
Microservices and BPM

May 2017 – camunda.com

Retrieve
payment

Fetch
goods

Ship
goods

Microservice Order

Microservice Payment

Charge
credit card

Resolve
conflict

http://camunda.com

Contents

Contents

Microservices ... 2

Business Processes Stretch Across Multiple Microservices......................... 3

Asynchronous Communication ... 3

Limitations of Event Chains ... 4

Synchronous Remote Calls .. 6

Long Running Processes Require State ... 6

Advantages of Using a Workflow Engine ... 7

Misconceptions on Workflow Engines ... 9

Monitoring and Tasklist .. 14

Conclusion ... 16

2

Microservices

Microservices
Microservice architectures gain a lot of popularity due to the ever-
increasing complexity of systems. Microservices split the overall system
into individual parts (the microservices) each focused on a single
business capability (“do one thing and do it well”). While this sounds a
bit like Service Oriented Architecture (SOA) it differs fundamentally in
the way microservices are being developed, deployed and operated as
well as how the individual services integrate into the overall architecture.
The main motivation for SOA was to reuse (“built for reuse”), for
microservices on the other hand it is team organization and independent
exchangeability of individual components (“built for replacement”).
Microservices address the problem to scale software development.
Software structure always reflect the team structure building it which
is known as Conway’s Law. With microservices you define services
and therefore also team boundaries around meaningful business or
domain capabilities, which is known as Bounded Context.1 One team
is responsible for the whole technological stack required. Within that
context this team has autonomy to do whatever it takes to implement
the requirements at hand and to reduce coupling to other microservices.
Effort to coordinate with other teams is reduced as much as possible to
gain an overall flexible organization.

Hence individual microservices should work independently. This
independence relates to various aspects:

 ● Independent life cycle: It must be possible to develop microservices
independently by different teams. It must also be possible to start and
stop microservices or to make changes independent of others. There
should not be a need to coordinate your deployments with other
teams.

 ● Stable Interfaces: Microservices provide the environment with stable
interfaces which must not be broken during updates. If incompatible
changes at an interface are necessary, they should be depicted by
versioning the interface.

 ● Communication: If one microservice needs to communicate with
other microservices in order to fulfill its task, the calling service must
expect that the communication partner may not be able to answer
the question immediately. That is why asynchronous messaging or
feeds are used often. Other patterns also exist like the bulkhead
architecture for example where the outage of one service does not
influence upstream services.

 ● Robustness and fault tolerance: Individual microservices must
continue to run even if other services in the overall system cause
problems. In many cases it is better that one individual user of the
system sees an error than letting the entire system break down in an
uncontrollable manner.

 ● Local data storage: Microservices often keep local copies of data that
they need in order to fulfill their service which basically enables other
characteristics mentioned here.

1 https://martinfowler.com/bliki/BoundedContext.html

3

Business Processes Stretch Across Multiple Microservices

 ● Independent scalability: Not every microservice needs the same
resources. It must be possible to provide each service with the
resources needed without affecting others.

The six points mentioned are intended as guidelines. Not every
microservice must necessarily satisfy each of these criteria or meet the
challenges mentioned in the same way.

Business Processes Stretch Across Multiple
Microservices
When looking at end-to-end business processes, they typically stretch
across multiple individual microservices which therefore have to
collaborate in order to achieve the desired business outcome. This
is where the rubber meets the road. In this whitepaper we will use
the example of a simple order fulfillment service involving payment,
inventory and shipping microservices.

There are different possible communication styles in microservice
architectures often mixed within a single company. We do not want
to discuss all communication styles and their pros and cons in this
whitepaper, instead we want to highlight two popular approaches:
Let your microservices talk REST with each other or use messages put
on a message or event bus. These approaches have slightly different
challenges. Let’s start with the trend more recently adopted.

