
WHITE PAPER

Today the degree of mobile app testing required to meet the market’s relentless demand

for new applications and new application features is beyond the capacity of human testers.

Using an automated mobile testing tool is essential for the modern enterprise. In this white

paper you will learn about the importance of having a well-defined mobile testing process

and industry standard test automation framework, as well as the capabilities and benefits of

implementing automated testing using Espresso and XCUITest.

Beyond Appium: Implementing
Comprehensive Testing Using
Espresso and XCUITest

LEARN MORE AT SAUCELABS.COM

TABLE OF CONTENTS

3 Executive Summary

5 Creating Testable Code

7 Working with Espresso

7 Separating Logic from View

8 Encapsulation Makes Testing Easier

8 Accessing Data Access Logic in the UI

9 Using the Espresso Recorder

11 Running Unit Tests

12 Running Espresso Tests in the Cloud

13 Testing and Code Coverage

13 Running Tests According to Configuration

14 Working with XCUITest

16 Creating the Test Files

18 Running the Test

19 Sauce Labs Provides Cloud Services for

 XCUITest for iOS Devices

20 Working with Appium To Do Black Box Testing

23 Finding the Right Framework for the Right Job

23 Putting it All Together

LEARN MORE AT SAUCELABS.COM PAGE 3

EXECUTIVE SUMMARY

Today more than half of the world’s web traffic comes from mobile devices.

Of that number, cell phones have the largest share of users. Yet, having

millions of cellphones on line does not translate into millions of different

applications being used. Surprisingly, the average consumer gives the

most attention to five of the apps he or she has installed. Once an app is

downloaded, it doesn’t have a lot of time to make a good impression. If things

go wrong, the app may not be given a second chance. One report cites that

only 79% of users will try an app a second time. The number of users who will

give an app a third try after a bad experience drops to 16%! Comprehensive

testing is not a nice to have, it’s critical. Mobile applications need to be world

class because the world will be using them.

Still many companies do not have well defined testing processes, nor do

they use an industry standard test automation framework. In a recent survey

conducted by Sauce Labs, nearly one third of those surveyed report using no

automation at all. (See Figure 1.)

WHAT MOBILE AUTOMATION
FRAMEWORK DO YOU USE?

POLL RESULTS

Appium 63%

Espresso 3%

Calabash 1%

XCUITest 3%

No automation framework 31%

The risks incurred by not using an automation framework are significant.

Automated testing provides the consistency and predictability that manual

testing cannot. Today, the degree of mobile app testing required to meet the

market’s relentless demand for new applications and new application features

is beyond the capacity of human testers. Using an automated mobile testing

tool is essential for the modern enterprise. There is little choice otherwise. No

one person can tap and swipe a cell phone fast enough to satisfy the volume

of testing required in typical testing scenarios. In order to survive, enterprises

must automate mobile testing.

Figure 1: Many companies use no automation framework when testing

https://techcrunch.com/2015/06/22/consumers-spend-85-of-time-on-smartphones-in-apps-but-only-5-apps-see-heavy-use/
https://techcrunch.com/2015/06/22/consumers-spend-85-of-time-on-smartphones-in-apps-but-only-5-apps-see-heavy-use/
https://www.digitaltrends.com/mobile/16-percent-of-mobile-userstry-out-a-buggy-app-more-than-twice/

LEARN MORE AT SAUCELABS.COM PAGE 4

Mobile automation frameworks have matured to keep pace with the

proliferation of cell phones and tablets accessing the Internet. In fact,

automated testing is embedded in the two most common integrated

development environments (IDEs) used for making mobile applications.

Android Studio, published by Google, provides automated testing capability

by way of Espresso. XCode, the standard development environment for

creating Apple iOS applications, uses XCUITest.

The scope of this paper is to describe the capabilities and benefits of

implementing automated testing using Espresso and XCUITest. Espresso is an

automated testing framework for testing native Android apps. XCUITest is a

framework dedicated to native iOS development. For purposes of illustration, we

created a demonstration application named Wise Sayings. Wise Saying has two

implementations, one in Android and the other in iOS. (Please see Figure 2, below).

