
WHITE PAPER

LEARN MORE AT SAUCELABS.COM UPDATED APRIL 2022

Solving the Biggest
Challenges in
the Mobile App
Development Lifecycle

https://saucelabs.com/

LEARN MORE AT SAUCELABS.COM

Introduction

In today’s fragmented mobile environment, it’s no easy feat to develop
mobile applications that are compatible with multiple platforms or to validate
dynamic real-user conditions. Mobile QA teams face unique challenges when
trying to scale mobile test automation and get complete visibility into an
application’s performance. While mobile app development teams struggle
with gathering high-fidelity error & crash data and real-user feedback they
need to iterate, debug, and release better mobile app versions faster.

Further, as the complexity and scale of technology, devices, and users has
exploded, the sheer volume of errors has jumped dramatically. This has led
to increases in the time it takes to capture, prioritize, and resolve errors. With
users demanding the highest-quality app experiences, software teams can’t
afford slow detection and resolution times for the crashes or exceptions that
impact their users.

User ratings and rankings in app stores also influence the lifecycle of an
app and can contribute to its failure or success. Therefore, it’s crucial to
test mobile applications thoroughly using different scenarios to ensure
compatibility and seamless functionality.

This paper discusses the biggest challenges modern mobile development
and testing teams face throughout the mobile app software development
lifecycle (SDLC) and provides practical solutions for overcoming them.

https://saucelabs.com/

Table of Contents

8	 Challenge #3: Mobile is Remote by Definition

8	 Challenge #4: Internal App Distribution

is Complicated

9	 Solution: Optimized Mobile Beta Testing and

App Distribution

10	 Part 3: Challenges in the Production Phase

10	 Challenge #5: Detecting and Prioritizing Crashes,

Hangs, and Errors That Impact Users

10	 Challenge #6: Long Resolution Times for Errors and

Even Longer Times for Rolling Out Fixes

11	 Solution: Error & Crash Reporting in Production, and

Across the SDLC

12	 Achieve Quality at Speed Throughout the Mobile

App Development Lifecycle

4	 Why is mobile testing important?

5	 Part 1: Challenges in the Development and

Integration Phase

5	 Challenge #1: Mobile Ecosystem Fragmentation and

Validating Apps for Dynamic Real-User Environments

5	 Solution: Cloud-Based Real Devices - No

Maintenance and More Flexibility

6	 Challenge #2: Scaling Mobile Test Automation Early

in the App Development Lifecycle

6	 Solution: Mobile Emulators and Simulators - for

Testing Scale and Speed

7	 A Blended Approach to Cover the Breadth of

Mobile Use Cases

8	 Part 2: Challenges in the User Testing Phase (Alpha

and Beta Testing)

LEARN MORE AT SAUCELABS.COM PAGE 4

Why is mobile testing important?

Mobile users expect rapid innovation – if your app isn’t updated frequently, you risk bleeding users and

losing your competitive edge.

Mobile users also have high expectations regarding the personalization and user experience of their

apps. Users want information to be presented in context at the right time, in the right place, and in

the right way. These demands and the tremendous opportunities they present bring mobile app

development to the forefront as businesses compete for supremacy in today’s mobile-first world.

Further, there are fundamental differences between the release cycles for mobile native applications

versus web applications. It’s much easier to develop and release updates for web applications that can

be deployed at the same time for all users, multiple times per day. New versions of web applications can

be accessed automatically by users and rolled back if issues are uncovered.

For mobile applications, release cycles are longer and more complex, which means fixing a bug for an

app that’s in production can be both costly and time-consuming. For example, an app installed on a

user’s device cannot be rolled back to a previous version—developers are forced to “fix forward” issues

in future updates, potentially leading to multiple versions of the same app in production. Thus, testing

earlier in the app release cycle becomes even more critical for native apps. In addition, since every app

is installed separately, it’s likely that different users will have different versions at any given time.

Without streamlined beta testing programs and error reporting systems, developers struggle to get

real user feedback and detailed bug information in the pre and post-release stages. This information is

critical to evaluating the overall app experience from the user’s point of view and catching bugs before

they impact users.

https://saucelabs.com/

LEARN MORE AT SAUCELABS.COM PAGE 5

Part 1: Challenges in the Development and
Integration Phase

Challenge #1: Mobile ecosystem fragmentation and validating

apps for dynamic real-user environments

Platforms: iOS and Android operating systems comprise approximately 95% of the mobile market

share. The dominance of these platforms has transformed the mobile ecosystem, bringing application

development to the forefront. And while a two-platform ecosystem may seem consolidated, going a

level deeper into the many different operating system versions in play at one time reveals a high level of

fragmentation, especially in the case of Android.

