
WHITE PAPER

LEARN MORE AT SAUCELABS.COM

Headless Testing Primer

As testing continues to shift left in the development lifecycle, it’s important to understand

that different stages of the pipeline have different test requirements, and need resources

that allow teams to continue delivering code quickly without creating bottlenecks.

Headless browser testing has emerged as an effective way to implement early pipeline

testing. It’s lightweight, fast, and able to scale with development as they incorporate

more testing into their workflows.

This whitepaper explains how headless testing works, when to use it, and where headless

testing fits within a test strategy that includes other types of testing, including cross-

browser testing.

TABLE OF CONTENTS

3 Executive Summary

3 What is Headless Testing?

4 Why Use Headless Testing?

4 Testing Speed

4 Cost and Infrastructure Savings

5 Enabling Earlier Testing

5 Shift-left and Continuous Testing

6 When Not to Use Headless Testing

6 Tests That Evaluate Graphical Elements

7 Real-World Test Conditions

7 Performance Troubleshooting

7 Some Applications Won’t Work in

 Headless Environments

8 Headless Testing Represents One Part of a

Broader Testing Strategy

8 Do display requirements prevent me from

 using headless testing altogether?

8 How significant are the time and resources

 saved by running a test headlessly?

8 Do we already have a script for running this

 test in cross-browser mode?

8 How critical is the completeness of this test?

9 Getting Started With Headless Testing

LEARN MORE AT SAUCELABS.COM PAGE 3

EXECUTIVE SUMMARY

Effective software testing requires striking the right balance between the

resources expended to run tests on the one hand, and the extent of the

application delivery pipeline that is covered by tests on the other. If time and

infrastructure were in infinite supply, software testers would be able to test

every module of code at every stage of the delivery process. In a world where

testing resources are limited, however, this is not possible.

That is why it is critical to find ways of optimizing testing resources in order

to get the most test coverage out of the time and infrastructure available to

your organization.

One way to do this is to take advantage of headless testing. Headless testing

is a software testing technique that makes it possible to expand test coverage

by running more tests, without requiring a significantly greater investment of

time or hosting resources for those tests. Combining this approach with other

approaches to testing, organizations that adopt this blended paradigm towards

testing enable teams to perform testing earlier in the delivery cycle, thereby

shifting testing left with the identification of problems in the code-line where

they are easier to correct before they are merged into the main branch.

Headless testing enables a more effective and expansive process, while

allowing the testing team and infrastructure your organization already has

in place to be more effective.

This whitepaper explains how headless testing works, when to use it, and

where headless testing fits within a test strategy that includes other types of

testing, including cross-browser testing.

WHAT IS HEADLESS TESTING?

Headless testing is a technique for testing applications (or individual units of

code inside applications) without displaying their visual elements. Generally,

applications tested operate in a web browser with a graphical user interface,

or GUI. Headless testing still tests the components, but skips the time- and

resource-consuming process of rendering a visual display.

Headless testing does not mean the code determining how an application

is displayed is ignored. HTML is still rendered and JavaScript is still invoked

by the test scripts to determine whether layout rendering and performance

goals are met.

PAGE 4LEARN MORE AT SAUCELABS.COM

Headless testing is not an alternative to component testing, acceptance

testing, end-to-end testing, or other types of software tests; instead,

it is a technique that can be used to execute these types of tests.

Headless testing can be thought of as the opposite of cross-browser testing.

The latter testing technique entails testing an application by running it inside

a complete web browser, including all visual components.

WHY USE HEADLESS TESTING?

Agile and fast waterfall teams are struggling to develop code quickly —

let alone wait for the results of testing. However, in today’s development

lifecycle, it is often a requirement that both the application and the tests are

developed simultaneously. This means the developer has tests already written

when they write new code, but often with no way to self-service execute the

test. Headless does not replace the other forms of testing, but it offers several

advantages that make it a better fit for tasks that require faster feedback and

more efficient use of resources.

Testing Speed

Because headless testing does not require the test environment to display the

visual elements of an application, headless tests can typically execute much

faster than cross-browser tests.

The exact time saved by headless testing as compared to cross-browser tests

depends on how complex the visual elements are and how many resources

they would require to display, but in general, testing teams can expect

headless test to reduce test execution time by about 10 percent.

Another speed benefit teams will see by using headless browsers for early

pipeline testing is in the increased velocity at which code moves through the

pipeline. With development incorporating more tests at the component level,

bugs can be found and fixed much more quickly as compared to later

in the development lifecycle. This results in fewer rollbacks, and better-quality

software released more quickly.

Cost and Infrastructure Savings

Skipping the step of displaying an application visually also reduces the amount

of resources that each test consumes. As a result, you can run more tests at

once on the same infrastructure. Ultimately, this saves you money.

PAGE 5LEARN MORE AT SAUCELABS.COM

Enabling Earlier Testing

Because headless tests run more quickly and require less infrastructure,

it’s easier to perform tests early in the development cycle.