Wise Sayings implements a single feature-- to show a wise saying when the

user clicks the Get Saying button. There are four wise sayings that a user

cycles through in continuous rotation. Each time the user clicks the button in

the application’s GUI, the next wise saying appears. You can download the

source code for both the Android and iOS versions on GitHub.

Admittedly, Wise Sayings is a trivial application. But its limited scope provides

enough application behavior to demonstrate how to implement automated

mobile testing under both Espresso and XCUITest.

Figure 2: The demonstration application Wise Sayings is implemented in both iOS and Android

https://github.com/reselbob/wise-sayings-android
https://github.com/reselbob/wise-sayings-ios

LEARN MORE AT SAUCELABS.COM PAGE 5

CREATING TESTABLE CODE

Before delving into the details of automated mobile testing using Espresso or

XCUITest, it’s important to understand an essential concept in software testing

– creating testable code.

One of the common mistakes made by developers new to automated testing

is failing to create code that is testable. Ensuring that an application is testable

is a practice that is best done when the code is being designed, not later in

the software development lifecycle.

A simple analogy is being able to test a tire’s air pressure on an automobile.

All those involved in making a car understand that checking tire pressure is an

essential feature of the vehicle. Thus, those designing the car will do best to

make sure that the air valve is on the outside of the tire, easily accessible to

the driver for testing. Putting the air valve on the inside of the tire forces the

driver to crawl underneath the chassis to find the air valve in order to apply

the pressure gauge. The bad design hinders the ability of the driver to check

a tire’s pressure easily and quickly.

Of course, no automobile designer in his or her right mind would put the air

valve on the inside of a tire. However, there are more than a few instances

out there where developers made code that’s hard to test or completely

untestable. To use our analogy, they put the air valve on the inside of

the tire. Usually the developer writing such code was not responsible for

testing the code written, or had no knowledge of the testing that needed

to be supported. Thus, the code ended up downstream in the software

development lifecycle (SDLC), in the hands of a QA engineer given the task to

figure the testing out. The rule of thumb in software development is that the

cost of work increases as the code goes further down the SDLC. Determining

test requirements and testing implementation at the design time saves money

and increases the velocity of release overall.

One of the best ways to ensure that a given codebase is testable is to

make sure that the code is well encapsulated and that it follows the design

principle of separation of concerns. At the least the UI code should be

distinctly separate from the code for data access. The architecture for the

demonstration app, Wise Sayings, illustrates how to make such a separation.

(Please see Figure 3.)

https://en.wikipedia.org/wiki/Separation_of_concerns

LEARN MORE AT SAUCELABS.COM PAGE 6

UI Code

SayingsFactor y

UI Tests

uses

Button Click()

getNextSaying()

Unit Tests

Notice that at the architectural level, Wise Sayings is made up of two logical

components. One component is the UI code that contains the logic for

rendering the UI and handling UI actions such as button clicks. The other

component is the data access code encapsulated in SayingsFactory.

SayingsFactory publishes one method, getNextSaying(), which returns

a string that contains a saying. (Remember, a feature of Wise Sayings is to

show a saying from a collection of four sayings in continuous cycle.)

Not only is segmenting UI code from data access code a best practice in

terms of software design, supporting such separation of concerns makes the

application easier to test.

When it comes to testing the Wise Sayings application, there are two types of

testing that need to be done: UI Testing and Unit Testing. Each test type has

a different scope of testing and will use a different testing tool.

Unit testing is concerned with testing logical functions. UI testing is

concerned with testing the graphical behavior of an application. For

example in the Wise Sayings illustration, a unit test will call the function,

SayingFactory.getNextSaying() to verify that a different “saying” string

is returned upon each invocation of the function. A UI test will use a device

simulator to emulate the UI of a cell phone or tablet and then test the

behavior of the application’s graphical components. Both Android Studio/

Espresso and XCode/XCUITest make a distinction between unit tests and

UI tests. The distinction will become apparent when we examine each

development environment in the sections to come.

