
System testing of
RabbitMQ

Practices + Tooling + Lessons Learned

1

Jack Vanlightly

@vanlightly
https://jack-vanlightly.com

Now
Principal Software Engineer at Splunk

Apache Pulsar & Apache BookKeeper
(massively scalable event streaming/
messaging platform)

2

Previously
Staff Engineer at VMware
RabbitMQ core team member.

Performance Engineer at
CloudAMQP

What do I mean by
System Testing?

3

https://jack-vanlightly.com
@vanlightly

System Testing

“Determining how the software will

behave in the real-world”

4/system-testing/what-is-system-testing

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

System Testing

Assess
Performance

Assess
Resiliency

Assess Correctness

By running workloads / operations

Under specific conditions

In various realistic environments

5

And we measure, we analyze

/system-testing/what-is-system-testing

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

System Testing

Assess
Performance

Assess
Resiliency

Assess Correctness

6

Metrics: throughput, latency, utilization,
saturation, cost-of-ownership

Quality of service, SLIs, SLOs
Throughput, latency, availability
https://landing.google.com/sre/sre-book/chapters/service-level-objec
tives/

Properties

/system-testing/what-is-system-testing

Handles overload
Copes with adverse conditions

https://jack-vanlightly.com

System Testing
Objectives

7

https://jack-vanlightly.com
@vanlightly

System Testing Objectives

#1 Experiments, quick feedback cycle

8/system-testing/objectives

● Make it easy for developers/testers to run experiments

● Increase the velocity of development by speeding up

the feedback cycle

● Test early and often in the development cycle

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

System Testing Objectives

#2 Data-driven decision making

9/system-testing/objectives

● Make important technical decisions on based on data

● Technology changes

○ Compilers change

○ Hardware changes

○ Cloud and kubernetes is changing

● Don’t rely on prior experience alone, base your

decisions on data

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

System Testing Objectives

#2 Data-driven decision making

“Don’t be macho. Make decisions while having
real data on-hand and limit the damage of
hubris.”

https://sled.rs/perf.html (embedded database written in Rust)

10/system-testing/objectives

https://jack-vanlightly.com
https://sled.rs/perf.html

https://jack-vanlightly.com
@vanlightly

System Testing Objectives

#3 Gain confidence, less surprises

11/system-testing/objectives

● Know the lay of the land (the strengths, the

weaknesses, where the dragons are)

● How the software copes with adversity

● How the software copes with overload

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

System Testing Objectives

#4 Faster response to customer issues

12/system-testing/objectives

● More accurate reproduction of workloads.

● Learn more from customer engagements

● Happier customers

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

System Testing Objectives

#5 Compare different versions and/or configurations for
performance regressions.

Version 3.8.8 Version 3.8.9vs

13/system-testing/objectives

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

System Testing Objectives

#6 Ensure important properties hold under various
conditions.

● Stress tests

● Chaos tests

● Upgrades/downgrades

● Migrations

14/system-testing/objectives

https://jack-vanlightly.com

Practices

15

Question Driven Testing
(or the scientific

method)

16

Automated Exploratory
Testing

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)
● When automation and workload generation is powerful,

answering questions is easier.

Question/H
ypothesis

Design tests

Execute
tests

Analyze
Conclusions/
Insights/
Actions

Follow-up
questions

17/system-testing/practices/question-driven

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

Case Study

New replicated queue type released called Quorum Queues. Main
engineer tells me that he strongly recommends SSDs as performance is
bad on HDDs.

18/system-testing/practices/question-driven

Problem:

● Most customers are using HDDs
● We have no customer guidance beyond “don’t use HDDs”, because we

don’t know much ourselves.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

Question 1: Do quorum queues perform as well as
mirrored queues on HDDs?

19/system-testing/practices/question-driven

Answer: Mixed. Single queue throughput is lower, but multiple
queue throughput can be higher with HDDs. Latency is always a
little higher with HDDs.

Test: Run a few workloads, at different intensities, using
the same hardware/OS/disk for mirrored and quorum
queues.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

20/system-testing/practices/question-driven

But… quorum queues have a sequential disk IO pattern which suite
HDDs well, whereas mirrored queues have a more random IO
pattern.

Hypothesis: mixing random and sequential disk access on a single
HDD will negatively impact the sequential workload.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

21/system-testing/practices/question-driven

Question 2: Do quorum queues perform as well as mirrored queues,
with a mixed workload that produces a lot of random IO?

