
WHITE PAPER

Moving to an effective and efficient CI/CD pipeline requires significant effort from

organizations. It involves process and policy changes across your entire organization.

The payoff can be extraordinary: continual improvement as the organization moves to

constantly deliver high-quality, well-tested value to their customers. This white paper

will discuss the approaches, requirements and processes to consider when implementing

a CI/CD workflow.

Designing Infrastructure for
Continuous Testing and CI/CD

LEARN MORE AT SAUCELABS.COM

TABLE OF CONTENTS

6	 Process

7		 Moving to Smaller Branches

7		 Tests in Source Alongside Code

8	 Code

8		 Leveraging APIs for Testability

9		 Managing Code Dependencies With Software

	 Craftsmanship

10	 Closing

3	 Designing Infrastructure for Continuous

Testing and CI/CD

3	 Fast Management of Environments

3		 Self-Service for Teams

4		 Scriptable Databases

5		 Scriptable Data

5	 Feature Management

5		 Smaller Features

6		 Switchable Features

LEARN MORE AT SAUCELABS.COM PAGE 3

DESIGNING INFRASTRUCTURE FOR CONTINUOUS TESTING AND CI/CD

Adding integration and end-to-end testing to a pipeline can enable the leap

from Continuous Integration to Continuous Delivery (CD). Being effective,

long term, with Continuous Delivery requires an entirely new set of features --

testability features -- built into the architecture itself, along with other changes

to the way software is built. Without these changes, organizations typically

struggle to see the benefits that Continuous Deployment and Delivery promise.

Organizations looking to move to Continuous Delivery would do well to

consider improvements in the following categories, looking for “missing

features”, anticipating the cost of building those features, and the

consequences of leaving them blank.

•	 Fast Management of Environments

•	 Careful Feature Management

•	 Adapting Processes

•	 Embracing Codebase Improvements

FAST MANAGEMENT OF ENVIRONMENTS

Fast-moving teams can’t wait weeks or months to get environments for

builds and testing in place, nor can they wait for already overloaded DBAs

to manually inject data or schema changes. This is simply untenable for

projects where builds and testing are ongoing many, many times each day.

CD requires environments be created, provisioned, and ready for test in just a

few minutes--more than ten or 15 minutes makes it near impossible to have a

smooth-functioning automated pipeline.

This need for speed requires significant changes to how infrastructure and

environments are managed. Cloud-based hosting offerings like Microsoft’s

Azure or Amazon’s Elastic Computing Cloud (EC2) allow teams to offload

their build and server management. Testing on demand in parallel can be

easily added to a pipeline through offerings like the Sauce Labs cloud-based

testing platform. Services like Sauce Labs also offer physical mobile device

farms, enabling teams to avoid management of potentially huge matrices of

devices, operating system versions, and features.

Self-Service for Teams

Luckily, technology has advanced to the point where there are affordable,

industry standard solutions. In addition to the cloud-based solutions

LEARN MORE AT SAUCELABS.COM PAGE 4

mentioned above, on-premises solutions range from commercial products

like VMWare to open source containers like Docker.

All of the tools, both on- and off- premises, make it simple to wrap in a CI/CD

toolset. Scripts, plugins, adapters, etc. to manage infrastructure are available

for every popular solution listed above—it’s simple to tie provisioning and

deployment into a job on Jenkins or other toolsets. Moreover, many cloud

vendors provide easy secure tunneling to backend (on-premise) infrastructure

to support a mix of on- and off-premises systems. Sauce Labs’ Sauce

Connect Proxy is just one example of this.

Infrastructure management isn’t limited to provisioning and deploying. Fast-

moving teams need self-service. They need to create an environment on-

demand for any given build, and, obviously, their tools need that capability

as well. Organizations need to move system management and access rights

down from centralized administration to individual teams. This doesn’t mean

ignoring or bypassing regulatory compliance and auditing issues emplaced

by concerns such as HIPAA or Sarbanes-Oxley, it means understanding the

power of automation via a delivery pipeline to handle security, artifact storage,

configuration, and auditing.