Figure 3: Well encapsulated code is easier to test than code that is monolithic

LEARN MORE AT SAUCELABS.COM PAGE 7

WORKING WITH ESPRESSO

As mentioned above, Espresso is the testing framework that comes built

into Android Studio. Typically creating a set of tests that run under Espresso

is divided into two parts, as mentioned earlier. The first part is to write the

unit tests that exercise the business logic and data access code of your

application. The second part is to create the tests that interact with the

various features exposed by way of the application’s graphical user interface.

We’ll create the unit test manually. Testing the GUI will be done using the

Espresso test recorder.

SEPARATING LOGIC FROM VIEW

The Android implementation of the Wise Sayings demonstration application

follows the advice provided earlier with regard to creating testable

code. As such, data access intelligence is encapsulated in a Java class,

SayingsFactory. Listing 1, below, shows the code for SayingsFactory.

package com.example.reselbob.myappimapp;

import java.util.ArrayList;

import java.util.List;

public class SayingsFactory {

 private List<String> list = new ArrayList<String>();

 private static SayingFactory ref;

 private int currentIndex = 0;

 private SayingFactory()

 {

 list.add(“Be Kind To Strangers”);

 list.add(“Always Be Honest”);

 list.add(“The Truth is the Best”);

 list.add(“Tip Well Always”);

 }

 public static SayingsFactory getInstance()

 {

 if (ref == null) ref = new SayingsFactory();

 return ref;

 }

 public String getNextSaying(){

 if(currentIndex == list.size()) currentIndex = 0;

 String rtn = list.get(currentIndex);

 currentIndex++;

 return rtn;

 }

}

Listing 1: SayingsFactory encapsulates data retrieval behavior

LEARN MORE AT SAUCELABS.COM PAGE 8

Notice please that SayingsFactory is a singleton. Thus, the class’s sole

method, getNextSaying() will be called directly, like so:

SayingsFactory.getInstance().getNextSaying()

You can use SayingsFactory without having to create an instance of the class.

Providing all data access through a single factory class is useful in this case.

SayingsFactory will be running on a single mobile device. There is no data

sharing happening between mobile devices. Each device will carry its own list

of data. Thus, using the singleton pattern is a safe approach in this scenario.

However, should application requirements be such that list information is to

be shared among multiple devices, then the complexity of coding increases.

At the least, lists will need to be updated as more sayings are added.

ENCAPSULATION MAKES TESTING EASIER

Encapsulating data access behavior into a distinct class makes the testing

process easier. As mentioned above, most modern enterprises require that

the developer writing the code is responsible for testing the code. Thus,

when data access is well encapsulated, the developer who is working

on SayingsFactory can create tests independently from the developers

working on other features of the application. In fact, developers can work in

parallel, thus accelerating the velocity of the software development lifecycle.

Developers who have code that depends on SayingsFactory will use a

testing technique called mocking to emulate the behavior of SayingsFactory

until such time that a release version of the data access code is ready.

ACCESSING DATA ACCESS LOGIC IN THE UI

Separating data access activity from the graphical user interface allows front

end developers to focus their efforts on making GUIs that are visually effective

and perform well. Whereas back end developers might be concerned with

issues such as data synchronicity and server side processing, front end

developers focus on visual accuracy and the overall responsiveness of the

mobile application that is on the device in the hands of the end user. The

testing needs are different too. The point of access for a backend test is

typically a function or an URL in an API. Front tests are initiated by gestural

input such as a button click, keyboard entry of swipe of the UI.

LEARN MORE AT SAUCELABS.COM PAGE 9

Listing 2, below shows the button click behavior that gets a saying from the

SayingsFactory and assigns it to a text element for display in the UI.