Answer: Even low intensity random IO seriously impacts quorum
queue performance. High intensity stops the quorum queue from
functioning at all.

Test: Run a suite of tests with a primary workload (either
mirrored or quorum queue), with a second workload that
is random IO intensive. Run the random IO workload
from low, medium to high intensity.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

22/system-testing/practices/question-driven

But… isolating the different disk workloads is possible. RabbitMQ
does not currently support this for quorum queues. Let’s just get
Ansible to mount an extra disk onto the quorum queue data
directory to test this. If we get a good result, we will add this support
in the next release.

Hypothesis: Isolating the random from sequential workload will
allow quorum queues to perform adequately in a mixed workload
scenario.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

23/system-testing/practices/question-driven

Question 3: Can isolating mirrored and quorum queue data onto
separate disks make quorum queue performance acceptable in a
mixed workload scenario?

Answer: Mixed. Quorum queues perform adequately with a second
low intensity random IO workload. But performance still degrades
too far on high intensity random IO loads.

Test: Run same tests again, with a two disk configuration.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

24/system-testing/practices/question-driven

Question 4: If random and sequential workloads are isolated then
perhaps the issue is contention in the Erlang IO schedulers?

Let’s add monitoring to capture that data and re run all
experiments to find out.

...

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Question Driven Testing (and the
scientific method)

25/system-testing/practices/question-driven

Final result:

1. Created customer guidance on usage of HDDs with quorum
queues

2. Added multiple disk support in configuration.
3. Identified future work to make quorum queue performance

better on HDDs.

https://jack-vanlightly.com

Dimensional
Testing

26

https://jack-vanlightly.com
@vanlightly

Dimensional Testing

● 1 dimension = 1 variable of the system

27/system-testing/practices/dimensional-testing

● Repeat a test again and again, changing the dimension

● Even the developers cannot always predict how the
software will be impacted by a particular
configuration, be it software or hardware.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing
Exploring impact of a server configuration value.

28/system-testing/practices/dimensional-testing

Case study 1

Measure leader election rate as a
function of:

● Packet loss
● Failure detector sensitivity

○ Poll interval

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing
Exploring impact of a server configuration value.

29/system-testing/practices/dimensional-testing

Case study 2

Credit-based flow control.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing
Exploring impact of a server configuration value.

30/system-testing/practices/dimensional-testing

Case study 2

Credit-based flow control.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing
Exploring impact of a server configuration value.

31/system-testing/practices/dimensional-testing

Case study 2

Credit-based flow
control.

Run a stress test
repeatedly, with
different flow
control settings.

Current defaults

Lower credit Higher credit

New defaults

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing
Find the point when bottlenecks hit.

32/system-testing/practices/dimensional-testing

Case study 3

Do the new RabbitMQ streams scale out horizontally? Do we reach contention
inside RabbitMQ before reaching hardware limits?

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing

What did all the metrics look like before and after the bottleneck?

33/system-testing/practices/dimensional-testing

Find the point when bottlenecks hit.

Good result, the bottleneck was the disk.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing
Find the point when bottlenecks hit.

34/system-testing/practices/dimensional-testing

Case study 4

A customer reports scaling issues with their workload. We reproduce.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing

What did all the metrics look like before and after the bottleneck?

35/system-testing/practices/dimensional-testing

Find the point when bottlenecks hit.

Memory pressure causes aggressive throttling of clients.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing

Did something correlate to that memory jump?

36/system-testing/practices/dimensional-testing

Growth in the number of WAL files.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing
What do multiple WAL files mean?

37/system-testing/practices/dimensional-testing

Segment writer is the bottleneck.
Causes memory growth.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dimensional Testing

● Fast Exploration
○ Find better defaults
○ Find problematic configurations

38/system-testing/practices/dimensional-testing

● Understand where breaking points or bottlenecks begin
○ Examine metrics before and after to find clues as to

what the bottleneck is

● Find out where the Universal Scalability Law kicks in when
scaling out/partitioning.
https://blog.knoldus.com/understanding-laws-of-scalability-and-the-e
ffects-on-a-distributed-system/

https://jack-vanlightly.com

Comparison

39

https://jack-vanlightly.com
@vanlightly

Comparison over absolute values

We can handle 10k requests/sec on 3x16 vCPU, 32GB RAM, 250

MiB/s SSD with p99 latency under 100ms.

40/system-testing/practices/comparison

Good? Bad?or Meh?or

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Comparison over absolute values

Compared parallel to single segment

writer.

