
Security testing at (large) scale
Claudio Criscione - @paradoxengine

Hollywood mode off

@paradoxengine - Hollywood mode off

Who is this guy on stage?

Claudio Criscione

@paradoxengine

Security Automation @ Google Zurich

Fundamentally a “web security guy”

2

@paradoxengine - Hollywood mode off
3

This talk is the first-hand account of what I
learnt in the last few years building
automation for web security testing at
Google: what worked, what did not .

I don’t claim silver bullets. If you implement
any of this and it works for you, let me know!

@paradoxengine - Hollywood mode off

How do you “solve security” at a scale?

4

@paradoxengine - Hollywood mode off
5

The Hollywood hacker

@paradoxengine - Hollywood mode off

Scale kills the hacker stars.

Google’s 30,000+ engineers
generate more than 30k
CLs/day, on a single-repo
codebase with 2 billion lines
of code and over 86 TBs.

Any of those CLs might
introduce security bugs.

6

@paradoxengine - Hollywood mode off

Can’t I just hire the problem away?

7

Problem 1

You can’t keep hiring
security people, but you
will (hopefully) keep
growing!

Problem 2

Hiring (competent)
security people is really
hard!

@paradoxengine - Hollywood mode off
8

API & Framework hardening

The great automation drive

???

Security testing

@paradoxengine - Hollywood mode off

Enter security testing tools

9

@paradoxengine - Hollywood mode off

So what’s the problem with that?

10

Most security tools are
by security people
for security people.

Remember the scale
issue?

Target:
 At least one of these options has to be provided to define the
 target(s)

 -d DIRECT Connection string for direct database connection
 -u URL, --url=URL Target URL (e.g. "http://www.site.com/vuln.php?id=1")
 -l LOGFILE Parse target(s) from Burp or WebScarab proxy log file
 -x SITEMAPURL Parse target(s) from remote sitemap(.xml) file
 -m BULKFILE Scan multiple targets given in a textual file
 -r REQUESTFILE Load HTTP request from a file
 -g GOOGLEDORK Process Google dork results as target URLs
 -c CONFIGFILE Load options from a configuration INI file

 Request:
 These options can be used to specify how to connect to the target URL

 --method=METHOD Force usage of given HTTP method (e.g. PUT)
 --data=DATA Data string to be sent through POST
 --param-del=PARA.. Character used for splitting parameter values
 --cookie=COOKIE HTTP Cookie header value
 --cookie-del=COO.. Character used for splitting cookie values
 --load-cookies=L.. File containing cookies in Netscape/wget format
 --drop-set-cookie Ignore Set-Cookie header from response
 --user-agent=AGENT HTTP User-Agent header value
 --random-agent Use randomly selected HTTP User-Agent header value
 --host=HOST HTTP Host header value
 --referer=REFERER HTTP Referer header value
 --headers=HEADERS Extra headers (e.g. "Accept-Language: fr\nETag: 123")
 --auth-type=AUTH.. HTTP authentication type (Basic, Digest, NTLM or PKI)
 --auth-cred=AUTH.. HTTP authentication credentials (name:password)
 --auth-private=A.. HTTP authentication PEM private key file
 --ignore-401 Ignore HTTP Error 401 (Unauthorized)
 --proxy=PROXY Use a proxy to connect to the target URL
 --proxy-cred=PRO.. Proxy authentication credentials (name:password)
 --proxy-file=PRO.. Load proxy list from a file
 --ignore-proxy Ignore system default proxy settings
 --tor Use Tor anonymity network
 --tor-port=TORPORT Set Tor proxy port other than default
 --tor-type=TORTYPE Set Tor proxy type (HTTP (default), SOCKS4 or SOCKS5)
 --check-tor Check to see if Tor is used properly
 --delay=DELAY Delay in seconds between each HTTP request
 --timeout=TIMEOUT Seconds to wait before timeout connection (default 30)
 --retries=RETRIES Retries when the connection timeouts (default 3)
 --randomize=RPARAM Randomly change value for given parameter(s)
 --safe-url=SAFURL URL address to visit frequently during testing
 --safe-freq=SAFREQ Test requests between two visits to a given safe URL
 --skip-urlencode Skip URL encoding of payload data
 --csrf-token=CSR.. Parameter used to hold anti-CSRF token
 --csrf-url=CSRFURL URL address to visit to extract anti-CSRF token
 --force-ssl Force usage of SSL/HTTPS
 --hpp Use HTTP parameter pollution method
 --eval=EVALCODE Evaluate provided Python code before the request (e.g.
 "import hashlib;id2=hashlib.md5(id).hexdigest()")