In terms of UI testing, coding the various gestures required just to make

data available to a given test assertion can be time-consuming when done

manually. Fortunately, Espresso has a recording tool that allows a tester to

capture all UI gestures on the simulator.

USING THE ESPRESSO RECORDER

The Espresso Recorder is a tool built into the Android Studio IDE that allows

a developer to record interaction gestures such as tapping and swiping.

Developers make the gestures on one of the device simulators that ship with

Android Studio. The Espresso Recorder records a gesture and translates the

interaction into lines of code that it stores in a test file. Listing 3 below show a

snippet of UI test code created using Espresso Recorder.

@Test

public void simpleButtonClickTest() {

 ViewInteraction appCompatButton = onView(

 allOf(withId(R.id.button), withText(“Get Saying”), isDisplayed()));

 appCompatButton.perform(click());

 ViewInteraction viewGroup = onView(

 allOf(childAtPosition(childAtPosition(withId(android.R.id.content),

 0),1), isDisplayed()));

 viewGroup.check(matches(isDisplayed()));

}

Listing 3 above is a trivial test that checks to make sure that a text element is

displayed when a button is clicked.

As mentioned earlier, the Espresso Recorder is built into the Android Studio

IDE. You access the Recorder from the Run menu item in the Android Studio

menu bar as shown below in Figure 4.

public void onSayingButtonTap(View v) {

 TextView tv = (TextView) findViewById(R.id.textView);

 tv.setText(SayingFactory.getInstance().getNextSaying());

}

Listing 2: Android UI code uses the SayingFactory to get data to display

Listing 3: The Espresso Recorder records interactions with the UI into code in a test file.

LEARN MORE AT SAUCELABS.COM PAGE 10

The Recorder will fire up a dialog that allows you to choose a simulator

to use. Then the developer goes about making the gestures and entering

data that is relevant to the scope of testing underway. Also, one of the nice

features of the Recorder is that you can add an assertion after each data

entry event. For example, in the case of the Wise Sayings application, the

developer can use the Recorder to add an assertion that checks the value of

the text element after a button is clicked. Being able to add assertions as part

of the recording sessions saves significant time test creation process. Listing 4

below shows a test, simpleResponseTest that is the result of a test recording

session in which an assertion is declared while recording.

@Test

public void simpleResponseTest() {

 ViewInteraction appCompatButton = onView(

 allOf(withId(R.id.button), withText(“Get Saying”), isDisplayed()));

 appCompatButton.perform(click());

 ViewInteraction textView = onView(

 allOf(withId(R.id.textView), withText(“Be Kind To Strangers”),

 childAtPosition(

 childAtPosition(

 IsInstanceOf.<View>instanceOf(android.view.

ViewGroup.class),

 1),

 0),

 isDisplayed()));

 textView.check(matches(withText(“Be Kind To Strangers”)));

}

Figure 4: You can record tests to run under Espresso from within Android Studio

Listing 4: The Espresso Recorder allows the developer to add assertions during a recording session

LEARN MORE AT SAUCELABS.COM PAGE 11

Once you finish a recording session, the Recorder will ask you to declare the

name of the file in which to save the recorded code. The Recorder has the

intelligence to store the test file in a category name androidTest, as shown

below in Figure 5.

Separating unit test code from UI test code according to category makes

things easier when it’s time to run the tests later on. Some developers will

need to do unit testing only. Front end developers are more interested in UI

tests. The same is true in terms of automated testing in a CI/CD process. At

the least, unit tests tend to run faster than UI tests. UI tests take longer in part

because of the time required to load in the device simulator. Thus, allowing

tests to be executed according to category is useful in terms both of

developer focus and general deployment needs.

RUNNING UNIT TESTS

Espresso allows a developer to run one or many test directly within Android

Studio. All the developer needs to do is right click on the test or test category

to run. A run dialog as shown in Figure 6 below appears.

Figure 5: Android Studio distinguishes between device UI tests and business logic unit tests

LEARN MORE AT SAUCELABS.COM PAGE 12

Figure 6: You can run Espresso tests in Android Studio

Then, either the developer can run the test or debug the test.