Asynchronous Communication
The heart of this approach is that microservices exchange asynchronous
messages. While this can be done using a message broker it is also
en-vogue to use an event-bus for this. Often you do not use dedicated
queues or topics for one communication channel but have one “big pipe”
you push all events onto. As a result, microservices just emit events and
don’t have to care who is picking it up. Also they just consume events
without knowing where they come from. This results in a high degree of
de-coupling.

We do want to concentrate on the resulting event chain that carries out
the overall business process. In this architecture, there does not have
to be any central brain in control which frees up the overall architecture
from central components. For example Martin Fowler said that you do
not need an orchestration engine in microservice architectures.2

Let’s look at an example of a simple order fulfillment process where you
could imagine the microservices and event chain shown in Figure 1.

2 https://martinfowler.com/articles/microservices.html

https://martinfowler.com/articles/microservices.html

4

Limitations of Event Chains

Figure 1: Event flow of a simple order fulfillment system

This looks good at first glance but reveals problems shortly after.

Limitations of Event Chains
The payment microservice listens to the order placed event. That means
every time you have a new use case requiring payment you have to
touch the payment service. This is very bad for the overall goals of
team autonomy. Assume you want to build and deploy a new service
which can sell downloadable artifacts. Now you have to coordinate the
deployment with the payment team as they have to start listening to an
event you emit, e.g. downloadable item purchased.

This can be solved by introducing an event command transformation.3
This pattern reflects that you sometimes have to issue messages which
are commanding another service to do something. In the example
above, payment should listen to a retrieve payment command, this
improves de-coupling.

3 Described in more detail in https://blog.bernd-ruecker.com/why-service-collaboration-
 needs-choreography-and-orchestration-239c4f9700fa

Shop

Shop

Event Bus

Event Bus

Payment

Payment

Inventory

Inventory

Shipping

Shipping

order placed

order placed

payment received

payment received

goods fetched

goods fetched

goods shipped

retrieve
payment

fetch goods

ship goods

https://blog.bernd-ruecker.com/why-service-collaboration-needs-choreography-and-orchestration-239c4f9700fa
https://blog.bernd-ruecker.com/why-service-collaboration-needs-choreography-and-orchestration-239c4f9700fa

5

Limitations of Event Chains

As you can create similar examples with the other events in the chain
it becomes evident that it makes sense to introduce an individual
business domain for the overall order fulfillment logic. In the example
we recommend an order microservice, which does all necessary
transformations which can be seen in Figure 2.

Figure 2: Event flow when using event command transformation

Now this order service can also decide on all the related requirements
to the overall business process. So, if you want to first fetch all goods
before you retrieve the payment there is one single microservice where
you can easily achieve that. One team can implement and redeploy
it on its own. Coordination between teams is not necessary. Without
this order service you would have to touch at least two services and
coordinate a joined release in order to make the very same change:
Inventory has to listen to order placed and payment has to listen to goods
fetched.

Shop Event Bus Order Inventory Shipping

order placed

retrieve payment
command

order placed

goods fetched

ship goods command

retrieve
payment

fetch
goods

ship goods

payment received

fetch goods command

Payment

retrieve payment command

payment received

ship goods command

goods shipped

goods fetched

fetch goods command

Shop Event Bus Order Inventory ShippingPayment

6

Synchronous Remote Calls

Sometimes it is argued that this microservice is a single-point-of-failure
for the order fulfillment. We do not see this as a proper argument as
every microservice should be exactly the single-point of everything for
one certain business capability. If payment is down, no payments will be
done. If order is down, no order will be fulfilled. It would not be possible
anyway if at least one important service in the chain is down – or would
you ship your order if you cannot retrieve payment or fetch the goods?

It is the responsibility of the order team to achieve the degree of high-
availability needed for the business requirement at hand. And as we
do asynchronous communication, events will not be lost if you have
downtime. You could even see the positive side of things: Whenever you
need to do an emergency stop of orders (which is more common than
you might think) you know exactly where to do that.