41/system-testing/practices/comparison

Compared alpha build to current

production release

Good
optimization

Regression

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Comparison over absolute values

Compare a workload on the “system under test” to an

“oracle” or “control”

42/system-testing/practices/comparison

Current
production

version
(oracle)

Experimental
buildvs

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Comparison over absolute values

43/system-testing/practices/comparison

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Comparison over absolute values

44/system-testing/practices/comparison

The Oracle

The

experimental

build

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Comparison over absolute values
Compare a workload across different systems with slight

differences (storage, OS, you name it…)

45/system-testing/practices/comparison

HDD SSDvs

1 disk 2 disksvs 3 disksvs

Single
writer

Multiple
Writers

vs

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

46/system-testing/practices/comparison

● rabbitmq1=ssd 1 disk

● rabbitmq4=ssd 2 disks

● rabbitmq7=ssd 3 disks

● rabbitmq10=hdd 1 disk

● rabbitmq13=hdd 2 disks

● rabbitmq16=hdd 3 disks

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Comparison over absolute values
Comparing and contrasting two slightly different workloads over

identical systems.

47/system-testing/practices/comparison

1 vHost,
10 Queues

10 vHosts,
1 Queue per vHost

vs

Case study:

Virtual hosts

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Comparison over absolute values
Comparing and contrasting two slightly different workloads over

identical systems.

48/system-testing/practices/comparison

vhost 1

queue

queue

queue

user

vhost 1

queue

queue

queue

user

routing

vhost vhost

Message
store

Message
store

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Comparison over absolute values

49/system-testing/practices/comparison

1 vHost,
10 Queues

10 vHosts,
1 Queue per vHost

vs

Q1: Does isolating queues into separate vHosts help throughput and
latency? (Each vhost has its own message store)

Q2: Does recovery time improve with a higher vhosts-queue ratio?

Q3: Is there an upper limit on the number of vhosts? What kind of nastty
behaviour can I cause by adding lots and lots of vhosts?

https://jack-vanlightly.com

Variability

50

https://jack-vanlightly.com
@vanlightly

Dealing with variability

Variability is your enemy

51/system-testing/practices/variability

● No-one wants a system that has wildly variable

performance

● Variability in your results can trick you

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Dealing with variability

How do we even know variability exists in the results?

52

Without knowing the variability, how much confidence can you obtain

from your results?

/system-testing/practices/variability

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Variability can exist within a single workload instance

53

Dealing with variability

/system-testing/practices/variability

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Variability can exist within a single workload instance

54

Dealing with variability

/system-testing/practices/variability

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

55

Dealing with variability

/system-testing/practices/variability

Variability can exist

across multiple

identical executions.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Variability can exist across multiple identical executions.

56

Dealing with variability

/system-testing/practices/variability

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Variability can exist across multiple identical executions.

57

Dealing with variability

/system-testing/practices/variability

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Variability can exist across multiple identical executions.

58

Dealing with variability

/system-testing/practices/variability

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

59

Detecting variability

● Measuring variability within each run and across runs.

● Running tests multiple times

/system-testing/practices/variability

Reducing variability

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

60

Reduce variability in your environment:

● Isolation between tests

● Choice of hardware, OS configuration

● Avoid sharing infrastructure, including databases

/system-testing/practices/variability

Reducing variability

https://jack-vanlightly.com

Assess correctness
and resilience

61

https://jack-vanlightly.com
@vanlightly

Assessing Correctness and
Resilience

● How to assess resilience to adverse conditions?

● How to assess correctness?

62/system-testing/practices/correctness-resilience

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Assessing Correctness and
Resilience

● Metrics
○ Service Level Indicators (SLIs) against Service Level Objectives

(SLOs)
■ Throughput
■ Latency
■ Availability

https://landing.google.com/sre/sre-book/chapters/service-level-objecti
ves/

63/system-testing/practices/correctness-resilience

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Assessing Correctness and
Resilience

64/system-testing/practices/correctness-resilience

● When is it likely you would violate your performance
objectives?
○ What are stress loads and what do they look like

(learn to recognise a stressed system)
○ What component failures can cause violations?

● How can you mitigate those risks?