Being able to debug code from within a test session is a powerful feature

for developers. Going to the location in an application’s code that is causing

a test to fail and then being able to inspect the values of variables and step

through code at the failure point makes coding more efficient. It’s better to

catch test failure at development time than to have errors discovered later

in the software development lifecycle. Writing tests during development and

having a developer be able to debug failing tests during a testing session saves

time and money.

Running Espresso Tests in the Cloud

Automated Continuous Integration and Delivery (CI/CD) is fast becoming

a standard practice in the software development lifecycle of the modern

enterprise. Thus, not only does testing need to be done by the developer at

design time, but also throughout the software development lifecycle, well

after the code leaves human hands.

https://www.quora.com/What-is-CI-CD

LEARN MORE AT SAUCELABS.COM PAGE 13

Standing up a CI/CD environment that supports machine-based, automated

UI testing can be a laborious undertaking even for the most experienced

engineers. Many enterprises reduce the costs of automated testing in the CI/

CD process by using cloud based testing services. Testing services provided

by companies such as Sauce Labs allow companies to run Espresso tests

against their Android code in the cloud automatically. Using a cloud-based

testing service allows a company to free up valuable engineering talent for

other mission critical tasks.

TESTING AND CODE COVERAGE

Enterprises want to ensure that all code in force has been tested and performs

to expectation. A test suite that exercises only 10% of the code written is of

limited value. The quality of the remaining 90% is unknown. Large amounts of

untested code create risks that companies cannot afford to take. Thus, a code

coverage report becomes indispensable. Fortunately code coverage reports

are easy to generate in Appium Studio when running Espresso tests.

Android Studio allows a developer to run tests and then analyze Espresso

Tests in terms of code coverage. The developer can select the option to run

a test along with Code Coverage. (Please see Figure 6 above). Code coverage

reports are a powerful metric for determining the overall quality of the code

and the degree to which the code has been tested.

RUNNING TESTS ACCORDING TO CONFIGURATION

Running tests from within Android Studio by right-clicking on the test and

then selecting the run mode is useful in most cases. However, more complex

situations require a developer to create special run configurations in which to

run the test. Android Studio provides this capability. (Please see Figure 7.)

https://wiki.saucelabs.com/display/DOCS/Continuous+Integration+for+Espresso

LEARN MORE AT SAUCELABS.COM PAGE 14

For example, you can create a run configuration that defines the environment

variables that the test needs to be functional. Or, a run configuration can

be dedicated for a specific version of the Java JRE. Also, developers can

set a run configuration to invoke another application that a test needs in

order to operate properly. The important thing to understand is that Android

Studio has the versatility to allow a developer to create one of many run

configurations to meet the particular needs of a given testing scenario. Being

able to create run configurations allows for a broad scope of testing without

the developer having to do a lot of repetitive configuration work.

WORKING WITH XCUITEST

As mentioned earlier, XCUITest is the testing tool that ships with XCode.

XCUITest provides developers with capabilities similar to those found in

Espresso. However, while Espresso is dedicated to code written for the

Android operating system, XCUITest is dedicated to Objective-C and Swift

code that runs under iOS.

Figure 7: Android Studio allows you to configure test executions according to scope

LEARN MORE AT SAUCELABS.COM PAGE 15

Writing tests in XCUITest is similar to the way you work in Espresso. First the

developer or QA engineer needs to make ensure the application code is

testable. This means that the code is well encapsulated, that business and

data access logic is separated from UI code. The separation of concerns

in the iOS version the Wise Saying application is similar to that of Android

version. Data access logic encapsulated in a Swift class, SayingsFactory.

Then, a device’s UI code uses SayingsFactory to get data for display.