Synchronous Remote Calls
A different approach is to use synchronous remote calls, typically via
REST. The basic call chain is comparable. The argument to introduce the
order microservice is now even stronger because without it you force the
payment service to know the concrete inventory interface.

Additionally, implementing the order microservice gets a bit harder as
you have to tackle unavailability of remote services. This involves state
handling and a retry mechanism. While this can be solved by different
means including messaging again we see many projects struggle with
this in real-life. This is why we often leverage state machines (to be
introduced shortly) for this use case.

Long Running Processes Require State
This brings us to another requirement you need to address with the
order anyway. Let’s assume that payment is done by charging your credit
card. And when the card is rejected we do not cancel the whole order
but send information to the customer to update his credit card and
give him seven days to do so. If he updates the credit card in time, the
payment can still be retrieved successfully. The order process has to wait
for the payment for a potentially long time which immediately requires
persisting the state of every order.

Persistence can be tackled by multiple approaches, typical solutions
involve custom entities, actor frameworks or very simple state handling
frameworks.4 But in real-life projects we experience a lot of subsequent
requirements as soon as you persist state. What if the customer doesn’t
respond within seven days? So, you must track time and timeouts. You
also need some monitoring on ongoing order processes and proper
reporting in place.

A workflow engine is perfectly qualified to handle the persistent state.
It can also handle the flow of events (or to be precise: the flow of event
command transformations as explained above) in a sophisticated

4 See also https://blog.bernd-ruecker.com/how-to-implement-long-running-flows-sagas-
 business-processes-or-similar-3c870a1b95a8

https://blog.bernd-ruecker.com/how-to-implement-long-running-flows-sagas-business-processes-or-similar-3c870a1b95a8
https://blog.bernd-ruecker.com/how-to-implement-long-running-flows-sagas-business-processes-or-similar-3c870a1b95a8

7

Advantages of Using a Workflow Engine

manner. The flow can even be visualized graphically as shown in Figure
3, even though engines like Camunda allow to express the flow via pure
Java code without any graphical modeling required.

Retrieve
payment Fetch goods Ship goods

Order placedOrder placedOrder placed Order deliveredOrder deliveredOrder delivered

Figure 3: Graphical visualization of the event flow using BPMN

Advantages of Using a Workflow Engine
When using a workflow engine, you experience several benefits:

 ● Explicit processes: The processes become explicit instead of being
buried somewhere in your code and therefore can be changed much
easier.

 ● State handling: The workflow engine handles the persistence of each
single order instance.

 ● Transparency of status: The status of a process instance can easily
be checked by asking the workflow engine. Monitoring can take place
in the graphical diagram directly.

 ● Visibility: The graphical model can be used to discuss the process,
might it be between business stakeholders and IT, between
developers, between developers and operations among others.

Martin Fowler also recognized the importance of visibility and
transparency as he recently wrote: “Event notification is nice because it
implies a low level of coupling, and is pretty simple to set up. It can become
problematic, however, if there really is a logical flow that runs over various
event notifications. The problem is that it can be hard to see such a flow
as it’s not explicit in any program text. Often the only way to figure out this
flow is from monitoring a live system. This can make it hard to debug and
modify such a flow. The danger is that it’s very easy to make nicely decoupled
systems with event notification, without realizing that you’re losing sight of
that larger-scale flow, and thus set yourself up for trouble in future years.“.5

Despite these generic advantages there are a couple of notable
features of workflow engines that can solve problems very eminent in
microservice architectures. Let’s quickly dive into a few of them.

5 https://martinfowler.com/articles/201701-event-driven.html

https://martinfowler.com/articles/201701-event-driven.html

8

Advantages of Using a Workflow Engine

Timeout Handling
The workflow engine can track time and automatically take additional
action or switch to another path in the flow if some message does not
arrive in time, as shown in Figure 4.

Wait for credit
card data

Raise error...