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

● Check properties (invariants), RabbitMQ examples:
○ Message loss
○ Message duplication
○ Message ordering

65/system-testing/practices/correctness-resilience

Assessing Correctness and
Resilience

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

66

Assessing Resilience and
Correctness

/system-testing/practices/correctness-resilience

● Calculate connection availability time in clients
○ time clients are connected vs disconnected

● Calculate consumption availability time of
consumers
○ time consumers are actively consuming

messages vs sitting waiting for messages to
arrive

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Assessing Resilience and
Correctness

Use cases:

67/system-testing/practices/correctness-resilience

● Needed by the RabbitMQ on Kubernetes team to verify
that all operations are zero-downtime

● Testing upgrades do not cause data loss or
unavailability

● Stress tests

● Chaos tests

● Long running tests

https://jack-vanlightly.com

Tooling - Our needs

68

● Easy to run experiments

● Measure, measure, measure

● Easy to compare different versions, configurations, hardware

● Be able to measure and accommodate for variability

● Easy to interpret the results

● Assess resilience and correctness

Tooling

Playlists, systems
and benchmarks

69

https://jack-vanlightly.com
@vanlightly

Playlist

Playlists, Systems, Benchmarks
and Workloads

Benchmark #1

Benchmark #2

Benchmark #3

Benchmark #4

A playlist is a sequence of benchmarks that execute on one or more systems at the
same time. Each playlist:

● Acts as a coherent grouping of benchmarks
● Can be run ad hoc or as part of a release process (still manual)

70/system-testing/tooling/playlists

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Playlist

Playlists, Systems, Benchmarks
and Workloads

System 1 System 2 System 3

Benchmark #1

Benchmark #2

Benchmark #3

Benchmark #4

A system is a deployment with a specific configuration. Many can be deployed at the
same time.

71/system-testing/tooling/playlists

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

System 1

Shared
Hardware

OS
RabbitMQ

Configuration

Unique
SSD (example)

Systems

System 1

Shared
Hardware, OS

RabbitMQ
Configuration

Unique
SSD (example)

System 1

Shared
Hardware

OS
RabbitMQ

Configuration

Unique
SSD (example)

System 2

Shared
Hardware, OS

RabbitMQ
Configuration

Unique
HDD (example)

● A system is a deployment unit with a specific

configuration:
○ Hardware (CPUs, memory, drive size/type, network)

○ Host (EC2, GCP, EKS, GKE)

○ OS (Linux dist, configuration in case of IaaS)

○ RabbitMQ (version, Erlang version)

○ RabbitMQ configuration

○ Cluster size

72/system-testing/tooling/playlists

● Each system can be deployed multiple times in order

to get multiple results for the same configuration

(for identifying variability and outlier results)

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Systems

System 1

Shared
Hardware, OS

RabbitMQ
Configuration

Unique
SSD

System 2

Shared
Hardware, OS

RabbitMQ
Configuration

Unique
HDD

73/system-testing/tooling/playlists

System 1

Shared
Hardware, OS

RabbitMQ
Configuration

Unique
3.8.9

System 2

Shared
Hardware, OS

RabbitMQ
Configuration

Unique
3.8.10 alpha 1

System 1

Shared
Hardware, OS

RabbitMQ
Configuration

Unique
Config set to X

System 2

Shared
Hardware, OS

RabbitMQ
Configuration

Unique
Config set to Y

System 1

Shared
Hardware, OS

RabbitMQ
Configuration

Unique
9 nodes

System 2

Shared
Hardware, OS

RabbitMQ
Configuration

Unique
11 nodes

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

74/system-testing/tooling/playlists

Systems

7 system cluster sizing test. Increasing throughput.

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Playlist

Playlists, Systems, Benchmarks
and Workloads

System 1 System 2 System 3

Benchmark #1

Benchmark #2

Benchmark #3

Benchmark #4

workload

A benchmark is a monitored/recorded workload that is applied at the same time to
each system independently.

75/system-testing/tooling/playlists

workload workload

workload workload workload

workload workload workload

workload workload workload

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Playlist System 1 System 2 System 3

Benchmark #1

Benchmark #2

Benchmark #3

workload

Playlist Workload 1 Workload 2 Workload 3

Benchmark #1

Benchmark #2

Benchmark #3

system

Common/unique workloads and
systems

Unique systems

Common workload

Common systems

Unique workloads

76/system-testing/tooling/playlists

workload workload

workload workload workload

workload workload workload

system system

system system system

system system system

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Playlist Files Playlist FIle

System

Common Workload

Benchmarks

System 1

System N

System ...

Benchmark 1

Benchmark N

Benchmark ...