Listing 4 below shows the Swift 3 version of the SayingsFactory.

import Foundation

class SayingsFactory {

 static let sharedInstance = SayingsFactory();

 private var currentIndex = 0;

 var sayings = [“Be Kind To Strangers”,”Always Be Honest”,”The Truth is the

Best”,”Tip Well Always”];

 func getNextSaying()->String {

 if(currentIndex == sayings.count){

 currentIndex = 0;

 }

 let saying = sayings[currentIndex];

 currentIndex += 1;

 return saying;

 }

}

Similar to the Android version, the iOS version of SayingsFactory is a

singleton class that exposes the method, getNextSay(). getNextSay()returns

the next saying from a predefined list.

The iOS application uses the SayingsFactory to get the text that is displayed

when a user clicks the button on the device’s UI. Listing 5 below shows the

Swift-3 code that gets a saying from the SayingsFactory and displays the

text in the UI.

Listing 4: Implementing the SayingsFactory for iOS in Swift under XCode

https://developer.apple.com/swift/

LEARN MORE AT SAUCELABS.COM PAGE 16

import UIKit

class ViewController: UIViewController {

 @IBOutlet weak var lblSaying: UILabel!

 @IBAction func btnSaying(_ sender: Any) {

 lblSaying.text = SayingsFactory.sharedInstance.getNextSaying();

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view, typically from a nib.

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 // Dispose of any resources that can be recreated.

 }

}

Conceptually, the code for both the iOS and Android versions of the Wise

Sayings is identical. The object models and syntax differ of course.

CREATING THE TEST FILES

Developers create unit and UI tests by declaring targets from within XCode.

A developer will click Target from the File -> New menu. A dialog appears

when the Target… menu item is selected as shown below in Figure 8.

Listing 5: Applying data returned from the SayingsFactory from within an iOS button click action

Figure 8: You declare XCUITest as targets from within XCode

LEARN MORE AT SAUCELABS.COM PAGE 17

The developer or QA Engineer selects either iOS UI Testing Bundle or iOS

Unit Testing Bundle from among the target templates available in the dialog.

XCode asks the developer to name the test. Then the IDE generates a folder

according to the test name and adds files relevant to the test. One of these

files will be a info.plist file. Another is a skeleton test class file. Figure 9

below shows the result of creating Unit Test and UI Test targets using XCode.

Writing a Unit Test is similar to the

process that a developer does in

Espresso. The developer will add Unit Test

behavior manually to test methods in the

skeleton test file. In terms of UI Testing,

the developer will follow the process

similar to that done in Espresso and use a

UI test recorder to add code to the UI test

file. Listing 6 below shows the UI test file

skeleton that XCode creates.

import XCTest

class simple_unit_testing: XCTestCase {

 override func setUp() {

 super.setUp()

 // Put setup code here. This method is called before the invocation of

each test method in the class.

 }

 override func tearDown() {

 // Put teardown code here. This method is called after the invocation of

each test method in the class.

 super.tearDown()

 }

 func testExample() {

 // This is an example of a functional test case.

 // Use XCTAssert and related functions to verify your tests produce the

correct results.

 }

 func testPerformanceExample() {

 // This is an example of a performance test case.

 self.measure {

 // Put the code you want to measure the time of here.

 }

 }

}

Figure 9: XCode supports the pattern of
separating UI Tests from Unit Tests

Listing 6: A test class generated as part of the Unit Test Bundle workflow process

LEARN MORE AT SAUCELABS.COM PAGE 18

Figure 10 below shows the location of the test button that a developer clicks

to start the XCUITest Recorder. The results of a recording session are added as

code to the UI test file.

Once test files are created, a developer uses the XCode IDE to compile the

source and runs Unit and UI Tests.

RUNNING THE TEST

A developer runs the tests in an XCode development project by clicking

Product -> Test in the XCode menu bar, as shown below in Figure 11.