Teams also need to quickly access logs and performance/environmental

data from production environments. Traditional, slow-moving organizations

often use ticketing systems with long SLA times to handle these situations.

That’s untenable in a CI/CD environment where teams need to have constant

monitoring of their software in production.

Logging, monitoring, and advanced log search tools can also have benefits

for testability and debugging. Building this capability into dev and test

environments mean it will be “free” in production and enable programmers to

perform production support, removing a barrier between development and

operations.

Scriptable Databases

Continuous Deployment “but manual database changes” puts Continuous

Delivery in quotation marks and quality in jeopardy. Scriptable database

changes mean the schema and data can be stored in source control right

alongside the appropriate version of the system code. If the database

versioning and the production code are separate, then changes need to be

coordinated so they don’t break production - and they certainly will break

https://wiki.saucelabs.com/display/DOCS/Sauce+Connect+Proxy
https://wiki.saucelabs.com/display/DOCS/Sauce+Connect+Proxy

LEARN MORE AT SAUCELABS.COM PAGE 5

self-service dev and test environments. Even if the changes are carefully

coordinated in dev and test, anyone trying to patch an old version of

production with new database code will find problems.

Many toolsets offer this scripting for major databases, regardless whether

they’re traditional RDBMSs or “NoSQL.” Tools range from commercial

products to open source tools such as LiquiBase and Ruby Migrations.

Scriptable Data

Some applications have an API to create a user, an account, or a product;

wrapping that in a command-line application is trivial. Adding the capability

to batch-export, clear or delete data in the database and import data in the

same way, by logical groups, adds a feature to the product that is incredibly

valuable for testability. With this feature in hand, programmers can create

test data sets that are imported automatically for any test. The test can then

login as those users, perform transactions, check the results - and know when

the test ends the system will clear the data and re-import it for the next test.

Advanced features to save time include allowing a test to be ‘read only’ (no

need for teardown) or to perform its own, unique setup. Once the team has

achieved the trifecta of fast self-service scriptable environments, scriptable

databases, and scriptable data, the continuous deployment system can truly

run end-to-end tests atomically, without introducing errors and challenges

to the deployment pipeline.

FEATURE MANAGEMENT

Too often organizations ignore the impact of business implementation:

What features are selected, how they’re conceived, and how they’re coded up.

Smaller Features

Learning to decompose large monolithic “features” into smaller ones takes

hard work on the part of organizations. These changes don’t just hit technical

issues, more importantly business concerns. Stakeholders, product owners,

and users all need to understand the advantages of smaller work.

Smaller features are generally less complex, thereby making them easier to

build as part of a CI/CD pipeline. It’s far easier to build, integrate, test, and

deploy a smaller component with a small set of APIs, database changes, and

UI versus a huge footprint of massive schema updates, interwoven service

dependencies, and numerous components to be installed for the end user.

LEARN MORE AT SAUCELABS.COM PAGE 6

Small features will be easier to turn off (make switchable). To be successful

with larger features under CI/CD, organizations will need to understand and

use feature flags to make features switchable -- our next topic.

Switchable Features

Skilled teams are often asked “How do I test CAPTCHA in my user registration

form?” as those teams struggle with automating a tool (CAPTCHA) that is

specifically designed to prevent automation.

Those same teams will often answer “Don’t. Cheat instead.”

What’s meant in these situations is design your system where you can turn

off wholesale features to make the system more testable. In this case, you

don’t need to test CAPTCHA itself. It’s a well-tested, high-quality third-party

component. You obviously need to test its integration and functionality, but

that’s likely a one-time thing.

Automating your tests for your user registration process should first disable

CAPTCHA, run the test, then turn CAPTCHA back on. This requires coding and

engineering effort to make the feature switchable, but it’s an extraordinary

help when trying to wrap testing into your CI/CD pipeline.