Device Fragmentation: Although there are fewer types of iOS devices than Android devices on the

market, Apple continues to increase its range by introducing inexpensive and smaller versions of the

iPhone and iPad to compete with low-end Android devices.

Android’s open-source code further complicates the mobile ecosystem because manufacturers can

change the way the operating system (OS) works on their devices. This means there can be tens of

thousands of different Android versions in use at any given time. In addition, because hardware is

custom made with different CPU, memory, and varying screen sizes, it is likely that a given app will

behave differently on different devices. This makes it critical to test on as many different devices as

possible.

Application Types: When creating a mobile app, developers need to decide which type of app is best

suited for their business needs. Apps can be native, hybrid, or built over cross-platform frameworks

such as Flutter, React Native, Xamarin and others. The decision to build a native app or use a cross-

platform framework is usually based on architectural decisions, cost and speed of development, and

the team’s resources/skills. In cases where web components are already available or most developers

are front-end developers, a hybrid app wrapping would make sense. And in the case where a new app

is built from scratch and the team wants to have one code base for all platforms, Flutter or React Native

may be a good choice. The application type may impact the way the app can be tested.

Localization: Each language supported by an app provides an opportunity to penetrate a new market

and reach new customers. Developers and testers must consider that their apps will behave differently

in different languages.

Environment Considerations: An app’s behavior can be impacted by location, reception, battery,

temperature, device accelerometer and more. Devices roam from network to network, cell tower to cell

tower, making it important to validate apps for different networks and user mobility.

Solution: Cloud-based real devices - no maintenance and more

flexibility

Like real devices in a device lab, cloud-based real devices run tests on actual phone hardware and

software. The key difference is that cloud-based devices are stored on a vendor’s premises and are

accessed remotely, which allows you to send test scripts to the devices over the Internet. These scripts

are then executed on the devices and test results are sent back in the form of detailed logs, error

reports, screenshots, and recorded video.

Maintaining real devices in-house is time- and resource-intensive and can pull focus from core testing

activities. In-house device labs require a comprehensive range of devices to ensure confidence in the

https://saucelabs.com/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/#:~:text=Android%20maintained%20its%20position%20as,the%20mobile%20operating%20system%20market.
https://saucelabs.com/blog/native-web-hybrid-and-progressive-web-apps-key-differences-for-development-and-mobile-testing

LEARN MORE AT SAUCELABS.COM PAGE 6

quality of your testing efforts. You will also need to make sure the devices are updated and replaced

regularly as new models come on the market.

However, a cloud-based real device solution gives testers instant access to the latest and greatest

devices on the market. This eliminates the hassle of procuring and maintaining devices yourself while

ensuring confidence in your device coverage.

Cloud-based real device platforms also provide better tools for monitoring and analysis. With an in-

house device lab, troubleshooting is often done manually by a human running each test to replicate the

error and find the root cause. With devices in the cloud, vendors can track and report on every step of

the test and relay it back for analysis. This way a team member can simply look at a detailed error log,

view screenshots, or watch parts of a recorded video to identify the cause. While this level of monitoring

can be built into an in-house device lab, the effort takes months and requires adequate people

resources that could be put to better use.

When choosing a cloud-based device vendor, it’s important to consider criteria such as device access

during peak times, breadth of device coverage, and security. Testing for real user conditions (network

simulation, localization, GPS, etc.) makes a big difference in the quality of a mobile app.

A cloud-based solution can increase the flexibility, scalability, visibility, and cost-efficiency of your

testing efforts, making it a key component of an effective mobile testing strategy.

Challenge #2: Scaling mobile test automation early in the app

development lifecycle

To validate features in development and catch common issues early in the SLDC, developers need the

ability to run high volumes of functional tests (unit tests, smoke tests, and others) from their development

environment. Teams should also run tests on every new commit pushed to a branch and ensure coverage

by testing the application against a range of different mobile environments.

Both the choice of tools and methods used affect the quality of mobile app deployment and updates.