1. YAML based API
2. Host specific deployers

77/system-testing/tooling/playlists

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Playlists

78/system-testing/tooling/playlists

Playlist file

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Playlists

79/system-testing/tooling/playlists

System file

https://jack-vanlightly.com

Tooling

Orchestration and
Observability

80

https://jack-vanlightly.com
@vanlightly

Step 1 - Deploy

Orchestrator

System 1b

System 2a

System 3a

M

M

M

System 1a

System 2b M

System 3b M

M

Addressable by a run tag (6 digit id):
● EC2 - Tags
● K8s - Context + Cluster Name

Three systems deployed with run=2

81/system-testing/tooling/orchestration+observability

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Architecture - Step 1 - Deploy

82/system-testing/tooling/orchestration+observability

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

System

Step 1 - Deploy

M

RabbitMQ M

M

Load Gen
Instance

Monitoring:

● LoadGen - Micrometer (Java)
● RabbitMQ has the Prometheus

plugin (exposes /metrics)
● IaaS - Telegraf service
● K8s - Telegraf side-car

RabbitMQ

RabbitMQ

83/system-testing/tooling/orchestration+observability

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Step 2 - Run

Orchestrator

System 1b

System 2a

System 3a

M

M

M

System 1a

System 2b M

System 3b M

M
Execute workload on all systems, synchronized

For each benchmark in the playlist:

84/system-testing/tooling/orchestration+observability

● Deploy workload generation
artefacts

● Apply any network conditions

● Apply any configuration changes

● Kick-off Java loadgen tool in each
system

● Wait for all to complete

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Step 3 - Teardown

Orchestrator

System 1b

System 2a

System 3a

System 1a

System 2b

System 3b

1. Gather, compress and save logs
2. Destroy instances

85/system-testing/tooling/orchestration+observability

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Orchestrator
LoadGen +

Systems

Permanent and Ephemeral

InfluxDB
Grafana

PostgreSQL

Orchestrator
LoadGen +

SystemsOrchestrator
LoadGen +

Systems

Orchestrator
LoadGen +

Systems

Orchestrator
LoadGen +

Systems

86/system-testing/tooling/orchestration+observability

https://jack-vanlightly.com

Tooling

History and Analysis

87

https://jack-vanlightly.com
@vanlightly

Rabbit Test Tool

History and repeatability

88/system-testing/tooling/history+analysis

● Every test configuration recorded in PostgreSQL

● All binaries sourced from Github, Bintray or S3.

● Any test can be rerun with identical configuration and versions
○ Same configuration
○ Same hardware
○ Same binaries (even experimental builds)

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Rabbit Test Tool
Analysis

89/system-testing/tooling/history+analysis

● InfluxDB, Grafana
○ Visualization for humans
○ Data mining

● Statistical analysis
○ Measure variance
○ Perform comparisons (incl regression detection)

● Correctness/Resilience analysis:
○ Model driven mode

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Load Generator

Model-driven Property Based Test
Mode

90/system-testing/tooling/history+analysis

Publisher Consumer

Detecting message loss

Model

{ Confirmed set }

{ Received set }

{ Confirmed } /difference { received } = { lost }

confirmed() received()

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Load Generator

Model-driven Property Based Test
Mode

91/system-testing/tooling/history+analysis

Publisher Consumer

Detecting message ordering violations

Model

/ Received queue /

/ 1, 2, 4, 3, 5 / = ordering violation!

received()

Sequence numbers: 1,2,3,4,5...

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Load Generator

Model-driven Property Based Test
Mode

92/system-testing/tooling/history+analysis

Consumer

Detecting message duplication

Model

{ Received set }

5 -> { 1 , 2, 3, 4, 5 } = Message duplication violation

received()

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Load Generator

Model-driven Property Based Test
Mode

93/system-testing/tooling/history+analysis

Publisher Consumer

Detecting connection availability

Model

/ connection
event queue /

connected()
closed()
disconnected()

connected()
closed()
disconnected()

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Model-driven Property Based Test
Mode

94/system-testing/tooling/history+analysis

Detecting connection availability

CONN
Time

DIS
Time

CONN
Time

DIS
Time

CONN
Time

CLOSE
Time

END

% Connection Availability

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Model-driven Property Based Test
Mode

● All results logged periodically to PostgreSQL with a final summary

report.