7 days7 days7 days

Figure 4: Timeout handling in BPMN

Message Correlation and Coordination
Sometimes several messages that belong to the same process instance
must be “merged” in the process instance. With the support of the
workflow engine this is easy as the workflow engine can decide what
needs to happen next based on the current persistent state and the
incoming message. Communication patterns such as message sequences,
message synchronization, waiting for messages with timeouts and mutual
exclusion of messages are already solved in BPMN, as shown in Figure 5.

Message 1
received

Message 1 Message 1
received

Message 2
received

Message 2 Message 2
received

Message 1
received

Message 1 Message 1
received

Message 2
received

Message 2 Message 2
received

Message
received
MessageMessage
received

TimeoutTTimeoutimeout

Message 1
received

Message 1 Message 1
received

Message 2
received

Message 2 Message 2
received

Figure 5: Solution of various communication patterns in BPMN 2.0

Error Handling
Whenever an error occurs you can specify the behavior, for example you
can take another path or imply some retry mechanism especially when
doing synchronous calls. This is shown in Figure 6.

Charge credit
card

Do something
else...

Payment errorPayment errorPayment error

Figure 6: Error handling in BPMN

9

Misconceptions on Workflow Engines

Business Transactions
BPMN knows the concept of compensation. Compensation is for
situations when a process hits a problem and needs to undo steps
which were already carried out earlier. This makes it easy to implement
the so called Saga pattern very well known in distributed systems.6 A
classic example is a trip booking whereby multiple services are called as
shown in Figure 7. The Saga needs to store state and can benefit from
leveraging the features of a workflow engine. You find the full source
code online.7

Reserve car Book hotel Book flight

Cancel car Cancel hotel Cancel flight

Figure 7: Business transactions and compensations in BPMN

Misconceptions on Workflow Engines
When proposing workflow engines as recommended in this
whitepaper, you might be faced with reluctance to do so in microservice
architectures. Typically, this is a result of the following misconceptions:

 ● Processes violating the bounded context: “When you model the
end-to-end process it includes parts which are owned by different
microservices, so you should not mess around in their territory”.

 ● Central controller: “A workflow engine is a central tool which is not
only a single point of failure and a limitation in scalability but also
forces teams to use a certain technology or to adapt to centrally
governed changes like upgrading the engine”.

 ● Developer-adverse and heavyweight tools: “Teams building
microservices should be autonomous in their tool decisions and
operate the solutions they pick. BPM tools are heavyweight and take
weeks to setup, this can never be managed by a microservice team
and the developers will not select it anyway”.

 ● Too expensive (the same argument, but with money): “Our
microservices run virtualized and BPM Suites are licensed by cores
and you have to license all cores of the host machine for every service
which is not affordable”.

 ● Do not run in the cloud: “We cannot deploy the inflexible BPM Suite to
our (probably on premise) cloud environment”.

6 https://blog.bernd-ruecker.com/how-to-implement-long-running-flows-sagas-business-
 processes-or-similar-3c870a1b95a8
7 https://github.com/flowing/flowing-trip-booking-saga/

https://blog.bernd-ruecker.com/how-to-implement-long-running-flows-sagas-business-processes-or-similar-3c870a1b95a8
https://blog.bernd-ruecker.com/how-to-implement-long-running-flows-sagas-business-processes-or-similar-3c870a1b95a8
https://github.com/flowing/flowing-trip-booking-saga/

10

Misconceptions on Workflow Engines
O

rd
er

 P
ro

ce
ss

Order placedOrder placedOrder placed

Wait for credit
card to be
updated

Ask customer to
update credit

card

Ask customer to

Charge credit
card

Load customer
details Fetch goods Ship goods

wait 2 weekswait 2 weekswait 2 weeks

Ask for feedbackAsk for feedback

Re-order goods

Inform customer Cancel order
2 weeks2 weeks2 weeks

Goods not
available

Goods not Goods not
available

Payment
failed

PaymentPayment
failed

updated

PaymentPayment Goods not
available

Goods not
available

Goods not
available

Goods not
available

2 weeks2 weeks2 weeks2 weeks

These reasons are misconceptions based on errors made in the past
with BPM or based on an outdated view on workflow technology. The
solutions are:

 ● properly distributed ownership of the business process to the
microservices,

 ● lightweight engines,

 ● cloud-ready technology and license models,

 ● thoughtful wording.

