
How to migrate processes from
existing solutions to Camunda BPM

camunda.com

http://camunda.com

Contents

Contents

Introduction ... 2

Migrate process definitions ... 2

Migrate process instances ... 3

Big Bang Migration ... 4

Adjust your process models .. 7

Summary and possible alternatives ... 9

Source code ... 10

Conclusion ... 10

2

Introduction

Introduction
Most customers don‘t start on a green field but migrate existing solu-
tions to BPMN 2.0 processes in Camunda BPM. Typical examples for
such legacy are:

 ● Third party process engines

 ● Hard coded applications

 ● Clumsy constructs consisting of code, database tables, triggers and
magic scripts

Migration is the most important step when going live – this whitepaper
summarizes our experience in customer projects.

Migrate process definitions
Processes are deployed as valid BPMN 2.0 files in Camunda BPM. There-
fore, the processes have to be deducted from the existing solution.

Our recommended approach is to re-model the existing processes. This
is actually what we‘ve done in almost every project so far, as the number
of process definitions is usually limited and the time you need to re-mod-
el them is much less than the time you would need to create and test
automated conversion. You can also leverage the full power of BPMN 2.0
– improving the results dramatically.

Depending on your situation, there may be other options available,
though we usually do not recommend them:

1. The old engine is also a BPMN 2.0 process engine. So, in theory, there
is no need to adjust the process models. Unfortunately this isn‘t true
in real-life as you always have to change some details such as exten-
sions used by the vendors. Often other solutions also have worse
BPMN coverage, so the process model contains workarounds which
are no longer necessary. It‘s a pretty good idea to get rid of them.

2. There is an XML process model in a different language (such as BPEL
or XPDL) or some proprietary format. In that case we always dis-
cuss automated conversion into BPMN. However, we usually advise
against any automatism – as this is really hard to do, which often
means that it‘s a larger effort to create the conversion tool than it
would be to re-model the processes. The resulting process models
also can‘t leverage the BPMN possibilities or comply to typical best
practices. So, unless you have to migrate thousands of process
models and don‘t care about the beauty of the result we would not
recommend this approach.

3

Migrate process instances

Migrate process instances
Migrating the process instances is unavoidable if you have long-running
processes – as some of them are running at any given time. There are
two basic approaches:

1. Concurrent Operation: You keep operating the old solution until no
process instances are left there. In the meanwhile you start new pro-
cess instances on Camunda BPM. To do this you have to implement
a kind of switch to route incoming requests to the old or new system.
Bear in mind that you need to take care of operating both systems in
parallel, e.g. checking failures, calculating KPI‘s or performing in-
stance counts.

PRO: You do not need to migrate running process instances
and you save effort on this. Also, going live with Camunda BPM
is typically less risky as the old system is still in place and oper-
ating.

CON: Operating two systems in parallel for a longer time is
additional effort and the switching logic normally is not easy
to implement and test for all corner cases. Also, as everybody
is normally eager to throw out the old stuff it might even be a
downer for motivation.

2. Big Bang Migration: You stop the old system and make sure all
process instances have reached a wait state. Then you migrate all
instances to Camunda BPM and fire up the new system. For that, you
need to map all possible wait states from the old processes to the
BPMN process definition, read the data from the old system and run
a “migration script” to create the process instances in Camunda BPM
in the correct state.

PRO: After the migration you only have one system to operate
and you can test the migration perfectly beforehand to avoid
any sur prises.

CON: Implementing and testing the migration script is effort
you have to do. Also, usually the run time of the migration
scripts and possible additional health checks afterwards en-
force some down time.

In real-life both approaches are used. There is no clear recommendation,
so you have to decide yourself based on your exact situation.

Concurrent operation is completely specific to your architecture and
technology. We are pretty happy to help you in terms of consulting – but
there is no clear blueprint of how to achieve this.

In contrast, the big bang migration always involves a “migration script”,
which requires some knowledge of Camunda BPM for implementation.
This is described in the remaining whitepaper, please note that sample
code is available.

Sample Code Link on GitHub: camunda.com/whitepaper/migration

http://camunda.com/whitepaper/migration

4

Big Bang Migration

Big Bang Migration

Use Migration Scenarios to create process instan
ces in the correct state
The goal sounds rather simple: You want to create process instances in
a state which might not easily be reached via normal ways in the process
model.

However, in order to do so you do not want to trigger any service tasks
or wait for human interaction on the way. Also, the desired state might
even be somewhere down a hierarchy of sub-processes. This makes the
task a bit more complex.

The recommended way of doing this is to create an adjusted version of
the process definition, containing own elements for what we call “migra-
tion scenarios”. This means that we really add elements to the process
model, which then allows us to basically leverage the normal BPMN 2.0
execution in order to steer process instances to the correct state.

Lets start with the example shown in figure below.

5

Big Bang Migration

The two red dots mark the places to which we want to migrate. We de-
fined two scenarios here:

 ● Migration Scenario 01: jump into the User Task “handle manually”,
which is part of a sub-process and a call hierarchy.

 ● Migration Scenario 02: jump into the User Task “do the work” down
the call hierarchy.

We adjusted the process model to include the two scenarios. To be pre-
cise, we added:

 ● Message Start Events with a special naming convention to start pro-
cess instances at a different activity (please note that no vendor-specif-
ic workaround is necessary to do this)

 ● An Intermediate None Event as starting point in the sub-process. This
is actually a workaround because BPMN cannot directly jump into a
node within a sub-process

 ● An extension to the Call Activities to configure which migration scenar-
io should be triggered in the sub-process.