Figure 10: There is a XCUITest Recorder is embedded in the XCode IDE

Figure 11: Developer and QA Engineers run XCUITest directly from within XCode

LEARN MORE AT SAUCELABS.COM PAGE 19

Also, XCode has a Test Navigator feature for those developers who want a

higher degree of control over testing activity and more detail when viewing

test results. Figure 12 below shows a view of the Unit Tests and UI Tests from

within the Text Navigator. Developers access the Test Navigator by clicking

the diamond-shaped icon on the left panel of the XCode IDE. (Notice that the

Test Navigator icon is identified by a rectangle in the illustration.)

Clearly Apple has put a lot of work into integrating Unit and UI Testing

capabilities directly into the XCode IDE. This reflects the industry trend that

the most efficient way to ensure software quality at the code level is to have

those closest to writing the code also be the ones writing the test. Thus,

making it easy to write tests and view the results of that those tests is an

important part of both the software development experience not only in

XCode using XCUITest but also in Android Studio using Espresso.

Sauce Labs Provides Cloud Services for XCUITest for iOS Devices

Being able to implement automated testing in a cloud server is not only

limited to Espresso testing. You can run XCUITest using cloud services as well.

TestObject provides cloud based testing services that support automated

XCUITest. Click here to view an introductory video about testing iOS code on

Sauce Labs Real Device Cloud.

Figure 12: The Test Navigator provides more control and a detailed view of test activity

https://www.youtube.com/watch?v=TEMs3DtyQxg&feature=youtu.be

LEARN MORE AT SAUCELABS.COM PAGE 20

WORKING WITH APPIUM TO DO

BL ACK BOX TESTING

Although Espresso and XCUITest are powerful UI testing frameworks, they

both share a common shortcoming. In order to use them you need to have

direct access to the source code. For example, the following lines of Espresso

test code invokes clicking the Get Sayings button on the UI:

ViewInteraction appCompatButton = onView(

 allOf(withId(R.id.button), withText(“Get Saying”), isDisplayed()));

appCompatButton.perform(click());

And this line of XCUITest code invokes the same button click behavior:

let app = XCUIApplication()

let getSayingButton = app.buttons[“Get Saying”]

getSayingButton.tap()

Conceptually the button click code above is similar, but each implementation

is dramatically different. First, The way iOS organizes and names elements in

the UI hierarchy is not at all like the way Android does it. And, the underlying

programming languages differ. Android uses Java. iOS applications are written

in Objective-C or Swift.

The type of testing in which the testing code needs direct access to the

source code is called White Box Testing. White Box Testing is good as long

the developer and tester have access to application before it is compiled and

deployed. But, how do you write effective UI testing when all you have is the

deployed executable such as an Android APK or an iOS APP file? In such cases

you can use Appium.

Appium is an open source project that’s well suited to writing test in situations

in which the source code is not available. Appium was designed from the

beginning to be useful when only an application’s deployment artifact is

available. Appium is divided into 2 components, the Appium Desktop and the

Appium Server.

Appium Desktop is the test creation tool that’s intended to be run on

a developer’s machine. Appium Desktop sits on top of the Appium Testing

Server. (Please see Figure 12.)

LEARN MORE AT SAUCELABS.COM PAGE 21

Simulator
A

Simulator
B

Simulator
C

Simulator
...Z

APPIUM DESKTOP

APPIUM SERVER

Recorder
Configuration

Definition

The Appium Desktop is an IDE similar to Espresso and XCUITest in that it

allows a developer to set test configuration and record tests against a mobile

application’s UI. Figure 12 above shows a screenshot of Appium Desktop

running the Android version of the Wise Saying demonstration application in

an Android Simulator.

Figure 12: Appium Desktop sits on top of Appium Server

Figure 13: Appium Desktop has a test recorder that produces
Black Box test scripts in a variety of languages

LEARN MORE AT SAUCELABS.COM PAGE 22

Appium Server contains the device simulators in which an application will be

run. Once an application is up and running in a simulator, the Appium Server

runs tests against the simulated application. Which simulator to use depends

on the type of application being tested.