Let’s dive deeper into how Camunda resolves this.

Distributed Ownership of the end-to-end Process
The microservice community knows “God services” as anti-pattern.8 It
is about services that are very powerful and do all the work and just
delegate to dumb CRUD services to save data. This should be avoided as
you always have to change the God service for everything. There is no
real decoupling. BPM practitioners are indeed often guilty of modeling
God-like monolithic end-to-end process models as the example in Figure
8.

Figure 8: “Monolithic” order process violating microservice ownerships

To be fair, in many organizations this way of modeling is very valid and
will work. So it is not bad per se! But it requires a process owner being
responsible for the whole scope which might be the case if the company
is “monolithically thinking” (which again is not necessarily a bad thing).
But when you do take microservices seriously, this model is a no-go as
you violate bounded contexts.

Instead you have to split the process into proper pieces which clearly
belong to one microservice as shown in Figure 9. So the details of the
payment process are a black box for the order fulfillment expert.

8 http://shop.oreilly.com/product/0636920033158.do

Order

Payment Inventory

Feedback

http://shop.oreilly.com/product/0636920033158.do

11

Misconceptions on Workflow Engines

Figure 9: Split the overall process into pieces owned by the right microservice

There is a cool detail about BPMN by the way: You can still model the
end-to-end process as a so called collaboration diagram if you want
to have the big picture visible at least for discussions or requirements
engineering, indicated in Figure 10. And we indeed have these
discussions very often in early project phases, even when applying
microservices. This is not about coordinated deployments or some other
hard dependencies but a fruitful discussion raising the awareness of
the overall business goal within every team. During implementation,
the ownership of the parts has to be clearly taken by the corresponding
microservice teams.

Retrieve
payment Fetch goods Ship goods

Order placedOrder placedOrder placed Order deliveredOrder deliveredOrder delivered

Charge credit
card

Inform customer
that new credit
card is required

Inform customer Wait for new
credit card

details

Payment failedPayment failedPayment failed

Payment receivedPayment receivedPayment receivedPayment retrieval
requested

Payment retrievalPayment retrieval
requested

details

7 days7 days7 days

Credit card
failed

Credit cardCredit card
failed

7 days7 days

Microservice Order

Microservice Payment

12

Misconceptions on Workflow Engines

Figure 10: BPMN can also visualize service collaborations

Note that the communication between the processes is not really done
by means of BPMN messages as drawn here as order should not even
know that payment also runs a BPMN process.

Lightweight and Embeddable Engine
Most developers think of workflow engines being part of big proprietary
zero-code BPM suites. But this is not true. Workflow engines can be very
lightweight and feel like a development library. They can run embedded
in the microservice. For example, you can easily setup a microservice
using Spring Boot and the Camunda engine being started as part of
that. This way every microservice has its own engine. The team owning
that service can autonomously decide on the tool and version they
want to use. The engine itself starts up very fast and can also be used
to run automated unit tests in-memory without requiring any external
dependency.

O
rd

er

Order deliveredOrder deliveredOrder deliveredOrder placedOrder placedOrder placed

Retrieve
payment Fetch goods Ship goods

P
ay

m
en

t

Charge credit
card

Inform customer
that new credit
card is required

Inform customer Wait for new
credit card

details

Payment failedPayment failedPayment failed

Payment receivedPayment receivedPayment receivedPayment retrieval
requested

Payment retrievalPayment retrieval
requested

details

7 days7 days

Credit card
failed

Credit cardCredit card
failed

Credit cardCredit card
failed

Credit card
failed

Credit cardCredit card
failed

Credit card
failed

7 days7 days

Microservice Order

Microservice Payment

Microservice Inventory

Microservice Shipping

Engine

Engine

13

Misconceptions on Workflow Engines

There is another important aspect. With Camunda you are not forced
to model processes graphically but can express the very same thing in
code. The order fulfillment might be simply expressed by:

That’s it. Graphical layout is done automatically by Camunda (version
>= 7.7). This approach might sound strange to BPM-aficionados but
developers are sometimes scared by graphical models as they do not
see what is hidden behind them and expect hard to understand weird
magic. The code above shows clearly that there is no hidden complexity
and helps to get your developers onboard. Once they get familiar with
BPMN and start to do more complex flows projects, they often switch to
model graphically. The important aspect is, it is up to you.

Note that the order fulfillment example described in this whitepaper is
available as running source code.9

Cloud-Ready Technology
Camunda can run embedded within a Spring Boot process. That allows
you to deploy the engine as part of your microservice in a lot of different
cloud environments. Another approach would be to run the Camunda
engine as part of a Java Container like Tomcat or Wildlfy and distribute
it as Docker container. And there are much more possible approaches
due to the lightweight core of the Camunda engine which allows great
flexibility for deployment options. Additionally, Camunda supports
multi-tenancy which allows even more options. There is a whitepaper
dedicated to the topic of multi tenancy.10 So don’t worry about the
specific cloud environment you have in mind.

Cloud-Ready License Model
Camunda uses a transaction based license model. This model is
completely independent of number of servers, cores, environments,
users, or the like. This fits perfectly in the world of microservices and
the cloud. So, there is no problem to run an engine per microservice. It
just seems that other workflow vendors seldom offer real cloud-ready
models triggering the misconceptions mentioned earlier.

9 https://github.com/flowing/flowing-retail
10 https://network.camunda.org/whitepaper/19

camunda.getRepositoryService().createDeployment()
 .addModelInstance(Bpmn.createExecutableProcess("order")
 .startEvent()
 .serviceTask().name("Retrieve payment").camundaClass(RetrievePaymentAdapter.class)
 .serviceTask().name("Fetch goods").camundaClass(FetchGoodsAdapter.class)
 .serviceTask().name("Ship goods").camundaClass(ShipGoodsAdapter.class)
 .endEvent()
 .done()
).deploy();

https://github.com/flowing/flowing-retail
https://network.camunda.org/whitepaper/19

14

Monitoring and Tasklist

Misconceptions and Wording
We want to reveal one “trick” we often apply successfully: We do not use
the acronym BPM when talking to developers. We might not even use
business process. We much prefer the term workflow or even shortened to
flow. These words are less biased and therefor generate less rejections.
The same goes for orchestration where we for example just talk about
service collaboration or implementing the flow. And there is some truth in
that anyway as with the flows we describe in this paper you might “only”
implement a business transaction on collaborating services, there might
not be any business process or workflow (often meaning human tasks
involved).

Monitoring and Tasklist
There are two challenges when you run multiple engines within your
microservice landscape:

 ● How to implement proper process monitoring? You typically want
to have one place where you find information about all running
processes and collaborations.

 ● How to create only one tasklist UI for the end-user? The user
usually wants to see all his tasks at once regardless of which service
generated them.

There is one approach to solve these challenges easily: The various
engines point to the same database as shown in Figure 11. Then you
can use the out-of-the-box monitoring and tasklist tools to work with
this database. This approach is worth considering because of two
Camunda features supporting it. First Camunda can work deployment
aware. This means that every engine knows the processes deployed
locally – and only touches them. So the payment service will not touch
order fulfillment processes even if it can see them through the database.
Secondly Camunda has rolling upgrade capabilities which means that
you can run two versions of the engine on the same database. Let’s
assume you upgrade the database to 7.8, then your microservices can
still run 7.7 – and all services can subsequently upgrade to 7.8. So there
is no need to touch all microservices at one point in time. And of course,
Camunda also supports some clustered databases, so you do not have
to introduce a single-point-of failure.