Because software teams need to run tests on hundreds or thousands of environments in parallel, with each

environment representing a specific configuration, it can be difficult to ensure both timely and cost-efficient

testing if relying only on real device testing.

Solution: Mobile emulators and simulators- for testing scale

and speed

Mobile emulators and simulators are ideally suited to continuous integration (CI) pipelines because

they’re easy to provision and scale, providing you with comprehensive coverage.

Mobile emulators and simulators are also faster to provision than real devices because they are software-

driven. Additionally, they enable parallel testing and test automation via external frameworks like Appium,

Espresso, and XCUITest.

Where Selenium revolutionized web app testing by pioneering browser-based test automation, Appium

is its counterpart for mobile app testing. Appium uses the same WebDriver API that powers Selenium

and enables the automation of native, hybrid, and mobile web apps. This delivers significant increases

in testing speed for organizations coming from the manual world of testing on real devices. Similarly,

enabling test automation with native frameworks (Espresso/ XCUITest) provides better test reliability,

speed, and flexibility for native application testing.

https://saucelabs.com/
https://saucelabs.com/platform/real-device-cloud
https://saucelabs.com/platform/mobile-emulators-and-simulators
https://saucelabs.com/
https://saucelabs.com/

LEARN MORE AT SAUCELABS.COM PAGE 7

Emulators and simulators enable parallel testing in a way that can’t be achieved with devices in a lab.

Because tests on emulators and simulators are software-defined, multiple tests can be run on tens of

thousands of emulators and simulators at the click of a button without having to manually prepare each

emulator/ simulator for the tests.

A blended approach to cover the breadth of mobile use cases

A robust and complete mobile testing strategy requires organizations to have a good mix of real devices

and emulators and simulators. While emulators and simulators are complementary to real devices, they

can’t deliver the real-world environment that a device can. When used together in an automated testing

environment, real devices and emulators enable modern mobile testing teams to get the most out of

their mobile testing efforts. Plus, testing in parallel across multiple platforms helps to speed up tests

while optimizing costs. With the right blend of real devices and mobile emulators/simulators, mobile

teams can cover the entire breadth of mobile use cases.

KEY BENEFITS Real Devices EMU/SIM

Easy to scale and maintain

Easy to provision

Cost-efficient

Detect Hardware Failures

Advanced UI Testing

Test Apps for Real-world Environments

https://saucelabs.com/
https://production-al2.saucelabs.com/blog/better-together-real-devices-emulators-simulators-for-mobile-testing
https://production-al2.saucelabs.com/blog/better-together-real-devices-emulators-simulators-for-mobile-testing

LEARN MORE AT SAUCELABS.COM PAGE 8

Part 2: Challenges in the User Testing Phase
(Alpha and Beta Testing)

We’ve covered some key challenges and solutions in the development stages of mobile app

distribution. Now let’s dive into the unique pain points for mobile teams when beta testing mobile apps.

The problem of device fragmentation is relevant even in the beta testing phases because it requires

developers to test their app on as many devices as they can before releasing the app in the app store.

This significantly increases testing time and development costs.

Challenge #3: Mobile is remote by definition

Since mobile is remote by definition, developers cannot always see and understand problems that

happen on a device that is in the hands of a tester or a user.

Limited user feedback makes remote debugging difficult for developers

The pandemic has greatly impacted the way we work and collaborate. Remote work in particular has

presented unique challenges for mobile app development and testing teams.

In the pre-pandemic era, when a tester experienced an application issue or crash during testing, they could

easily show the problem in real time, enabling developers to perform root cause analysis. Without physical

proximity, it’s challenging for testers to provide meaningful information to help developers understand

and fix issues. Offshore QA teams experience similar challenges with respect to QA and developer

communication, scheduling, and lack of control.

Reporting bugs on mobile devices is manual and time-consuming

In a remote environment, explaining what went wrong when an application does not work as expected

requires developers to have screenshots, videos, logs, and other relevant information that will help

them reproduce the issue. Users often don’t understand how to report bugs, while for those who do, it

is a manual and time-consuming process, ultimately leading to many bugs left un-reported.

Challenge #4: Internal app distribution is complicated

Popular public app stores like Apple’s App Store, Google Play, and the Samsung Galaxy Store each have

unique requirements and policies for publishing an app. However, distributing apps for internal beta

testing outside of the official app stores (also known as “dog-fooding”) presents its own challenges.