● Low impact so could be turned on by default

● Can be too expensive for some extreme tests with tens of millions of

messages a second

95/system-testing/tooling/history+analysis

https://jack-vanlightly.com

Part 3 - Mistakes/
 Things learned

96

https://jack-vanlightly.com
@vanlightly#1 Micro not monolithic load

 generation

For complex, mixed workloads
run multiple load generators
each with a simpler workload.

97

Large
complex

workload

Workload 1

Workload 2

Workload 3

Workload 4

Workload 5

Workload 6

/system-testing/lessons-learned

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly#1 Micro not monolithic load

 generation

98

● Compose load-generators to form the complex

workloads you need.

● Make sure you can isolate the metrics of each

load-generator. This allows you to analyse the

impact each workload has on the other.

/system-testing/lessons-learned

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly#2 Use time shifting for

overlaying metrics
Use timeShift() / offset modifiers for alignment

○ Reuse old results
○ Greater scheduling freedom

99

timeShift()

/system-testing/lessons-learned

https://docs.influxdata.com/influxdb/v2.0/reference/flux/stdlib/built-in/transformations/timeshift/
https://prometheus.io/docs/prometheus/latest/querying/basics/#offset-modifier

https://jack-vanlightly.com
https://docs.influxdata.com/influxdb/v2.0/reference/flux/stdlib/built-in/transformations/timeshift/
https://prometheus.io/docs/prometheus/latest/querying/basics/#offset-modifier

https://jack-vanlightly.com
@vanlightly#3 Have a UI, create dashboard

links

100

● Generate dashboard links by selecting benchmarks to

compare

● Use time shifting feature to overlay results from two or

more tests selected in the UI

/system-testing/lessons-learned

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

#4 Validate Early?

● High cost of bad input that affects a multi-hour test midway

101

● Try to ensure that all input is valid before deployment.

● MongoDB sees it differently, validation in the testing

framework is too onerous.

https://dl.acm.org/doi/pdf/10.1145/3395032.3395323

/system-testing/lessons-learned

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

Kubernetes Cluster

#6 Consider ways of reducing
deployment times
● Provisioning tools like Ansible can be slow

○ For IaaS systems, think about creating machine images to
avoid unnecessary config management steps.
https://www.packer.io/

102

● EKS is slow to deploy a K8s cluster
○ Consider a single long-lived cluster with ephemeral node

groups

Orchestrator
LoadGen +

Systems

InfluxDB
Grafana

PostgreSQL

Node groupNode group Node group

Orchestrator
LoadGen +

Systems

/system-testing/lessons-learned

https://eksctl.io/usage/eks-managed-nodes/

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

#7 Use log aggregation/search
 tools

● Allows you to easily watch logs in realtime

● Allows you to data mine from all previous tests

103/system-testing/lessons-learned

https://jack-vanlightly.com

https://jack-vanlightly.com
@vanlightly

#8 Use defaults files

● Hard-coding defaults into the testing framework makes it

hard to find out what the defaults are, or that defaults even

exist.

104/system-testing/lessons-learned

https://jack-vanlightly.com

Some important conclusions...

105

● Don’t wait till the end of the dev cycle to run system tests

● Model driven, property based checking is a powerful but
simple concept.

● Powerful automation and workload generation make
answering questions easy.

● System testing is complimentary to your other testing,
good for:
○ Performance
○ Resilience
○ Correctness

Some reading materials

● Funny but insightful: https://sled.rs/perf.html
● MongoDB paper on their system testing framework and practices:

https://dl.acm.org/doi/pdf/10.1145/3395032.3395323
● MongoDB paper on automated regression detection (using signal

processing approach): https://dl.acm.org/doi/10.1145/3358960.3375791
● Statistical rigor in benchmarking (using confidence interval approach):

https://dri.es/files/oopla07-georges.pdf
● Paper on causes of tail latency:

https://syslab.cs.washington.edu/papers/latency-socc14.pdf
● Paper on reducing variability:

https://www.usenix.org/system/files/osdi18-maricq.pdf

106

https://sled.rs/perf.html
https://dl.acm.org/doi/pdf/10.1145/3395032.3395323
https://dl.acm.org/doi/10.1145/3358960.3375791
https://dri.es/files/oopla07-georges.pdf
https://syslab.cs.washington.edu/papers/latency-socc14.pdf
https://www.usenix.org/system/files/osdi18-maricq.pdf

Thank you

107

108

https://jack-vanlightly.com
@vanlightly

Signal processing strategy (used by MongoDB):

109

Dealing with variability

/system-testing/practices/variability/measurement/signal-processing

https://jack-vanlightly.com