Typically, because of the time and resources required to run cross-browser

tests, testing teams wait until after code has been integrated into an

application’s codebase to perform cross-browser tests. Although there is no

rule preventing cross-browser tests from being run earlier in the development

cycle, it is often not feasible to run them prior to code integration, as it

requires running many tests for many different units of code, demanding

a great deal of resources.

In contrast, headless tests are well suited for running early in the development

cycle, even if only small units of code need to be tested. In this respect,

headless tests are a good approach for performing component testing.

It’s important to note headless testing is by no means limited to component

testing or other types of tests that occur early in the software delivery cycle.

Headless testing can be used at any point in the development cycle, but it

is particularly valuable for conducting early pipeline tests that would not be

feasible to perform using a cross-browser approach. With Agile development

gaining more popularity, this idea of early testing is critical to support

accelerated development cycles.

Shift-left and Continuous Testing

The software industry is in the middle of a paradigm shift from a traditional

Waterfall approach to Agile, DevOps, and other modern development

practices. These methodologies put a priority on taking steps to know more

about software quality much earlier in the delivery cycle — shifting focus

further to the left. In doing so, organizations find continuous testing is critical

to ensuring software can move at an accelerated pace without compromising

quality. This idea has given rise to strategies such as “shift-left” and

“continuous testing,” and headless testing offers a fast and resource-efficient

choice to support both of these strategies.

Shift-left and continuous testing revolve around the idea that to deliver quality

software at the pace Agile requires, testing must be incorporated earlier,

and more often throughout the pipeline. This means testing responsibility

cannot fall solely on the QA organization — It also falls on the developers

themselves. Enabling developers to test their code before it is merged into

a master branch provides the opportunity to find and fix issues before they

PAGE 6LEARN MORE AT SAUCELABS.COM

have a larger and negative impact on the application downstream. This means

quality code can move through the pipeline more quickly and efficiently, and

developers can move on to new tasks instead of chasing down bugs.

These strategies are useful for increasing the impact of software testing.

By running tests earlier in the delivery pipeline, testing teams can detect

software problems in individual units of code prior to integration into the

larger codebase. In turn, problems can usually be solved more easily, because

issues can be isolated to a specific unit of code and resolved in isolation,

without requiring changes to other parts of the application.

Similarly, because continuous testing increases the frequency at which tests

are run, and allows code to be tested at all stages of the delivery pipeline,

it increases a testing team’s ability to identify and address problems. Not only

does this help to identify issues earlier in the development cycle — It can also

reveal problems that may not be evident when performing testing at

a particular stage of the delivery pipeline (such as pre-integration) but that

can become apparent at another stage (such as after code has been

integrated and can interact with other application components).

Early pipeline testing is particularly important in today’s microservices-based

software architectures, which consist of multiple components that depend on

one another. If a problem exists within the code for one microservice and it is

not detected early in the development cycle, it could easily affect the code of

other integrated microservices. This would possibly require each microservice

be modified to fix the problem, wasting time and resources in the process.

WHEN NOT TO USE HEADLESS TESTING

While headless testing enables faster and more frequent tests, it is not the

right fit for every testing use case. Below are four scenarios where headless

testing is a poor fit for a given type of test.

Tests That Evaluate Graphical Elements

Most obviously, tests requiring visual elements to be evaluated on a display

that mimics real-world conditions, or which involve visual components

that cannot be represented by standard web browser code cannot be run

effectively using headless testing.

For example, a test that assesses how real users interact with an application

interface cannot be run in a headless browser, because doing so would not

PAGE 7LEARN MORE AT SAUCELABS.COM

produce an interactive display. Similarly, if the application or component

being tested displays streaming video, headless testing cannot confirm the

video is displayed correctly and performs adequately; it can only test whether

the application passes or fails the test conditions. (A reminder — the use case

for headless focuses on rapid outcomes, not detailed actionable insight. For

that you need much more robust cross-browser testing.

Real-World Test Conditions

Because headless environments rarely exist in the real world, headless testing

is not well suited for testing application behavior under genuine real-world

conditions. Cross-browser testing is the best approach for mirroring real-

world conditions within a testing environment.

Performance Troubleshooting

Because headless tests don’t execute the display, they may miss performance

pain points related to either page interactivity or the visual components of

the application.

This does not mean headless testing should never be used in conjunction

with performance testing. On the contrary, headless tests are a fast and

efficient way of identifying some types of performance issues. For example,

if HTML is slow to render due to inefficient code design, or network-

bandwidth problems are preventing an app from responding adequately,

headless testing will be able to detect the root of the problem in most cases

as well as cross-browser testing. But headless tests will not be able to identify

performance problems stemming from a browser struggling to display

information or respond to display-based input, for example.