Moreover, feature switching can be used for much larger chunks of

functionality--a technique sometimes called “canary releases.” You could

deploy features to your entire production farm, but enable them only on a

carefully monitored small number of servers. This allows you to gradually roll

out your features to a small population, ensure they’re working properly, and

gradually turn on those features to more and more users.

PROCESS

Moving to a pipeline that constantly delivers high-quality, well-tested software

is far more a process change than a technical one. Of course significant

changes will be required to an organization’s technical practices; however,

organizations will need to adjust their delivery processes. This can often be

more challenging than technical changes, as it requires non-technical roles

such as stakeholders, product owners, and users to adjust their work habits

and mindsets. Getting past the “I just want to do my job!” mindset to “How

can I improve my job?” isn’t always easy.

Technical roles also have to adapt how they’re doing their work in order to

successfully move to a CI/CD model.

LEARN MORE AT SAUCELABS.COM PAGE 7

Moving to Smaller Branches

Branching strategy is something often as hotly debated as tabs versus spaces

or Emacs versus Vim. The branching strategy a team chooses will have a

significant impact on the team’s ability to work as smoothly as possible in a

CI/CD environment.

Small, short-lived branches (feature or smaller-sized) allow teams or even

small groups (pairs!) of team members to do their own work isolated from

others’ churn in the codebase. Development and testing can be accomplished

without interruption from other work in the database. Small branches aren’t

something new: Martin Fowler wrote about them back in 2009 based on

years of his experience. Dependency management across branches is still an

issue, but it’s lessened by good communication around APIs and automated

tests to guard against regressions.

Normally each branch will have its own build job in the pipeline. Each branch

has a job to monitor that branch in source control, then pull, build, deploy,

and test as required. This requires more setup time up front; however, job/task

templates make this much easier. (Every popular CI/CD toolset offers some

form of job/task templating just for these situations.).

Tests in Source Alongside Code

Keeping automated tests in sync with the application code they cover is

critical to automated delivery pipelines. The entire team needs to have

complete confidence in the checks guarding against regressions and

confirming high-value business features.

The smoothest approach to handling this is simply keeping automated test

code in the same repository as the system code. Having tests right alongside

the system makes it simple to pull the current branch from source, build,

deploy, and test. There’s no mess about determining versions from other

repositories, passing of messy variables, etc.

Organizing test and system code in a repository is something each project

team needs to work out for their own requirements. Larger organizations

might have a few guidelines (not “best practices!”), but teams will need to

evaluate approaches that meet their environments and pipelines. Moreover,

different toolsets prefer different organization of tests. A common approach

is to have unit tests very close in layout to the code they’re testing, as shown

in the following figure depicting a very simple Java project in Eclipse. Source

code is under /src/main with test code under /src/test.

LEARN MORE AT SAUCELABS.COM PAGE 8

Further organization of integration, functional, security, performance, and

other test types generally has those in separate projects. Again, approaches

vary greatly across different organizations, teams, and toolsets.

CODE

Lastly, but far from least, are the technical impacts in a codebase to ensure

good testability in a fast delivery pipeline. These issues aren’t trivial, but they

certainly come after the enabling concepts laid out earlier in this paper.

Leveraging APIs for Testability

Public APIs are a crucial piece of any well-architected system, regardless of

whether it’s a monolithic system or one composed of numerous service-

based components. Those APIs provide a terrific way to dramatically improve

automated testing of a system as it’s moving through a delivery pipeline.

This article earlier mentioned dual-purpose features providing test data or

feature switching. Automating calls to these features is best done through an

API, versus re-writing configuration files or injecting changes into a database.

Using APIs for this approach ensures appropriate business rules for the

general feature are followed.

Such an approach is critical when setting up an environment for automated and/

or exploratory testing. This might include steps such as validating that parts are in

stock and available when pulling part data from a data warehouse. It might ensure

only active customers are exported from a database. It could also appropriate

pre-requisite steps when creating unique data for automated testing.