This use case typically involves the controlled distribution of mobile apps to internal company

employees (authorized users) for beta testing, allowing them to test the app before it is released.

As software organizations deal with multiple app versions and a larger group of internal testers,

manually reporting feedback can prevent beta testing participants from reporting bugs. Further,

incomplete information and unclear reports on the bugs encountered, along with prolonged feedback

loops between beta participants and developers, require development and testing teams to spend time

filling in the gaps, causing delays in the timely public release of the app.

https://saucelabs.com/

LEARN MORE AT SAUCELABS.COM PAGE 9

Solution: Optimized mobile beta testing and app distribution

While there are several beta testing solutions on the market, the ability to streamline mobile app

development and beta testing processes requires a cohesive solution that can empower development

and QA teams to create consistent feedback loops throughout all phases of mobile development,

including production, and further strengthens their manual and automated testing efforts.

Key benefits of using a developer-centric beta testing solution include:

Quick beta app deployment and real user feedback

With the ability to leverage a SDK directly in their app and release beta app versions directly to the

target users, developers can gather real-time real user feedback to create consistent feedback loops

that provide way more depth and detail to further complement their scripted tests and better account

for the edge cases.

Shorter development cycles, faster collaboration

Solutions that integrate seamlessly with the entire ecosystem of tools can make beta testing painless

and help cut down release cycles. Integrations with CI tools allow for apps to be automatically uploaded

and get quickly distributed to the target users. Similarly, integration with bug tracking (e.g., JIRA, Trello)

and team communication tools (e.g., Slack) allow teams to automatically file issues in the right places for

the right stakeholders in remarkably less time.

Accelerated debugging and mobile app iterations

Allowing beta testing participants to intuitively report bugs helps uncover more quality issues, and also

provides meaningful information for developers to identify and fix bugs without spending endless hours

analyzing bug reports. Further, the ability to view the actual user experience via video recordings can

be valuable for developers and product teams to get insights into how real users use the app, and also

reproduce issues faster by providing visibility into the events that happened before an app crashed or

an issue was reported.

Better compliance and security

Compliance with the major security standards and features such as data encryption, firewall, and audit

logs can be especially valuable for setting up large beta testing programs. With secure and configurable

app distribution teams can ensure that only authorized users have access to the beta apps and security

is not compromised.

https://saucelabs.com/
https://saucelabs.com/blog/best-practices-for-mobile-application-beta-testing
https://saucelabs.com/resources/data-sheets/sauce-labs-mobile-beta-testing-with-test-fairy

LEARN MORE AT SAUCELABS.COM PAGE 10

Part 3: Challenges in the
Production Phase

Software stability issues negatively impact user retention and a company’s bottom line. Mobile app

crashes and failures lead to fewer customers acquired and increased churn, which ultimately results in

lost revenue.

Research studies from Intel, Harvard Business Review, and TechCrunch show that 44% of users report

they would delete crashing apps immediately. 38% said they would do so if it froze for more than 30

seconds. For paid apps, 18% would still delete if the app froze for more than 5 seconds. Acquiring

new customers can be up to 20x more expensive than simply retaining customers while increasing

customer retention rates by just 5% could lead to an increase in profits by 25-95%.

Managing the stability of mobile apps in production is so difficult because the mobile app ecosystem

is not a homogenous environment. The complexity around various operating systems, chipsets, form

factors, memory, and performance criteria make it impossible to test for all scenarios. As a result,

instability and other quality issues that were not encountered during the test and beta cycles will appear

after an app is released. In the worst cases, these issues will negatively impact user retention and a

company’s bottom line, so it’s important for teams to be informed and be able to solve these issues.

Let’s dive into the specific challenges.

Challenge #5: Detecting and prioritizing crashes, hangs, and

errors that impact users

When your development teams rely only on manual interaction and user reports to collect the data

needed to diagnose application errors, there is a potential risk that crashes, exceptions, hangs, and low

memory bugs can end-up impacting your mobile users.

The exploding complexity and scale of technology, devices, and users has caused a dramatic jump in

errors. The time it takes to capture, prioritize, and resolve issues is steadily increasing. To sift through,

understand, and investigate every kind of crash or exception from the high volumes of data (i.e., noise)

coming from different sources becomes incredibly complex.

In a market where users have high expectations of software quality and a low tolerance for errors,

development teams are always racing against time to fix issues that impact their users.

