variability can exist
across multiple
identical executions.

/system-testing/practices/variability

30K

19:04:00 19:04:30

19:04:00 19:04:30

19:04:00 19:04:30

variability

19:05:00 19:05:30 19:06:00

19:05:00 19:05:30 19:06:00

19:05:00 19:05:30 19:06:00

19:06:30

19:07:00 19:07:30 19:08:00

0 19:07:00 19:07:30 19:08:00

19:06:30

19:07:00 19:07:30 19:08:00

19:08:30 19:09:00 19:09:30

19:08:30 19:09:00 19:09:30

19:08:30 19:09:00 19:09:30

55

https://jack-vanlightly.com

Aggregate Publish Rate

0
18:54 18:56 18:58 19:00 19:02 19:04 19:06 19:08 19:10 1912 1914 19:16 1918 19:20

== rabbit@rabbitmq1 Published == rabbit@rabbitmg4 Published ==

https://jack-vanlightly.com

* Dealing with variability

Variability can exist across multiple identical executions.

Aggregate Publish Rate

21:22:30 21:23:00 21:23:30 21:24:00 21:24:30 21:25:00 21:25:30 21:26:00 21:26:30 21:27:00

== rabbit@rabbitmq1 Published == rabbit@rabbitmg4 Published == rabbit@rabbitmq7 Published

/system-testing/practices/variability

21:27:30

57

https://jack-vanlightly.com

Oms
21:22:30 21:23:00 21:23:30 21:24:00 21:24:30 21:25:00 21:25:30 21:26:00 21:26:30

== rabbit@rabbitmql == rabbit@rabbitmg4 == rabbit@rabbitmq7

p99 Latency

500 ms
400 ms
300 ms
200 ms
100 ms

Oms
21:22:30 21:23:00 21:23:30 21:24:00 21:24:30 21:25:00 21:25:30 21:26:00 21:26:30

== rabbit@rabbitmql == rabbit@rabbitmg4 == rabbit@rabbitmq7

21:27:00

21:27:00

21:27:30

21:27:30

58

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Reducing variability

Detecting variability

e Runningtests multiple times

e Moeasuring variability within each run and across runs.

/system-testing/practices/variability 59

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Reducing variability

Reduce variability in your environment:

e Avoid sharing infrastructure, including databases
e Isolation between tests

e Choice of hardware, OS configuration

/system-testing/practices/variability 60

https://jack-vanlightly.com

Assess correctness
and resilience

61

https://jack-vanlightly.com
@vanlightly

Assessing Correctness and
Resilience

e How to assess resilience to adverse conditions?

e Howto assess correctness?

/system-testing/practices/correctness-resilience 62

https://jack-vanlightly.com

https://iack-vanlightly.com
@vanlightly

E Assessing Correctness and

Resilience
e Metrics
o Service Level Indicators (SLIs) against Service Level Objectives
(SLOs)
m Throughput
m Latency
m Availability
https://landing.google.com/sre/sre-book/chapters/service-level-objecti
ves/

/system-testing/practices/correctness-resilience 63

https://jack-vanlightly.com

https://jack-vanlightly.com

@vanlightly
E Assessing Correctness and
Resilience

e Whenisit likely you would violate your performance
objectives?
o What are stress loads and what do they look like
(learn to recognise a stressed system)
o What component failures can cause violations?

e How canyou mitigate those risks?