Appium does not need to have access to the source code. It has the

intelligence to inspect a deployment executable and determine the UI

element structure of an application. Then a developer uses the Appium

Recorder to keep track of actions as the user taps through the application’s

UI and enters data using the simulator keyboard when necessary. The Appium

Recorder translates the recording into code to which the developer adds

assertion statement to verify expected behavior.

The test code is independent of the source code and is run as a separate

project. Think of the testing project as a test runner that exercises the

application’s UI. The testing project can be written in any one of the variety

of languages that Appium supports, for example, Java, .NET, Ruby or

PHP. Remember, Appium has no concern with the language in which the

application is written. It exposes the application’s underlying UI structure in a

format that is readable by a variety of languages.

Getting the familiar working Appium involves mastering a three step process.

First the developer creates the UI tests using the Appium Desktop Recorder.

Second, the developer submits to the Appium Server a JSON document that

describes testing configuration. Third, the developer commands the server to

run tests.

The Appium Server does the work of executing tests. It’s transparent in terms

of the Appium Desktop. However, when it comes time to use Appium as the

testing framework in a CI/CD setting, you can set up separate Appium servers

on a network to run many testing sessions. Or, if you want to save time

and avoid the work of setting up a Appium Server and attaching the various

simulators your testing environment requires, you can use a cloud-based

Appium Service Provider to execute UI testing in a CI/CD workflow.

Sauce Labs is one such platform.

https://saucelabs.com/enterprise#automated-testing-platform

PAGE 23WP-09-092017

FINDING THE RIGHT FRAMEWORK

FOR THE RIGHT JOB

Espresso, XCUITest and Appium are all useful frameworks for writing tests for

mobile applications. However, no one framework is applicable to all situations.

Espresso and XCUITest are great frameworks for mobile testing when source

code is available and when the developer is working in an IDE. Appium is the

mobile application testing framework to use when all that is available is the

APK or APP deployment artifacts. All come with tradeoffs. Finding the right

automation framework for the right job requires detailed consideration.

PUT TING IT ALL TOGETHER

Automated testing is an essential aspect of modern mobile application

development. Gone are the days of rooms full of QA testers typing away on

a cell phone according to list of instructions and saving the results in

a spreadsheet shared by all. The volume and complexity of code that needs to

be tested simply won’t allow it. Today developers and QA Engineers need to

write and execute faster. And the tests that are created need to be runnable in

the CI/CD environment. The demands can be herculean.

Fortunately the frameworks have kept up with the times. Espresso, XCUITest

and Appium make automated testing available to all, from the single

developer to the large scale enterprise. These frameworks are free to use.

Espresso and XCUITest are built right into their respective IDEs. Appium is

open source. The only cost is the time necessary to learn how to use them.

This is the easy part.

The real trick is to get more enterprises to adopt the frameworks in their

software development lifecycle. When it comes to mobile application

development, in the not too distant future there will be two types of

companies: Those that have embraced using automation tools and

frameworks in mobile app testing and those that haven’t. Those that have

will enjoy a bright future of growth and prosperity meeting the increasing

demands of the marketplace. Those that haven’t will fall by the wayside as

one of those companies that should have known better but didn’t.

ABOUT SAUCE L ABS

Sauce Labs is the leading provider of continuous testing solutions that deliver digital

confidence. The Sauce Labs Continuous Testing Cloud delivers a 360-degree view of

a customer’s application experience, ensuring that web and mobile applications look,

function, and perform exactly as they should on every browser, OS, and device, every

single time. Sauce Labs is a privately held company funded by Toba Capital, Salesforce

Ventures, Centerview Capital Technology, IVP, Adams Street Partners and Riverwood

Capital. For more information, please visit saucelabs.com.

SAUCE LABS INC. - HQ 116 New Montgomery Street, 3rd Fl San Francisco, CA 94105 USA

saucelabs.com/signup/trial

FREE TRIAL

https://saucelabs.com/
https://signup.saucelabs.com/signup/trial?campid=7011M0000013X6m&=utm_campaign=free+trial&utm_medium=qr&utm_source=sl