 Optimization:
 These options can be used to optimize the performance of sqlmap

 -o Turn on all optimization switches
 --predict-output Predict common queries output
 --keep-alive Use persistent HTTP(s) connections
 --null-connection Retrieve page length without actual HTTP response body
 --threads=THREADS Max number of concurrent HTTP(s) requests (default 1)

 Injection:
 These options can be used to specify which parameters to test for,
 provide custom injection payloads and optional tampering scripts

 -p TESTPARAMETER Testable parameter(s)
 --skip=SKIP Skip testing for given parameter(s)
 --dbms=DBMS Force back-end DBMS to this value
 --dbms-cred=DBMS.. DBMS authentication credentials (user:password)
 --os=OS Force back-end DBMS operating system to this value
 --invalid-bignum Use big numbers for invalidating values
 --invalid-logical Use logical operations for invalidating values
 --invalid-string Use random strings for invalidating values
 --no-cast Turn off payload casting mechanism
 --no-escape Turn off string escaping mechanism
 --prefix=PREFIX Injection payload prefix string
 --suffix=SUFFIX Injection payload suffix string
 --tamper=TAMPER Use given script(s) for tampering injection data

 Detection:
 These options can be used to customize the detection phase

 --level=LEVEL Level of tests to perform (1-5, default 1)
 --risk=RISK Risk of tests to perform (0-3, default 1)
 --string=STRING String to match when query is evaluated to True
 --not-string=NOT.. String to match when query is evaluated to False
 --regexp=REGEXP Regexp to match when query is evaluated to True
 --code=CODE HTTP code to match when query is evaluated to True
 --text-only Compare pages based only on the textual content
 --titles Compare pages based only on their titles

 Techniques:
 These options can be used to tweak testing of specific SQL injection
 techniques

 --technique=TECH SQL injection techniques to use (default "BEUSTQ")
 --time-sec=TIMESEC Seconds to delay the DBMS response (default 5)
 --union-cols=UCOLS Range of columns to test for UNION query SQL injection
 --union-char=UCHAR Character to use for bruteforcing number of columns
 --union-from=UFROM Table to use in FROM part of UNION query SQL injection
 --dns-domain=DNS.. Domain name used for DNS exfiltration attack
 --second-order=S.. Resulting page URL searched for second-order response

 Fingerprint:
 -f, --fingerprint Perform an extensive DBMS version fingerprint

 Enumeration:
 These options can be used to enumerate the back-end database
 management system information, structure and data contained in the
 tables. Moreover you can run your own SQL statements

 -a, --all Retrieve everything
 -b, --banner Retrieve DBMS banner
 --current-user Retrieve DBMS current user
 --current-db Retrieve DBMS current database
 --hostname Retrieve DBMS server hostname
 --is-dba Detect if the DBMS current user is DBA
 --users Enumerate DBMS users
 --passwords Enumerate DBMS users password hashes
 --privileges Enumerate DBMS users privileges
 --roles Enumerate DBMS users roles
 --dbs Enumerate DBMS databases
 --tables Enumerate DBMS database tables
 --columns Enumerate DBMS database table columns
 --schema Enumerate DBMS schema
 --count Retrieve number of entries for table(s)
 --dump Dump DBMS database table entries
 --dump-all Dump all DBMS databases tables entries
 --search Search column(s), table(s) and/or database name(s)
 --comments Retrieve DBMS comments
 -D DB DBMS database to enumerate
 -T TBL DBMS database table(s) to enumerate
 -C COL DBMS database table column(s) to enumerate
 -X EXCLUDECOL DBMS database table column(s) to not enumerate
 -U USER DBMS user to enumerate
 --exclude-sysdbs Exclude DBMS system databases when enumerating tables
 --where=DUMPWHERE Use WHERE condition while table dumping
 --start=LIMITSTART First query output entry to retrieve
 --stop=LIMITSTOP Last query output entry to retrieve
 --first=FIRSTCHAR First query output word character to retrieve
 --last=LASTCHAR Last query output word character to retrieve
 --sql-query=QUERY SQL statement to be executed
 --sql-shell Prompt for an interactive SQL shell
 --sql-file=SQLFILE Execute SQL statements from given file(s)

 Brute force:
 These options can be used to run brute force checks

 --common-tables Check existence of common tables
 --common-columns Check existence of common columns

 User-defined function injection:
 These options can be used to create custom user-defined functions

 --udf-inject Inject custom user-defined functions
 --shared-lib=SHLIB Local path of the shared library

 File system access:
 These options can be used to access the back-end database management
 system underlying file system

 --file-read=RFILE Read a file from the back-end DBMS file system
 --file-write=WFILE Write a local file on the back-end DBMS file system
 --file-dest=DFILE Back-end DBMS absolute filepath to write to

A simple case study:
Hunting for

mixed content

12

@paradoxengine - Hollywood mode off

What is mixed content

13

@paradoxengine - Hollywood mode off

What is mixed content

14

<script src=”http://developers.google.com…”/>

@paradoxengine - Hollywood mode off

What is mixed content

15

<script src=”http://developers.google.com…”/>

@paradoxengine - Hollywood mode off

Why is it hard to find it?