/system-testing/practices/correctness-resilience 64

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E Assessing Correctness and
Resilience

e Check properties (invariants), RabbitMQ examples:
o Message loss
o Message duplication
o Message ordering

/system-testing/practices/correctness-resilience 65

https://jack-vanlightly.com

Assessing Resilience and
Correctness

e Calculate connection availability time in clients
o time clients are connected vs disconnected

e Calculate consumption availability time of
consumers
o time consumers are actively consuming
messages vs sitting waiting for messages to
arrive

/system-testing/practices/correctness-resilience

https://jack-vanlightly.com

@vanlightly

66

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Assessing Resilience and
Correctness

Use cases:

e Needed by the RabbitMQ on Kubernetes team to verify
that all operations are zero-downtime

e Testing upgrades do not cause data loss or
unavailability

e Stresstests

e Chaos tests

e Longrunning tests

/system-testing/practices/correctness-resilience 67

https://jack-vanlightly.com

Tooling - Our needs

Easy to run experiments
Measure, measure, measure

Easy to compare different versions, configurations, hardware

Be able to measure and accommodate for variability
Easy to interpret the results

Assess resilience and correctness

68

Tooling

Playlists, systems
and benchmarks

https://jack-vanlightly.com

Playlists, Systems, Benchmarks @vaniightly
and Workloads
A playlist is a sequence of benchmarks that execute on one or more systems at the
same time. Each playlist:
e Acts as a coherent grouping of benchmarks
e Can be run ad hoc or as part of a release process (still manual)
4)
Playlist
_ J

/system-testing/tooling/playlists

70

https://jack-vanlightly.com

https://jack-vanlightly.com

Playlists, Systems, Benchmarks @vanlightly
and Workloads

A system is a deployment with a specific configuration. Many can be deployed at the
same time.

4 N

Pt

\ J
/system-testing/tooling/playlists 71

https://jack-vanlightly.com

E Systems

e Asystemis adeployment unit with a specific

configuration:

o Hardware (CPUs, memory, drive size/type, network)
Host (EC2, GCP, EKS, GKE)
OS (Linux dist, configuration in case of 1aaS)
RabbitMQ (version, Erlang version)
RabbitMQ configuration
Cluster size

o O O O O

e Eachsystem can be deployed multiple times in order
to get multiple results for the same configuration
(for identifying variability and outlier results)

/system-testing/tooling/playlists

https://jack-vanlightly.com
@vanlightly

System 1

Shared
Hardware, OS
RabbitMQ
Configuration

Unique
SSD (example)

System 2

Shared
Hardware, OS
RabbitMQ
Configuration

Unique
HDD (example)

72

https://jack-vanlightly.com

System 1

Shared
Hardware, OS
RabbitMQ
Configuration

Unique
SSD

System 1

Shared
Hardware, OS
RabbitMQ
Configuration

Unique
3.8.9

/system-testing/tooling/playlists

Systems

System 2

Shared
Hardware, OS
RabbitMQ
Configuration

Unique
HDD

System 2

Shared
Hardware, OS
RabbitMQ
Configuration

Unique
3.8.10alpha 1

System 1

Shared
Hardware, OS
RabbitMQ
Configuration

Unique
Config set to X

System 1

Shared
Hardware, OS
RabbitMQ
Configuration

Unique
9 nodes

https://jack-vanlightly.com

System 2

Shared
Hardware, OS
RabbitMQ
Configuration

Unique
Configsetto Y

System 2

Shared
Hardware, OS
RabbitMQ
Configuration

Unique
11 nodes

@vanlightly

73

https://jack-vanlightly.com

Aggregate Publish Rate

11:00 11:30 12:00 12:30 13:00 13:30 14:00

== 3 nodes, 36 vCPUs, 72 GB RAM == 3 nodes, 16 vCPUs, 32 GB RAM == 5 nodes, 16 vCPUs 32 GB RAM == 7 nodes, 16 vCPUs, 32 GB RAM 5 nodes, 8 vCPUs, 16 GB RAM
7 nodes, 8 vCPUs, 16 GB RAM 9 nodes, 8 vCPUs, 16 GB RAM

https://jack-vanlightly.com

https://jack-vanlightly.com

Playlists, Systems, Benchmarks @vanlightly
and Workloads
A benchmark is a monitored/recorded workload that is applied at the same time to
each system independently.
o)
A
Benchm workload workload workload
Benchm workload workload workload
Benchm workload workload workload
Benchm workload workload workload
_ J
/system-testing/tooling/playlists 75

https://jack-vanlightly.com

Unique systems

Common workload

Common systems

Unique workloads

Common/unique workloads and
systems

https://jack-vanlightly.com

@vanlightly

s

Playist

workload workload workload
workload workload workload
workload workload workload
g J
e B\
PIayI'St Workload 1 Workload 2 Workload 3
g J