The resulting process model is shown in figure below.

6

Big Bang Migration

Now we can start process instances by using the normal public Camunda
API (Java or REST). The Java way, for example, looks like this:

Note that no tasks are executed on the way to the desired state, which
means that no unwanted side effects occur. Now you can easily write a
migration script which triggers the right process instances with the right
data via the Camunda API. In Scenario 1 for example, the “path” illustrat-
ed in figure below is taken:

Of course you can deploy the process model without the migration sce-
narios as version 2 immediately after the script runs. Then, freshly start-
ed process instances don‘t have any overhead of migration scenarios.

Map<String, Object> variables = new HashMap<String, Object>();
variables.put("migrationScenario", "01");

runtimeService.startProcessInstanceByMessage("migration-example-super-process#MIGRATION_
SCENARIO_01", variables);

7

Adjust your process models

Adjust your process models
Our approach tries to limit vendor-specific extensions (or hacks) to a
minimum. As BPMN cannot “jump” into scopes or parallel paths there
are situations which cannot be handled out-of-the-box by the migration
scenarios. In that case, you have to adjust the process models. We want
to sketch one typical example shown here in figure below.

8

Adjust your process models

The migration scenario defines that we want to end up in Task A – and
only Task A (so Task B has already been completed). In order to jump
into the parallel paths, we need to have an additional parallel gateway
for the migration and a decision within the sub-process to bypass “Task
0” – as we cannot directly go into the sub-process on Task A. The changes
are marked in red.

This works pretty well. As an example, figure below shows the structure
of a real-life process to which we applied the migration.

9

Summary and possible alternatives

Summary and possible alternatives
The sketched approach works really well in our real-life projects. Howev-
er, there are some limitations that we want to bring to your attention:

 ● No history: Historic data such as the audit trail of the current process
instance up to the current state is not migrated. However, normally it
is still available in the old system and maybe in your Data Warehouse
or Business Intelligence solution – as a lot of customers load the his-
toric data into these systems for monitoring and reporting purposes.

 ● Not all scenarios are possible: As already discussed, you sometimes
have to adjust the process models. However, these are usually rather
minor changes.

 ● Java Migration: This approach actually requires to run Java code for
the migration. As we do see this as an advantage because you have all
logic and validation of the process engine in place, it means that you
cannot just run some magic database script for the migration.

However, there are some major advantages of this approach:

 ● Clarity and visibility: As you modeled the migration scenarios, they are
visible in the history data and can be visualized in cockpit. Whenever
you analyze a process instance later on, you will perfectly see that this
was migrated and what migration scenario was used.

 ● Simplicity: The solution is rather easy to understand, easy to imple-
ment and the changes in the model are not complex. Even if you have
to put some effort in modeling the migration scenarios – you have
to think them through either way, so why not document them in the
same step!

 ● No magic: We use the public API and leverage the BPMN process en-
gine. That minimizes the risk of breaking something.

Possible alternatives would have been:

 ● Create a migration script which steers the process through the pro-
cess model with the public API until it reaches the desired state in the
“normal” way. This is rather hard, as you have to limit side effects at
the same time, meaning foremost that you cannot call external servic-
es! However, you are still dependent on data, for example for deci-
sions. This data might change throughout the process instance life,
making it really hard to know which value some data had back then
when you made that decision. So how do you know how to make the
decision in migration?

 ● Create the process instance directly in the database with the correct
state, after all it just means a few rows in the database. This is basical-
ly possible, but really hard to implement, as you have to duplicate a
lot of logic the process engine normally does. Also, you maybe have to
take care that some listeners are called correctly when entering that
state, for example sending an email when a User Task was created.
However, it might still be doable for simple cases. The biggest down-
side is that you cannot easily see anything about the migration in the
history or in cockpit. There the process instance magically appeared
out of nothing. This might even crash some reports you want to do.

10

Source code

Source code
The whole example shown above is available as running example code.
Details on the implementation are described in the according project
website on GitHub.

Sample Code Link on GitHub: camunda.com/whitepaper/migration

Conclusion
Big Bang migrations are often preferred over concurrent operation of
the old solution and Camunda BPM. For Big Bang migrations, you have
to re-model your processes in proper BPMN 2.0 and afterwards migrate
all existing process instances into the right state in Camunda BPM. This is
doable with the sketched Migration Scenarios, which are documented in
BPMN at the same time. Some situations require adjusting of the pro-
cess model – but we see this as the best trade-off to do. The migration
itself can be steered via the public Camunda API, e.g. REST, so the biggest
issue to solve is to get the input data from your old solution.

http://camunda.com/whitepaper/migration

11

Imprint

Imprint

Europe / Asia

Camunda Services GmbH
Zossener Str. 55
10961 Berlin
Germany

Phone: +49 (0) 30 664 04 09 - 00
E-Mail: info@camunda.com
www.camunda.de

America

Camunda Inc.
44 Montgomery St, Suite 400
San Francisco, CA 94104
USA

Phone: +1.415.548.0166
E-Mail: info@camunda.com
www.camunda.com

mailto:info%40camunda.com?subject=
http://www.camunda.de
mailto:info%40camunda.com?subject=
http://www.camunda.com