Some Applications Won’t Work in Headless Environments

In rare cases, applications or websites are designed to detect whether they

are running in a headless environment, and will refuse to load under those

circumstances. This does help prevent certain types of abuse, such as

attempts by attackers to overload an application with repetitive requests from

a headless browser to prevent it from responding to legitimate users. This

type of configuration is rare, though it may be possible to disable in a pre-

production application in order to perform headless tests on the application.

But, if your developers have made the choice to prevent their application

from running in a headless environment, your testing team will most likely

need to rely on cross-browser testing.

PAGE 8LEARN MORE AT SAUCELABS.COM

The latter testing strategy will work for these applications because it presents

the application with a complete browser environment, avoiding the risk the

application will refuse to load in the absence of a full browser.

HEADLESS TESTING REPRESENTS ONE PART OF A BROADER

TESTING STRATEGY

Because headless testing doesn’t address all testing use cases, it’s best to think

of headless as one useful testing technique to include in your toolset, but

not the only one that you’ll use. Cross-browser tests should almost certainly

remain a part of your testing routine, as should unscripted, manual tests.

Before deciding whether to use headless testing, ask the following questions.

Do display requirements prevent me from using headless testing altogether?

If the answer to this question is yes, you simply can’t use a headless test.

Instead, use cross-browser testing.

How significant are the time and resources saved by running a test headlessly?

Although headless testing is faster and requires fewer resources, this is not

universally the case. An application or website with minimal display elements

might take about as long to test using a cross-browser test as a headless test.

If you won’t actually save much time or resources by using headless testing,

you might be better off sticking with a cross-browser test. The latter will

deliver more test data and a deeper level of coverage.

Do we already have a script for running this test in cross-browser mode?

If your team already has a solution in place for running a particular test in

cross-browser mode, you might want to keep using that test script and

devote your team’s time to writing headless tests that cover new territory.

That way, you increase your overall test coverage, rather than devoting

resources to converting cross-browser tests to headless tests (without

increasing the thoroughness of your testing).

Eventually, once your test coverage has been maximized, you can shift

resources to converting cross-browser tests to headless tests.

How critical is the completeness of this test?

If getting test results that reflect real-world conditions is an absolute priority,

or if a test is one of the last tests you are running before production, it is wise

to invest in a cross-browser test, even though it will take longer to run and

place a greater load on your test infrastructure.

PAGE 9WP-20-052020

On the other hand, tests that run earlier and that involve components that will

be re-tested multiple times before release into production might not demand

such a high degree of completeness.

GETTING STARTED WITH HEADLESS TESTING

Performing headless testing is simple. The only requirement is a headless

web browser, such as Headless Chromium, Headless Firefox or HtmlUnit,

and the infrastructure to run it. While it’s possible to perform headless testing

manually by running an application inside a headless browser, in most cases,

you’ll want to use an automated testing framework to perform headless tests

quickly and at scale. Selenium WebDriver, an open source automated testing

framework, offers broad compatibility with most headless browsers and types

of tests. Other frameworks, including Watir and Serenity, are also compatible

with headless tests, although the set of use cases they support is not as broad.

To make headless testing easier, Sauce Labs recently introduced a headless

testing platform, Sauce Headless. This new product provides a turnkey

solution for spinning up headless Chrome or Firefox instances on Sauce’s

cloud testing infrastructure, and is perfect for developers who want to

incorporate testing earlier in their pipeline.

Sauce Headless saves testing teams from having to set up headless browsers

or host infrastructure, placing the focus on tests and developing, coding,

and creating new applications. With more insight earlier in the development

process, organizations will benefit from code and application branches

that are cleaner, more reliable, and more usable across the organization.

Combined with a traditional cross-browser testing platform, Sauce Headless

helps achieve continuous testing throughout the software development

pipeline. To learn more, please visit the Sauce Labs website.

https://developers.google.com/web/updates/2017/06/headless-karma-mocha-chai
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Headless_mode
http://htmlunit.sourceforge.net/
https://saucelabs.com/products/web-testing/sauce-headless

ABOUT SAUCE L ABS

Sauce Labs is the leading provider of continuous testing solutions that deliver digital

confidence. The Sauce Labs Continuous Testing Cloud delivers a 360-degree view of

a customer’s application experience, ensuring that web and mobile applications look,

function, and perform exactly as they should on every browser, OS, and device, every

single time. Sauce Labs is a privately held company funded by Toba Capital, Salesforce

Ventures, Centerview Capital Technology, IVP, Adams Street Partners and Riverwood

Capital. For more information, please visit saucelabs.com.

SAUCE LABS INC. - HQ 116 New Montgomery Street, 3rd Fl San Francisco, CA 94105 USA

saucelabs.com/signup/trial

FREE TRIAL

https://saucelabs.com/
https://signup.saucelabs.com/signup/trial?campid=7011M0000013X6m&=utm_campaign=free+trial&utm_medium=qr&utm_source=sl