/system-testing/tooling/playlists

76

https://jack-vanlightly.com

Playlist Files

1. YAML based API
2. Host specific deployers

/system-testing/tooling/playlists

https://jack-vanlightly.com
@vanlightly

-

Playlist Flle

s

System
System 1

System ...

System N

- /

Common Workload

Benchmarks

Benchmark 1

Benchmark ...

Benchmark N

77

https://jack-vanlightly.com

Playlists

Playlist file
1 name: test-ec2-playlist
2" ArinE L
3 systems:
4 - name: sl
5 host: ec2
6 file: standard-8-vcpu-latest.yml
7 overrides:
8 hardware:
9 rabbitmq:
10 volume-config: 1-gp2-1000
11 count: 3
12 - name: s2
13 host: ec2
14 file: standard-8-vcpu-latest.yml
15 overrides:
16 hardware:
17 rabbitmq:
18 volume-config: 1-i0l-200
19 count: 3

/system-testing/tooling/playlists

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

common-workload:
main:
topology:
file: point-to-point/point-to-point-safe.json
policies:
file: mirrored-queue.json
variables:
ha-mode: exactly
ha-params: 2
step-seconds: 600
loadgen-config:
mode: benchmark
warm-up-seconds: 60
benchmarks:
- benchmark:
- workload:
main:
topology:
variables:
queues: 1
consumers: 1
publishers: 1
- benchmark:
- workload:
main:
topology:
variables:
queues: 2
consumers: 2
publishers: 2

https://iack-vanlightly.com

@vanlightly

78

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Playlists

System file
name: standard-8-vcpu-latest
host: ec2
hardware:

loadgen:
instance: 8-core-intel
rabbitmq:

instance: 8-core-intel

volume-config: 1-gp2-200

count: 3

rabbitmq:

broker:

version: 3.8.8

generic-unix-url: https://github.com/rabbitmq/rabbitmg-server/releases/download/v3.8.8/rabbitmg-server-generic-t
erlang:

version: 23.0.3

deb-url: https://packages.erlang-solutions.com/erlang/debian/pool/esl-erlang 23.0.3-1~ubuntu~bionic amd64.deb
config:

file: pause-minority-debug.yml

/system-testing/tooling/playlists 79

https://jack-vanlightly.com

Tooling

Orchestration and
Observability

https://jack-vanlightly.com
@vanlightly
E Step 1 - Deploy

Three systems deployed with run=2

System 1a

System 1b

System 2a

Orchestrator

System 2b

Addressable by a run tag (6 digit id): System 3a
e EC2-Tags
e KB8s-Context + Cluster Name

System 3b

/system-testing/tooling/orchestration+observability 81

https://jack-vanlightly.com

https://jack-vanlightly.com

@vanlightly
Architecture - Step 1 - Deploy
EKS » Clusters
Clusters (4) info
Q| Find clusters by name
Cluster name Kubernetes version

O benchmarking-eks-s1a-428437 107
O benchmarking-eks-s1b-428437 1.17
O benchmarking-eks-s23-428437 P
O benchmarking-eks-s2b-428437 1.17

/system-testing/tooling/orchestration+observability 82

https://jack-vanlightly.com

m Step 1 - Deploy

Load Gen
Instance

BhRavbitva

BhRavbitva

BhRavbitva

/system-testing/tooling/orchestration+observability

https://iack-vanlightly.com

@vanlightly
Monitoring:
e LoadGen - Micrometer (Java)
e RabbitMQ has the Prometheus
plugin (exposes /metrics)
e |aaS - Telegraf service
e K8s - Telegraf side-car
83