16

“Static” HTML: easy

<script src=”http://badidea.go…”/>

@paradoxengine - Hollywood mode off

Why is it hard to find it?

17

“Static” HTML: easy

<script src=”http://badidea.go…”/>

Dynamic, on-load JS: still OK

<script>
…
a = document.createElement('script');
a.src = “htt” + “p://badidea.go…”;

@paradoxengine - Hollywood mode off

Why is it hard to find it?

18

“Static” HTML: easy

<script src=”http://badidea.go…”/>

Dynamic, on-load JS: still OK

<script>
…
a = document.createElement('script');
a.src = “htt” + “p://badidea.go…”;

Interaction based events: good luck!

onclick = “runScriptThatLoadsHTTP”

@paradoxengine - Hollywood mode off
19

@paradoxengine - Hollywood mode off

If only we had some
automated procedures lying
around to interact
with large portions of our
applications.

20

@paradoxengine - Hollywood mode off

Enter Selenium WebDriver

“Selenium is a portable software-testing
framework for web applications”

21

The coverage goals of end to end
testing are in line with what we need.

@paradoxengine - Hollywood mode off

We have quite a few of them...

22

Google runs more than 150 million tests
every day, and 13.000+ projects are
continuously integrated.

That’s a lot of webdriver-based tests too.

@paradoxengine - Hollywood mode off

Identifying mixed content via HTTP proxy

23

HTTP Requests

By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=25925698

HTTP Responses

@paradoxengine - Hollywood mode off

Identifying mixed content via HTTP proxy

24

HTTP Requests

By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=25925698

HTTP Responses

@paradoxengine - Hollywood mode off

Identifying mixed content via HTTP proxy

25

HTTP Requests

By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=25925698

HTTP Responses

@paradoxengine - Hollywood mode off

Instrumenting webdriver tests

1. Add a proxy to the tests during setUp

2. Run the tests

26

*Recent webdriver code is likely to have a
different syntax.

MangoProxy mangoProxy = mangoBuilder.startProxy();
[...]
profile.setProxyPreferences(proxy)*;

A more complex example:
hunting cross site request forgery

(XSRF)
27

@paradoxengine - Hollywood mode off

What is XSRF?

28

Using cross-site request forgery (XSRF), a malicious
website can cause the victim's browser to make an
authenticated request to a state-changing URL on
another application, without the user's knowledge or
consent.

If the target application doesn't take additional steps
to confirm that the request is a result of a conscious
user action, it’s bad news for the user.

@paradoxengine - Hollywood mode off

How does it look like?

29

б а г
VOTE VOTE VOTE

Best letter of the universe 2019

62% 36% 42%

@paradoxengine - Hollywood mode off

How does it look like?

30

б а г
VOTE VOTE VOTE

Best letter of the universe 2019

62% 36% 42%

POST bestletter.ru/vote?letter=б

@paradoxengine - Hollywood mode off

How does it look like?

31

б а г
VOTE VOTE VOTE

Best letter of the universe 2019

62% 36% 42%
Totally Unrelated Page

The internet’s most unrelated
page, ever!

POST bestletter.ru/vote?letter=й

@paradoxengine - Hollywood mode off

How does it look like?

32

б а г
VOTE VOTE VOTE

Best letter of the universe 2019

62% 36% 42%

POST bestletter.ru/vote?letter=б&token=123

Totally Unrelated Page

The internet’s most unrelated
page, ever!

POST bestletter.ru/vote?letter=й

@paradoxengine - Hollywood mode off

Can we identify XSRF passively?

33

Build a list of token names, and check
for their presence in all POST request.

Entropy analysis to guess for token
values, headers, cookies...

@paradoxengine - Hollywood mode off

Can we identify XSRF passively?

34

Many false negative conditions
e.g. client adds token, server does not
check

Build a list of token names, and check
for their presence in all POST request.

Entropy analysis to guess for token
values, headers, cookies...

@paradoxengine - Hollywood mode off

Can we identify XSRF passively?

35

Many false negative conditions
e.g. client adds token, server does not
check

Build a list of token names, and check
for their presence in all POST request.

Entropy analysis to guess for token
values, headers, cookies...

Execution after redirect

<?php
if (!$token) {
 http_response_code(403);
}
doSomething()

@paradoxengine - Hollywood mode off

Can we identify XSRF passively?