Figure 11: Multiple engines can share the database

Microservice PaymentMicroservice Order

15

Monitoring and Tasklist

The central database violates some microservice principles. However, we
have customers using this approach as they gain an easy setup but keep
a sufficient degree of de-coupling, so it’s a good deal. But if you do not
want to have that central database that is also possible. For the tasklist
you push tasks to a central tasklist which could either be some third-
party tool, some home-grown solution or another Camunda instance
responsible to create and handle human tasks. The implementation
might also be hidden in a human task microservice. Note that there are
Camunda Best Practices available on how to integrate with an external
tasklist from an engine.

Typically there is already a central monitoring system in place in
microservice landscapes. Often this is based on the Elastic stack or
similar tools. It is now easy to push all relevant events from all engines
to it and provide a central overview which might link back to the right
cockpit instance for details or operator actions, as visualized in Figure 12.
You will not get a BPMN visualization in these tools though. If required
it is not hard to build your own BPMN visualizations in such stacks using
the lightweight bpmn.io11 JavaScript framework.

Figure 12: Multiple engines can easily push tasks or history events to central components

11 http://bpmn.io/

MonitorHuman Task

Microservice
Order

Microservice
Payment

http://bpmn.io/

16

Conclusion

Conclusion
In microservice architectures, end-to-end business processes are
carried out by collaborating microservices. Hence the overall business
process must be distributed to various microservices according to the
bounded contexts and business capabilities. However, as pure event
chains increase coupling in a very unfavorable way, introducing proper
event command transformations becomes essential. Often these
transformations within the end-to-end process do not fit well in the
ownership of any of the participating microservices. Then it is favorable
to introduce an own bounded context and microservice for it.

The collaborations are often long running and require state handling.
This is where a workflow engine fits perfectly in the microservice toolset
as it helps the development team of one microservice to do a better
job and also deliver added value like graphical visualizations, tooling or
powerful features around timeouts, failure handling or compensation.
With Camunda you get a lightweight workflow and BPM product that
is flexible enough to cover different requirements and does not stand
in the way of microservices. You can embed the engines into your
microservices and are not forced to run any central component. The
developer-friendly engine allows you to define flows programmatically,
combine it easily with normal code and motivates you to write
automated unit tests.

Transparency and business-IT alignment are important goals that should
not be thrown overboard when applying microservices. You might have
to overcome some common misconceptions about workflow or BPM in
your company, but that “challenge” is definitely worth it.

Links & Literature
1 https://martinfowler.com/articles/microservices.html

2 Described in more detail in https://blog.bernd-ruecker.com/why-
service-collaboration-needs-choreography-and-orchestration-
239c4f9700fa

3 See also https://blog.bernd-ruecker.com/how-to-implement-long-
running-flows-sagas-business-processes-or-similar-3c870a1b95a8

4 https://martinfowler.com/articles/201701-event-driven.html

5 https://blog.bernd-ruecker.com/how-to-implement-long-running-
flows-sagas-business-processes-or-similar-3c870a1b95a8

6 https://github.com/flowing/flowing-trip-booking-saga/

7 http://shop.oreilly.com/product/0636920033158.do

8 https://github.com/flowing/flowing-retail

9 https://network.camunda.org/whitepaper/19

10 http://bpmn.io/

Imprint

Imprint

Europe / Asia

Camunda Services GmbH
Zossener Str. 55
10961 Berlin
Germany

Phone: +49 (0) 30 664 04 09 - 00
E-Mail: info@camunda.com
www.camunda.de

America

Camunda Inc.
44 Montgomery St, Suite 400
San Francisco, CA 94104
USA

Phone: +1.415.548.0166
E-Mail: info@camunda.com
www.camunda.com

mailto:info%40camunda.com?subject=
http://www.camunda.de
mailto:info%40camunda.com?subject=
http://www.camunda.com