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly
m Step 2 - Run

Execute workload on all systems, synchronized

For each benchmark in the playlist:
System 1b

e Deploy workload generation

artefacts System 2a

Orchestrator
e Apply any network conditions System 2b

e Apply any configuration changes

System 3a

e Kick-off Java loadgen tool in each
system

e \Wait for all to complete

/system-testing/tooling/orchestration+observability 84

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly
E Step 3 - Teardown

1. Gather, compress and save logs Sysiem 1a
2. Destroy instances

Systcm 1b

I

Systcm 2a

Orchestrator
System ?2b

Sysiem 3a

System 3b

/system-testing/tooling/orchestration+observability 85

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Permanent and Ephemeral

:Orchestrator\: / \ :Orchestrator\:
| LoadGen + ! | LoadGen + !
: Systems : InfluxDB : Systems :
. & Grafana s I
& PostgreSQL G

/ /7
N - K j N 4

Orchestrator
LoadGen +
Systems

Orchestrator
LoadGen +
Systems

Orchestrator
LoadGen +
Systems

/system-testing/tooling/orchestration+observability 86

https://jack-vanlightly.com

Tooling

History and Analysis

https://jack-vanlightly.com
@vanlightly
E Rabbit Test Tool

History and repeatability

e FEverytest configuration recorded in PostgreSQL

e All binaries sourced from Github, Bintray or S3.

e Any test can be rerun with identical configuration and versions
o Same configuration
o Same hardware
o Same binaries (even experimental builds)

/system-testing/tooling/history+analysis 88

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Rabbit Test Tool

Analysis

e [nfluxDB, Grafana
o Visualization for humans
o Datamining

e Statistical analysis
o Measure variance
o Perform comparisons (incl regression detection)

e Correctness/Resilience analysis:
o Model driven mode

/system-testing/tooling/history+analysis 89

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E Model-driven Property Based Test
Mode

Detecting message loss

A}

\ \
1 |
1 1
1 1
1 1
1 1
1

1

1

conﬁrmed()i \{ Confirmed set } received()

{ Received set }

{ Confirmed } /difference { received } = { lost }

/system-testing/tooling/history+analysis 90

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E Model-driven Property Based Test
Mode

Detecting message ordering violations

Sequence numbers: 1,2,3,4,5...

/ Received queue / / received()

/1,2,4,3,5/=ordering violation!

/system-testing/tooling/history+analysis 91

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Model-driven Property Based Test
Mode

Detecting message duplication

5->{1,2,3,4,5} =Message duplication violation

/system-testing/tooling/history+analysis 92

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E Model-driven Property Based Test
Mode

Detecting connection availability

: \ / connection connected()

connected() |
closed() event queue / closed()
disconnected() ,,: disconnected()

/system-testing/tooling/history+analysis 93

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

m Model-driven Property Based Test
Mode

Detecting connection availability

CONN DIS CONN BN CONN CLOSE END
Time Time Time Time Time Time

% Connection Availability

/system-testing/tooling/history+analysis 94

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E Model-driven Property Based Test
Mode

e Allresults logged periodically to PostgreSQL with a final summary
report.

e Lowimpact so could be turned on by default

e Can be too expensive for some extreme tests with tens of millions of
messages a second

/system-testing/tooling/history+analysis 95

https://jack-vanlightly.com

Part 3 - Mistakes/
Things learneo

https://jack-vanlightly.com

#1 Micro not monolithic load @vanlightly
generation

E—
For complex, mixed workloads —
run multiple load generators Largle e
. . complex —
each with a simpler workload. workload -
E—

Workload 2 Workload 5

Workload 3 / \ Workload 6

/system-testing/lessons-learned 97

e,
E_

https://jack-vanlightly.com

https://jack-vanlightly.com

#1 Micro not monolithic load @vanlightly
generation

e Compose load-generators to form the complex
workloads you need.

e Make sure you can isolate the metrics of each
load-generator. This allows you to analyse the
impact each workload has on the other.