Imagine a test that checks if a customer can search for a particular item and

place it in a shopping cart. All good automated tests avoid sharing state and

data between themselves due to the extreme fragility of such an approach.

LEARN MORE AT SAUCELABS.COM PAGE 9

This requires all data for a test to be randomly or uniquely generated. Pseudo

code for setting up prerequisites might look similar to this:

	 Create_test_customer

		 Randomly generate customer name, address, etc.

		 Call system APIs to create a customer with random data

		 Create_test_store_item

	 Generate an item with random name, description, etc.

		 Call system APIs to create a store item with random data

		 Create_test_customer_cart(test_customer)

	 Call system APIs to create a cart for test customer from above

Each pseudo method uses something like the Faker library to randomly

generate appropriate data and in turn calls the true system APIs to create real

objects with the randomly generated data. Again, the system APIs do all the

proper validation (is the new customer’s phone correct? Is the store item’s

price correct? etc.), relieving the team of having to rewrite and possibly inject

bugs in their own prerequisite or validation code.

Managing Code Dependencies With Software Craftsmanship

Perhaps the most fundamental concept for fast-moving, CI/CD environments

is managing dependencies at the lowest level of the system. Using

sound Software Craftsmanship principles ensures external services and

dependencies can be properly mocked or substituted in various environments

through the delivery pipeline.

Software Craftsmanship is a complex, varied school of practice for software

construction. While there are many tenants to it, including a Manifesto, one of its

basic principles is ensuring software is flexible and adaptable. Part of that concept

is handled by ensuring dependency management is carefully thought out and

implemented. Using one form or another of dependency injection means no

component is responsible for creating dependencies it relies on. Instead, those

components have their dependencies injected or passed into them.

Injecting dependencies on external services is one way teams can stand

up systems in lower environments without being reliant on those external

systems. As an example, imagine a payroll system. Editing an employee’s

hourly rates or annual salary should require a security check to ensure the

user doing the editing is indeed authorized to do it. That security check likely

relies on some system outside the payroll system—a larger human resources

system, for example.

https://en.wikipedia.org/wiki/Software_craftsmanship
http://manifesto.softwarecraftsmanship.org/

PAGE 10WP-15-092017

With a properly architected system, a test of the employee wage edit feature

could simply swap out a call to the “real” security system for a fake call that

simply approves a test user for the edit. This cuts the dependency to that

external system, ensuring tests could run in lower environments, or within

unit tests themselves.

CLOSING

Moving to a well-tested CI/CD pipeline requires significant effort from

organizations. It’s not only a technical issue, it involves process and policy

changes across your entire organization. You’ll need to bring stakeholders and

your business users into the fold as they’ll need to adapt their own mindsets

and cultures. You’ll need to change, sometimes dramatically, your processes

for handling infrastructure. Finally, you’ll need to raise up the skills of your

entire delivery team as part of the effort.

While this can involve years of effort, the payoff can be extraordinary:

continual improvement as the organization moves to constantly deliver

high-quality, well-tested value to their customers.

ABOUT SAUCE L ABS

Sauce Labs is the leading provider of continuous testing solutions that deliver digital

confidence. The Sauce Labs Continuous Testing Cloud delivers a 360-degree view of

a customer’s application experience, ensuring that web and mobile applications look,

function, and perform exactly as they should on every browser, OS, and device, every

single time. Sauce Labs is a privately held company funded by Toba Capital, Salesforce

Ventures, Centerview Capital Technology, IVP, Adams Street Partners and Riverwood

Capital. For more information, please visit saucelabs.com.

SAUCE LABS INC. - HQ 116 New Montgomery Street, 3rd Fl San Francisco, CA 94105 USA

saucelabs.com/signup/trial

FREE TRIAL

https://saucelabs.com/
https://signup.saucelabs.com/signup/trial?campid=7011M0000013X6m&=utm_campaign=free+trial&utm_medium=qr&utm_source=sl

