
WebdriverIO
2020, Oleksandr Khotemskyi  

xotabu4.github.io

http://xotabu4.github.io
http://xotabu4.github.io

Independent Contractor,
Software Developer Engineer in Test

Hello!
I Am Oleksandr Khotemskyi

Contacts: xotabu4.github.io

http://xotabu4.github.io
http://xotabu4.github.io

Plan and seed project

Part 1

What is WebdriverIO?

History

• WebdriverIO was originally named WebdriverJS
(before 2.0.0)

• Renamed to WebdriverIO in 2.0.0

• First version released long time ago and greatly
evolved since then

Looking inside
How it is built?

Appium support

• Appium JSON wire protocol is
fully supported for both iOS
and Android

• WebdriverIO can be used for
both mobile web and native
applications

• Also different test farms like
SauceLabs are supported out
of the box

TypeScript support

• TypeScript typings are included
for both sync and async modes

• Provides autocompletion

• Provides types checks

• Provides code downgrade to
be able to run on old NodeJS
versions

CDP support

• WDIO has possibility to run commands thru
Chrome debug protocol or webdriver protocol

• Also separate devtools service can be added
to project

Part 2

Explicit waits

• There are only 3 prepared conditions to wait:

• waitForDisplayed

• waitForEnabled

• waitForExist

• They should be called on Element object

• And one more, universal - browser.waitUntil,
that can take any function to wait for

Page Objects and Page
Components

• Elements that you want to use inside
PageObjects must be wrapped to getters or
function

• This is needed because Page Object is created
BEFORE browser is actually started, and all
element searches at that point will receive
‘undefined’

• Things are getting even harder when you want to
split to components

• Sometimes people just store locators as strings
instead storing elements in page objects

Lazy elements
• Lazy Elements it is test automation pattern for

searching for elements on the page

• It allows to start searching only when element is
actually needed in tests - when you try to call
some actions on it

• Also allows to automatically re-search element if
it was re-created in DOM

• WebdriverIO claims that it uses this pattern

• But there is no any docs how it works

Part 3

Sync mode
• No need to worry about promises, callbacks,

async/await, control flow

• Much simpler to understand for beginners

• You can use core JavaScript features to handle
exceptions, iterate, and others (try/catch, for/of
…)

• Cant forget about putting await, or handle
rejections

• Reduces cognitive load

WebdriverIO

ProtractorJS

Fibers?
• Fibers (coroutines, рус. Сопрограммы) -

programming approach to control concurrent code
execution

• One of the main problems with automated tests that
you need all your commands to be synchronized

• For example in official selenium webdriverjs you
need to put ‘await’ before every async action

• Fibers allows to suspend code execution and
continue it without callbacks, control flows, promises
or async/await

• Your code looks synchronous, but actually it is
multithreaded on C++ level

Fibers

WebdriverIO packages

• WebdriverIO is actually a lot of different
packages, that work together

• There are different packages to handle
different aspects of your tests

• Each package can be used separately,
or in combination with others

• Each package might have different
versions, and aims to be independent
from others

webdriver package
• Sends commands thru HTTP to

webdriver protocol compatible
server

• Parses responses into objects

• Provides commands for appium

• Another implementation of
webdriver client for javascript
(instead official webdriverjs)

• When used as it is - it is called
Standalone Mode

https://github.com/webdriverio/webdriverio/tree/master/packages/webdriver
https://github.com/webdriverio/webdriverio/tree/master/packages/webdriver

• Special high-level framework that helps
organize your code into tests

• Wraps test-runners like jasmine, mocha,
cucumber, launches and controls them

• Provides support for configuration files

• Allows connecting additional reporters

• Allows connecting additional services

webdriverio package

https://github.com/webdriverio/webdriverio/blob/master/packages/webdriverio
https://github.com/webdriverio/webdriverio/blob/master/packages/webdriverio

Other packages
• Reporting packages

• Allure

• Different console reporters

• Junit

• Framework support

• MochaJS

• JasmineJS

• CucumberJS

• CLI - command line support

• Logging package

• And many others

Part 4

CLI (Command line
interface)

• WebdriverIO on start can accept some additional
options

• This is useful to dynamically pass some arguments

• Also it can generate config file with step-by-step
questions

https://webdriver.io/docs/clioptions.html

https://webdriver.io/docs/configurationfile.html
https://webdriver.io/docs/configurationfile.html

https://webdriver.io/docs/clioptions.html

https://webdriver.io/docs/configurationfile.html
https://webdriver.io/docs/configurationfile.html

Configuration file

• Entry-point for your webdriverIO project

• Configuration is written as JS object, and can be
dynamic

• Allows to define various parts of how your tests should
be executed

https://webdriver.io/docs/configurationfile.html

https://webdriver.io/docs/configurationfile.html
https://webdriver.io/docs/configurationfile.html

Services
• In configuration file you can set

special hooks-functions

• They allow to inject your code
into running tests

• For example - “run this function
at the end of everything”

• But if you have too many big
hooks, you can migrate them
away from configuration file into
separate module, called
Service

https://webdriver.io/docs/customservices.html

https://webdriver.io/docs/customservices.html
https://webdriver.io/docs/customservices.html

Supported service hooks

Reporters
• WebdriverIO tests runner allows to add own

test execution flow events

• You can create own Reporter

• Uses event listener approach to react to
events happening in your running tests

• Primary idea - allow to collect test results
and work with them

https://webdriver.io/docs/customreporter.html

https://webdriver.io/docs/customreporter.html
https://webdriver.io/docs/customreporter.html

Supported Reporter events

• onRunnerStart () {}

• onBeforeCommand () {}

• onAfterCommand () {}

• onScreenshot () {}

• onSuiteStart () {}

• onHookStart () {}

• onHookEnd () {}

• onTestStart () {}

• onTestPass () {}

• onTestFail () {}

• onTestSkip () {}

• onTestEnd () {}

• onSuiteEnd () {}

• onRunnerEnd () {}

Thanks!
2020, Oleksandr Khotemskyi  

xotabu4.github.io

http://xotabu4.github.io
http://xotabu4.github.io