/system-testing/lessons-learned 98

https://jack-vanlightly.com

Publish and Consume Rate

2310 2320 23:30 00 00

https://docs.influxdata.com/influxdb/v2.0/reference/flux/stdlib/built-in/transformations/timeshift/

https://prometheus.io/docs/prometheus/latest/querying/basics/#offset-modifier

99

https://jack-vanlightly.com
https://docs.influxdata.com/influxdb/v2.0/reference/flux/stdlib/built-in/transformations/timeshift/
https://prometheus.io/docs/prometheus/latest/querying/basics/#offset-modifier

https://jack-vanlightly.com

#3 Have a Ul, create dashboard uanlightly
links

e Generate dashboard links by selecting benchmarks to
compare

e Use time shifting feature to overlay results from two or
more tests selected in the Ul

/system-testing/lessons-learned 100

https://jack-vanlightly.com

https://jack-vanlightly.com
- @vanlightly
E #4 Validate Early?

e High cost of bad input that affects a multi-hour test midway

e Trytoensurethatall inputis valid before deployment.

e MongoDB sees it differently, validation in the testing
framework is too onerous.
https://dl.acm.org/doi/pdf/10.1145/3395032.3395323

/system-testing/lessons-learned 101

https://jack-vanlightly.com

https://iack-vanlightly.com
@vanlightly

#6 Consider ways of reducing
deployment times

e Provisioning tools like Ansible can be slow
o ForlaaS systems, think about creating machine images to
avoid unnecessary config management steps.
https://www.packer.io/

e EKSisslow todeploy a K8s cluster
o Consider asingle long-lived cluster with ephemeral node

__

groups .

: [[1 :
! InfluxDB i Orchestrator | | Orchestrator |
! Grafana i LoadGen+ i i LoadGen+ b
| PostgreSQL ! Systems [Systems ! i
“Nodegroup ~ Nodegroup

https://eksctl.io/usage/eks-managed-nodes/

/system-testing/lessons-learned 102

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E #7 Use log aggregation/search
tools

e Allows you to easily watch logs in realtime

e Allows you to data mine from all previous tests

/system-testing/lessons-learned 103

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

E #8 Use defaults files

e Hard-coding defaults into the testing framework makes it
hard to find out what the defaults are, or that defaults even
exist.

/system-testing/lessons-learned 104

https://jack-vanlightly.com

Some important conclusions...

System testing is complimentary to your other testing,
good for:

o Performance

o Resilience

o Correctness

Don’t wait till the end of the dev cycle to run system tests

Powerful automation and workload generation make
answering questions easy.

Model driven, property based checking is a powerful but
simple concept.

105

https://sled.rs/perf.html

https://dl.acm.org/doi/pdf/10.1145/3395032.3395323

https://dl.acm.org/doi/10.1145/3358960.3375791

https://dri.es/files/oopla07-georges.pdf

https://syslab.cs.washington.edu/papers/latency-socc14.pdf

https://www.usenix.org/system/files/osdi18-maricq.pdf

https://sled.rs/perf.html
https://dl.acm.org/doi/pdf/10.1145/3395032.3395323
https://dl.acm.org/doi/10.1145/3358960.3375791
https://dri.es/files/oopla07-georges.pdf
https://syslab.cs.washington.edu/papers/latency-socc14.pdf
https://www.usenix.org/system/files/osdi18-maricq.pdf

Thank you

https://jack-vanlightly.com
@vanlightly

Dealing with variability

Signal processing strategy (used by MongoDB):

Tests executed every X hours, each time on new hardware

. v

4000 4\

3000

Throughput

2000

1000

0

Tests executed every X hours, each time on new hardware
6000

4000 -

2000 \

0

Throughput

/system-testing/practices/variability/measurement/signal-processing 109

https://jack-vanlightly.com