36

Many false negative conditions
e.g. client adds token, server does not
check

Build a list of token names, and check
for their presence in all POST request.

Entropy analysis to guess for token
values, headers, cookies...

Even more false positives
e.g. miss token

@paradoxengine - Hollywood mode off

Can we identify XSRF passively?

37

Many false negative conditions
e.g. client adds token, server does not
check

Build a list of token names, and check
for their presence in all POST request.

Entropy analysis to guess for token
values, headers, cookies...

Even more false positives
e.g. miss token

What’s the deal with false positives?

Can’t you just report “potential bugs” and
sort them out later? It’s surely better than

not knowing!

@paradoxengine - Hollywood mode off
38

Actively damaging

Erode trust

Prevent automation

False positives

@paradoxengine - Hollywood mode off
39

Always focus on low false
positives, even at the cost of false
negatives.

In the XSRF case: liberally over-flag
tokens.

@paradoxengine - Hollywood mode off
40

POST /vote?letter=б&token=XA...

POST /vote?letter=б

Repeat requests dropping tokens

Still flags irrelevant changes (false
positives) and misses real bugs :-(

@paradoxengine - Hollywood mode off

Mutation testing to the rescue

41

POST /vote?letter=б&token=XA...

POST /vote?letter=б

1. X% chance of mutating seemingly
XSRF-Protected request, dropping XSRF token

2. Only mutate one request per test run
3. Flag cases where the mutated test still passes

42

How do you communicate bugs?

43

-
Out of band

Need to collect a wealth of
metadata (CL, test run etc)
to make the finding
reproducible.

@paradoxengine - Hollywood mode off

Failing tests when security issues are found

1. Add a proxy to the tests during setUp
2. Run the tests.
3. Query Mango as part of teardown.
4. Mark the test as failure and surface the failure as you would any other:

block release, fail the integration, turn on the red lights.

44

if (mangoProxy.foundBugs())

 fail(“Security issues found: ” + trace);

@paradoxengine - Hollywood mode off
45

Promote existing tests
to find security bugs.

Produce actionable,
useful results.

Where’s the catch?

46

@paradoxengine - Hollywood mode off

Test vs Prod environment

Security tests have different
requirements than integration tests.

Subtle differences have a large impact.

Why would you have SSL certs in QA?

Why would you enable XSRF checks in QA?

47

@paradoxengine - Hollywood mode off

Test vs Prod environment

Security tests have different
requirements than integration tests.

Subtle differences have a large impact.

Why would you have SSL certs in QA?

Why would you enable XSRF checks in QA?

48

Consider (re)running instrumented integration tests
against prod (!!).

@paradoxengine - Hollywood mode off

Tests take horrible shortcuts

49

@paradoxengine - Hollywood mode off

Brittle tests

50

Can turn brittle tests into flaky

● Increases latency
● Reorders some requests
● Changes states on request replay

@paradoxengine - Hollywood mode off

A moving target

Even though the integration
is easy, our engineers seem
to like changing stuff!

Ever changing test
frameworks required work to
keep integration.

51

@paradoxengine - Hollywood mode off

Did passive* test instrumentation work?

Almost.

It found a few* bugs.

We realized the cake really is a lie,
and moved aggressively to “self service”.

52

@paradoxengine - Hollywood mode off
53

Don’t scale the
security team, scale
the security
capabilities of others.

@paradoxengine - Hollywood mode off
54

Self service challenges

Simplicity Integration

@paradoxengine - Hollywood mode off
55

Self service challenges

Simplicity Integration

Simplicity

Setup time needs to be under the attention threshold.
drive usage

Results need to be self explanatory.
drive remediation

@paradoxengine - Hollywood mode off
56

Self service challenges

Simplicity Integration

Integration

Tools should be part of the testing pipeline.

security_scan(

 name = "test scan",

 targets = [“http://site-daily.qa.site”],

 max_qps = 50

)

@paradoxengine - Hollywood mode off

Did all of this work?

We identified more than 1500 security
issues with our self-service approach.

For reference, our Vulnerability Reward
Program awarded 1000+ rewards in 2016.

Since we like a good challenge, we are now
competing in the VRP ladder.
We’ll see how we do in 2017!

57

Things I learnt

Wake up now!

58

@paradoxengine - Hollywood mode off
59

Involve and empower teams

Unless you can clone security engineers

@paradoxengine - Hollywood mode off
60

Focus on
achievable targets

Go deep, not wide

@paradoxengine - Hollywood mode off
61

Security is not
the grinch

We just find
different types
of bugs

Thank you!
Questions?

Security testing at scale
Claudio Criscione - @paradoxengine

62