Challenge #6: Long resolution times for errors and even longer

times for rolling out fixes

Testing and error reporting is a team sport. When a bug is detected after release, consistent feedback

and information sharing between technical support, QA, and engineering is often required to resolve the

errors faster.

However, quick information sharing is impeded when the tools developers and QA teams use every day

(Slack, Jira, GitHub, others) aren’t integrated seamlessly. Further, the isolation of crash and error data from

the team’s workflows severely impacts their ability to speed up resolution times for errors.

https://saucelabs.com/
https://saucelabs.com/blog/cut-your-error-resolution-time-in-half

LEARN MORE AT SAUCELABS.COM PAGE 11

Solution: Error & crash reporting in production, and

across the SDLC

Crash and error reporting is not just an operational tool: it’s a core part of how organizations mitigate

application risk while protecting and growing revenue. The ability to get clearer signals from crash

and error data has become critical for both developers and executives because high software quality

directly impacts the user experience.

Using best-in-class error and crash reporting solutions not only helps you quickly observe and

remediate errors in production, but also helps leverage those insights during the development and

integration phases of CI/CD to improve test coverage. With deduplication, symbolication, indexing, and

the elimination of false positives, these solutions enable teams to quickly capture, prioritize, and resolve

the errors in their apps or devices while in development, test, beta, or production.

The key benefits of using error and crash reporting for mobile apps include:

Reducing “time-to-detection” to minutes

It’s critical to detect errors before your users do. Automated error capture across Android and iOS apps

help teams never miss crashes, hangs, or low memory events.

Making error prioritization painless

Solutions providing a flexible deduplication engine and powerful indexing/query capabilities allow teams

to better assess the impact of fatal and non-fatal errors so they can more easily prioritize issues to fix.

Drastically reducing the “time-to-resolution”

Deep integration with Jira, Slack, GitHub, DataDog, and other tools that teams use every day can help

reduce time-to-resolution by hours, with the ability to create faster feedback loops, efficiently share

error and crash information, and eliminate duplication of efforts.

https://saucelabs.com/
https://saucelabs.com/platform/error-reporting

PAGE 12WP-220401

Achieve Quality at Speed Throughout the Mobile App
Development Lifecycle

Delivering the best possible user experience and accelerating app releases, requires mobile development, QA, and extended teams to

overcome unique challenges at each phase of the mobile app development life cycle.

To win in a highly competitive market and innovate with confidence, teams need end-to-end mobile quality solutions that can provide

comprehensive device and test coverage, expedite beta app distribution and real user feedback cycles, and mitigate application risk

throughout the SDLC.

Sauce Labs offers the leading mobile test and error reporting solutions, enabling organizations developing mobile apps in the modern

era of DevOps to deliver the best possible digital experiences to their users and achieve high quality, high-velocity releases. By

providing an integrated test toolchain necessary to identify application risk and get enhanced visibility and insights across the entire

software lifecycle, Sauce Labs helps your teams develop and release mobile apps with confidence.

Native

Mobile Beta TestingReal and Virtual Device Testing

Insights | Expertise | Security Partners | Integrations

Test Together EMU/SIMS | Real Devices | Real Users DevOps Excellence

QUALITY AT SPEED THROUGHOUT THE MOBILE APP SOFTWARE LIFECYCLE

Development • Integration • Production Higher Release Frequency • Lower Risk • Higher Quality

Hybrid Mobile Web

Error Monitoring & Reporting

APIs

https://saucelabs.com/
https://saucelabs.com/platform/mobile-testing

About Sauce Labs

Sauce Labs is the leading provider of continuous test and error reporting solutions that

gives companies confidence to develop, deliver and update high quality software at speed.

The Sauce Labs Continuous Testing Cloud identifies quality signals in development and

production, accelerating the ability to release and update web and mobile applications that

look, function and perform exactly as they should on every browser, operating system and

device, every single time. Sauce Labs is a privately held company funded by TPG, Salesforce

Ventures, IVP, Adams Street Partners, and Riverwood Capital.

 For more information, please visit

→ saucelabs.com

SAUCE LABS INC. - HQ 450 Sansome Street, 9th Floor, San Francisco, Ca Usa 94111

saucelabs.com/sign-up

FREE TRIAL

https://saucelabs.com/
http://saucelabs.com/sign-up

